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Preface

Almost 10 years have passed since the first edition of Ultrashort Laser Pulse
Phenomena. The field of ultrafast optics and spectroscopy has evolved and
matured tremendously; tools and techniques available only in research labo-
ratories 10 years ago are now common in many laboratories outside physics and
engineering and have been commercialized. During the same period the field has
progressed at an astonishing speed, opening new directions, constantly challeng-
ing the frontiers of high field science and ultrafast spectroscopy. Our provocative
statement from the first edition predicting attosecond pulses at the end of the
1990s materialized. To properly account for the developments of the past decade
each chapter of the first edition would need to be expanded into a whole book.

Having said this it is clear that this second edition, like the first edition, cannot
be an attempt to review and summarize the latest developments in the field.
Periodic updates can be found in the proceedings of the conferences on ultrafast
phenomena and on ultrafast optics held alternately every other year. However, as
is typical for a mature scientific area, despite the dramatic progress a number of
fundamental subjects have emerged. These topics, not much different from the
material covered in the first edition, are what students and researchers entering
the field need to learn.

In line with the scope of the first edition, the second edition is also intended
to bridge the gap between a textbook and a monograph. Written at the level of
senior undergraduate students from physics, chemistry, or engineering it repre-
sents a mix of tutorial sections and more advanced writings motivating further
study of the original literature.

Compared to the first edition, changes have been made in particular in
Chapters 1, 2, 3, 5, 9, and 13. The tutorial aspect was emphasized more, and
material useful for the researcher was added. The original Chapter 5 on “Ultra-
short Sources” has been expanded and split into two chapters, Chapter 5 on
“Fundamentals” and Chapter 6 on “Examples.” Some newer developments were
added to Chapter 9 on “Diagnostic Techniques” and to Chapter 13 on “Selected
Applications.” Except for some updates and corrections, Chapters 7, 8, 10, 11,
and 12 are essentially unchanged.

We would like to express our gratitude to all our colleagues and students
who have supported us with numerous suggestions and corrections. In particular,
we are indebted to current and former students L. Arissian, J. Biegert, M. Dennis,
S. Diddams, P. Dorn, J. Jasapara, J. Jones, M. Kempe, A. Knorr, M. Mero,

xv



xvi Preface

J. Nicholson, P. Rambo, A. Schmidt-Sody, A. Velten, J. Zeller, X. Zhao, and
to Professors D. Budker, M. Lenzner, G. Reali, M. Sheik-Bahae, B. Wilhelmi,
K. Wodkiewicz, A. Zewail, and W. Zinth.

We are grateful also to the contributions of all the students who took courses in
the development stage of the first and second editions of this book and proofread
individual sections.

Last but not least, we are grateful to our wives, who watched the years go by
as our lives became hostage to this endeavor.

Our apologies again to anyone whose work has not been adequately recog-
nized, as we could not possibly cover completely the macrocosm of the temporal
microcosm.

Albuquerque, December 2005



Preface to the First Edition

What do we understand about “ultrashort laser pulse phenomena”? It really
takes a whole book to define the term. By ultrashort we mean femtosecond (fs),
which is a unit of time equal to 10−15 s. This time scale becomes accessible
because of progress in the generation, amplification, and measurement of ultra-
short light pulses. Ultrashort phenomena involve more than just the study of
ultrashort lived events. Because of the large energy concentration in a fs optical
pulse, this topic encompasses the study of the interaction of intense laser light
with matter, as well as the transient response of atoms and molecules and basic
properties of the fs radiation itself.

This book is intended as an introduction to ultrashort phenomena to researchers
and graduate and senior undergraduate students in optics, physics, chemistry,
and engineering. A preliminary version of this book has been used at the
University of New Mexico, Jena and Pavia, as a course for graduate and advanced
undergraduate students. The femtosecond light gives a different illumination to
some classical problems in electromagnetism, optics, quantum mechanics, and
electrical engineering. We believe therefore that this book can provide useful
illustrations for instructors in these fields.

It is not the goal of this book to represent a complete overview of the latest
progress in the field. We wish to apologize in advance for all the important and
pioneering fs work that we failed to cite. For space limitation, we have chosen
to present only a few examples of application in the various fields. We are not
offering different theoretical aspects of any particular phenomenon, but rather
choose to select a description that is consistent throughout the book. Our aim is
to cover the basic techniques and applications rather than enter into details of
the most fashionable topic of the day. We have attempted to use simple notations
and to remain within the MKS system of units.

Consistent with the instructional goal of this book, the first chapter is an exten-
sive review of propagation properties of light in time and frequency domains.
Classical optics is reviewed in the next chapter, in light of the particular prop-
agation properties of fs pulses. Some aspects of white light optics—such as
coherence and focusing—can be explained in the simplest manner by picturing
incoherent radiation as a random sequence of fs pulses. Femtosecond pulses are
generally meant to interact with matter. Therefore, a review of this aspect is given
in Chapter 3. The latter serves as introduction to the most startling, unexpected,
complex properties of transient interaction of coherent fs pulses with resonant

xvii
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physical and chemical systems (Chapter 4). This is a subfield of which the basic
foundations are well understood, but it is still open to numerous experimental
demonstrations and applications. Chapters 5 through 9 review practical aspects
of femtosecond physics, such as sources, amplifiers, pulse shapers, diagnostic
techniques, and measurement techniques.

The last three chapters are examples of application of ultrafast techniques.
In Chapter 10, the frontier between quantum mechanics and classical mechanics
is being probed with fs pulses. New techniques make it possible to “visual-
ize” electrons in Rydberg orbits or the motion of atoms in molecules. The
examples of ultrafast processes in matter are presented in this chapter by order
of increasing system complexity (from the orbiting electron to the biological
complex).

Femtosecond pulses of high peak powers lead to the generation of extremely
short wavelength electron and X-ray pulses, as well as to extremely long wave-
lengths. Some of these techniques are reviewed in Chapter 11. On the long
wavelength end of the spectrum, fs pulses are used as Dirac delta function on
antennas for submillimeter radiation (frequencies in the THz range). This is a
recent application of ultrafast solid-state photoconductive switches.

A few applications that exploit the short duration (range gating imaging), the
high coherence, or the high intensity (solitons or filamentation in air) have been
selected for the final Chapter 13.

Problems are given at the end of most chapters. Some are typical textbook
problems with a straightforward solution. Other problems are designed to put the
student in a realistic research situation.

Why Ultrashort Pulse Phenomena?

Yes, you are right! You can be happy without femtosecond pulses and, maybe,
consider yourself lucky enough not to be involved with it too deeply. Neverthe-
less it is a fascinating as well as challenging task to observe and to control
processes in nature on a time scale of several femtoseconds. Note, one femto-
second (1 fs) is the 1 : 1015th part of a second and corresponds to about half
a period of red light. The ratio of one fs to one second is about the ratio of
5 minutes to the age of the earth. During one fs, visible light travels over a
distance of several hundred nanometers, which is hardly of any concern to us in
our daily routine. However, this pathlength corresponds to several thousand ele-
mentary cells in a solid which is quite a remarkable number of atomic distances.
This suggests the importance the fs time scale might have in the microcosm.
Indeed, various essential processes in atoms and molecules, as well as interac-
tions among them, proceed faster than what can be resolved on a picosecond
time scale (1 ps = 10−12s). Their relevance results simply from the fact that
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these events are the primary steps for most (macroscopic) reactions in physics,
chemistry, and biology.

To illustrate the latter point, let us have a look at the simplest atom—the
hydrogen atom—consisting of a positively charged nucleus and a negatively
charged electron. Quantum mechanics tells us that an atomic system exists in
discrete energy states described by a quantum number n. In the classical picture
this corresponds to an electron (wave packet) circulating around the proton on
paths with radius R ∝ n2. From simple textbook physics, the time TR neces-
sary for one round-trip can be estimated with TR = 4n2h3ε2

0/(e4me), where h is
Planck’s constant, ε0 is the permittivity of free space, and me, e are the elec-
tron mass and charge [1, 2]. For n = 26, for instance, we obtain a period of
about 100 fs. Consequently, an (hydrogen) atom excited to a high Rydberg state
is expected to show some macroscopic properties changing periodically on a fs
time scale.

Let us next consider atoms bound in a molecule. Apart from translation,
the isolated molecule has various internal degrees of freedom for periodical
motion—rotation and vibration as well as for conformation changes. Depending
on the binding forces, potentials, and masses of the constituents, the correspond-
ing periods may range from the ps to the fs scale. Another example of ultrafast
dynamics in the molecular world is the chemical reaction, for instance, the sim-
ple dissociation (AB)∗ → A + B. Here the breaking of the bond is accompanied
by a geometrical separation of the two components caused by a repulsive poten-
tial. Typical recoil velocities are of the order of 1 km/s, which implies that the
transition from the bound state to the isolated complexes proceeds within 100 fs.
Similar time intervals, of course, can be expected if separated particles undergo
a chemical reaction.

Additional processes come into play if the particle we look at is not isolated
but under the influence of surrounding atoms or molecules, which happens in a
gas (mixture) or solution. Strong effects are expected as a result of collisions.
Moreover, even a simple translation or rotation that alters the relative position of
the molecule to the neighboring particles may lead to a variation of the molecular
properties because of a changed local field. The characteristic time constants
depend on the particle density and the translation–rotation velocity, which in turn
is determined by the temperature and strength of interaction with the neighbors.
The characteristic times can be comparatively long in diluted gases (ns to µs)
and can be short in solutions at room temperature (fs).

Finally, let us have a look at a solid where the atomic particles are usually
trapped at a relatively well-defined position in the lattice. Their motion is
restricted usually to lattice vibrations (phonons) with possible periods in the
order of 100 fs, which corresponds to phonon energies of several tens of milli-
electronvolts (for instance, the longitudinal optical or LO phonon in GaAs has
an energy of about 35 meV).
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The fundamental problem to be solved is to find tools and techniques that allow
us to observe and manipulate on a fs time scale. At present, speaking about tools
and techniques for fs physics means dealing with laser physics, in particular with
ultrashort light pulses produced in lasers. Shortly after the invention of the laser
in 1960, methods were developed to use them for the generation of light pulses.
In the sixties, the microsecond (µs) and nanosecond (ns) range were extensively
studied. In the seventies, progress in laser physics opened up the ps range, and
the eighties were characterized by the broad introduction of fs techniques (extra-
polating this dramatic development we may expect the attosecond physics in the
late nineties). Optical methods have taken precedence over electronics in time
resolving fast events ever since light pulses shorter than a few ps have become
available. It should also be mentioned that the shortest electrical and X-ray pulses
are now being produced by means of fs light pulses, which in turn enlarges the
application field of ultrafast techniques.

Femtosecond technology opens up new fascinating possibilities based on the
unique properties of femtosecond light pulses:

• Energy can be concentrated in a temporal interval as short as several 10−15 s,
which corresponds to only a few optical cycles in the visible range.

• The pulse peak power can be extremely large even at moderate pulse ener-
gies. For instance, a 50-fs pulse with an energy of 1 mJ (≈ 3 ∗ 1015 “red”
photons) exhibits an average power of 20 Gigawatt. Focusing this pulse to
a 100-µm2 spot yields an intensity of 20 Petawatt/cm2 (20 1015 W/cm2!),
which means an electric field strength of about 3 GV/cm. This value is
larger than a typical inner-atomic field of 1 GV/cm.

• The geometrical length of a fs pulse amounts only to several micrometers
(10 fs corresponds to 3 µm in vacuum). Such a coherence length is usually
associated with incoherent light. The essential difference is that incoherent
light is generally spread over a much longer distance.

The attractiveness of fs light pulses not only lies in the possibility to trace
processes in their ultrafast dynamics, but also in the fact that one simply can do
things faster. Of course only a few, but essential, parts in modern technology can
be accelerated by using ultrashort (fs) light pulses. Of primary importance are data
transfer and data processing utilizing the high carrier frequency of light and the
subsequent large possible bandwidths. In this respect one of the most spectacular
goals is to create an optical computer. Moreover, techniques are being developed
that allow distortionless propagation of ultrashort light pulses over long distances
(several thousand kilometers) through optical fibers, a precondition for a future
Terahertz information transfer.

A variety of nonlinear processes, reversible as well as irreversible ones,
become accessible thanks to the large intensities of fs pulses. There are proposals
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to use such pulses for laser fusion. To reach TW intensities, tabletop devices
are replacing the building size high energy facilities previously required. First
attempts to generate short X-ray pulses by using fs pulse–induced plasmas have
already proven successful.

The short geometrical lengths of fs light pulses suggest interesting applications
for optical ranging with micrometer resolution, as well as for combinations of
micrometer spatial resolution with femtosecond temporal resolution.

The ultrashort phenomena to which this book refers are created by light
pulses, which are wave packets of electromagnetic waves oscillating at optical
frequencies. The emphasis of this book is not on the optical frequency range
but on physical phenomena associated with ultrafast electromagnetic pulses. The
latter will be ephemeral when consisting of only a small number of optical peri-
ods and spatially confined when made up of a small number of wavelengths.
Another criterion for short is that the length of the pulse be small compared with
the distance over which it propagates, particularly when large changes of shape
and modulation take place. In the particular area of light–matter interaction, a
pulse is generally considered as a δ function excitation when its duration is small
compared to that of all atomic or molecular relaxations.
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1
Fundamentals

1.1. CHARACTERISTICS OF FEMTOSECOND
LIGHT PULSES

Femtosecond (fs) light pulses are electromagnetic wave packets and as such
are fully described by the time and space dependent electric field. In the frame of
a semiclassical treatment the propagation of such fields and the interaction with
matter are governed by Maxwell’s equations with the material response given by
a macroscopic polarization. In this first chapter we will summarize the essential
notations and definitions used throughout the book. The pulse is characterized by
measurable quantities that can be directly related to the electric field. A complex
representation of the field amplitude is particularly convenient in dealing with
propagation problems of electromagnetic pulses. The next section expands on the
choice of field representation.

1.1.1. Complex Representation of the Electric Field

Let us consider first the temporal dependence of the electric field neglecting
its spatial and polarization dependence, i.e., E(x, y, z, t) = E(t). A complete
description can be given either in the time or the frequency domain. Even though
the measured quantities are real, it is generally more convenient to use complex
representation. For this reason, starting with the real E(t), one defines the complex

1
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spectrum of the field strength Ẽ(�), through the complex Fourier transform (F):

Ẽ(�) = F {E(t)} =
∫ ∞

−∞
E(t)e−i�tdt = |Ẽ(�)|ei�(�) (1.1)

In the definition (1.1), |Ẽ(�)| denotes the spectral amplitude, and �(�) is the
spectral phase. Here and in what follows, complex quantities related to the field
are typically written with a tilde.

Because E(t) is a real function, Ẽ(�) = Ẽ∗(−�) holds. Given Ẽ(�), the time
dependent electric field is obtained through the inverse Fourier transform (F−1):

E(t) = F−1 {Ẽ(�)
} = 1

2π

∫ ∞

−∞
Ẽ(�)ei�td�. (1.2)

For practical reasons it may not be convenient to use functions that are nonzero
for negative frequencies, as needed in the evaluation of Eq. (1.2). Frequently a
complex representation of the electric field in the time domain is also desired.
Both aspects can be satisfied by introducing a complex electric field as

Ẽ+(t) = 1

2π

∫ ∞

0
Ẽ(�)ei�td� (1.3)

and a corresponding spectral field strength that contains only positive frequencies:

Ẽ+(�) = |Ẽ(�)|ei�(�) =
{

Ẽ(�) for � ≥ 0
0 for � < 0.

(1.4)

Ẽ+(t) and Ẽ+(�) are related to each other through the complex Fourier transform
defined in Eq. (1.1) and Eq. (1.2), i.e.,

Ẽ+(t) = 1

2π

∫ ∞

−∞
Ẽ+(�)ei�td� (1.5)

and

Ẽ+(�) =
∫ ∞

−∞
Ẽ+(t)e−i�tdt. (1.6)

The real physical electric field E(t) and its complex Fourier transform can
be expressed in terms of the quantities derived in Eq. (1.5) and Eq. (1.6)
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and the corresponding quantities Ẽ−(t), Ẽ−(�) for the negative frequencies.
These quantities relate to the real electric field:

E(t) = Ẽ+(t) + Ẽ−(t) (1.7)

and its complex Fourier transform:

Ẽ(�) = Ẽ+(�) + Ẽ−(�). (1.8)

It can be shown that Ẽ+(t) can also be calculated through analytic continuation
of E(t)

Ẽ+(t) = E(t) + iE′(t) (1.9)

where E′(t) and E(t) are Hilbert transforms of each other. In this sense Ẽ+(t) can
be considered as the complex analytical correspondent of the real function E(t).

The complex electric field Ẽ+(t) is usually represented by a product of an
amplitude function and a phase term:

Ẽ+(t) = 1

2
E(t)ei�(t) (1.10)

In most practical cases of interest here the spectral amplitude will be centered
around a mean frequency ω	 and will have appreciable values only in a fre-
quency interval 
ω small compared to ω	. In the time domain this suggests the
convenience of introducing a carrier frequency ω	 and of writing Ẽ+(t) as:

Ẽ+(t) = 1

2
E(t)eiϕ0 eiϕ(t)eiω	t = 1

2
Ẽ(t)eiω	t (1.11)

where ϕ(t) is the time-dependent phase, Ẽ(t) is called the complex field envelope
and E(t) the real field envelope, respectively. The constant phase term eiϕ0 is
most often of no relevance, and can be neglected. There are however particular
circumstances pertaining to short pulses where the outcome of the pulse interac-
tion with matter depends on ϕ0, often referred to as “carrier to envelope phase.”
The measurement and control of ϕ0 can therefore be quite important. Figure 1.1
shows the electric field of two pulses with identical E(t) but different ϕ0. We will
discuss the carrier to envelope phase in more detail in Chapters 5 and 13.



4 Fundamentals

E
le

ct
ric

 fi
el

d

t /�p

1.0

0.5

0.0

–0.5

–1.0

–3 –2 –1 3210

Figure 1.1 Electric field of two extremely short pulses, E(t) = exp[−2 ln 2(t/τp)2] cos(ω	t + ϕ0)
with ϕ0 = 0 (solid line) and ϕ0 = π/2 (dashed line). Both pulses have the same envelope (dotted
line). The full width of half maximum of the intensity envelope, τp, was chosen as τp = π/ω	.

Because the laser pulse represents a propagating electromagnetic wave packet,
the dc component of its spectrum vanishes. Hence the time integral over the
electric field is zero.

∫ ∞

−∞
E(t)dt =

∫ ∞

−∞
E(t)e−i(�=0)tdt = F {E(t)}�=0 = 0. (1.12)

The description of the field given by Eqs. (1.9) through (1.11) is quite general.
However, the usefulness of the concept of an envelope and carrier frequency as
defined in Eq. (1.11) is limited to the cases where the bandwidth is only a small
fraction of the carrier frequency:


ω

ω	

	 1 (1.13)

For inequality (1.13) to be satisfied, the temporal variation of E(t) and ϕ(t) within
an optical cycle T = 2π/ω	 (T ≈ 2 fs for visible radiation) has to be small. The
corresponding requirement for the complex envelope Ẽ(t) is

∣∣∣∣ d

dt
Ẽ(t)

∣∣∣∣	 ω	

∣∣∣Ẽ(t)
∣∣∣ . (1.14)

Keeping in mind that today the shortest light pulses contain only a few optical
cycles, one has to carefully check whether a slowly varying envelope and
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phase can describe the pulse behavior satisfactorily. If they do, the theoretical
description of pulse propagation and interaction with matter can be greatly simpli-
fied by applying the slowly varying envelope approximation (SVEA), as will be
evident later in this chapter. Note that even for pulses consisting of a few optical
cycles the electric field can formally be represented in a form similar to Eq. (1.11),
as illustrated by Fig. 1.1. Equation (1.11) represents only a mathematical identity
and does not imply that the SVEA is appropriate.

Given the spectral description of a signal, Ẽ+(�), the complex envelope Ẽ(t)
is simply the inverse transform of the translated spectral field:

Ẽ(t) = E(t)eiϕ(t) = 1

2π

∫ ∞

−∞
2Ẽ+(� + ω	)ei�td�, (1.15)

where the modulus E(t) in Eq. (1.15) represents the real envelope. The optimum
“translation” in the spectral domain ω	 is the one that gives the envelope Ẽ(t)
with the least amount of modulation. Spectral translation of Fourier transforms is
a standard technique to reconstruct the envelope of interference patterns, and is
used in Chapter 9 on diagnostic techniques. The Fourier transform of the complex
envelope Ẽ(t) is the spectral envelope function:

Ẽ(�) =
∫ ∞

−∞
Ẽ(t)e−i�tdt = 2

∫ ∞

−∞
Ẽ+(t)e−i(�+ω	)tdt. (1.16)

The choice of ω	 is such that the spectral amplitude Ẽ(�) is centered at the
origin � = 0.

Let us now discuss more carefully the physical meaning of the phase function
ϕ(t). The choice of carrier frequency in Eq. (1.11) should be such as to min-
imize the variation of phase ϕ(t). The first derivative of the phase factor
�(t) in Eq. (1.10) establishes a time-dependent carrier frequency (instantaneous
frequency):

ω(t) = ω	 + d

dt
ϕ(t). (1.17)

Although Eq. (1.17) can be seen as a straightforward definition of an instantaneous
frequency based on the temporal variation of the phase factor �(t), we will see in
Section 1.1.4 that it can be rigorously derived from the Wigner distribution. For
dϕ/dt = b = const., a nonzero value of b just means a correction of the carrier
frequency which is now ω′

	 = ω	 + b. For dϕ/dt = f (t), the carrier frequency
varies with time, and the corresponding pulse is said to be frequency modulated or
chirped. For d2ϕ/dt2 < (>) 0, the carrier frequency decreases (increases) along
the pulse, which then is called down (up) chirped.
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From Eq. (1.10) it is obvious that the decomposition of �(t) into ω and ϕ(t)
is not unique. The most useful decomposition is one that ensures the smallest
dϕ/dt during the intense portion of the pulse. A common practice is to identify
ω	 with the carrier frequency at the pulse peak. A better definition—which is
consistent in the time and frequency domains—is to use the intensity weighted
average frequency:

〈ω〉 =
∫∞
−∞ |Ẽ(t)|2ω(t)dt∫∞

−∞ |Ẽ(t)|2dt
=
∫∞
−∞ |Ẽ+(�)|2�d�∫∞
−∞ |Ẽ+(�)|2d�

(1.18)

The various notations are illustrated in Figure 1.2 where a linearly up-chirped
pulse is taken as an example. The temporal dependence of the real electric field is
sketched in the top part of Fig 1.2. A complex representation in the time domain
is illustrated with the amplitude and instantaneous frequency of the field. The
positive and negative frequency components of the Fourier transform are shown
in amplitude and phase in the bottom part of the figure.

1.1.2. Power, Energy, and Related Quantities

Let us imagine the practical situation in which the pulse propagates as a beam
with cross section A, and with E(t) as the relevant component of the electric field.
The (instantaneous) pulse power (in Watt) in a dispersionless material of refrac-
tive index n can be derived from the Poynting theorem of electrodynamics [1]
and is given by

P(t) = ε0cn
∫

A
dS

1

T

∫ t+T /2

t−T /2
E2(t′)dt′ (1.19)

where c is the velocity of light in vacuum, ε0 is the dielectric permittivity and∫
A dS stands for integration over the beam cross section. The power can be

measured by a detector (photodiode, photomultiplier, etc.) which integrates over
the beam cross section. The temporal response of this device must be short as
compared to the speed of variations of the field envelope to be measured. The
temporal averaging is performed over one optical period T = 2π/ω	. Note that
the instantaneous power as introduced in Eq. (1.19) is then just a convenient
theoretical quantity. In a practical measurement T has to be replaced by the
actual response time τR of the detector. Therefore, even with the fastest detectors
available today (τR ≈ 10−13 − 10−12 s), details of the envelope of fs light pulses
cannot be resolved directly.
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Figure 1.2 Electric field, time-dependent carrier frequency, and spectral amplitude of an
upchirped pulse.
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A temporal integration of the power yields the energy W (in Joules):

W =
∫ ∞

−∞
P(t′)dt′ (1.20)

where the upper and lower integration limits essentially mean “before” and “after”
the pulse under investigation.

The corresponding quantity per unit area is the intensity (W/cm2):

I(t) = ε0cn
1

T

∫ t+T /2

t−T /2
E2(t′)dt′

= 1

2
ε0cnE2(t) = 2ε0cnẼ+(t)Ẽ−(t) = 1

2
ε0cnẼ(t)Ẽ∗(t) (1.21)

and the energy density per unit area (J/cm2):

W =
∫ ∞

−∞
I(t′)dt′. (1.22)

Sometimes it is convenient to use quantities which are related to photon
numbers, such as the photon flux F (photons/s) or the photon flux density F
(photons/s/cm2):

F(t) = P(t)

�ω	

and F(t) = I(t)

�ω	

(1.23)

where �ω	 is the energy of one photon at the carrier frequency.
The spectral properties of the light are typically obtained by measuring the

intensity of the field, without any time resolution, at the output of a spectrometer.
The quantity that is measured is the spectral intensity:

S(�) = |η(�)Ẽ+(�)|2 (1.24)

where η is a scaling factor which accounts for losses, geometrical influences,
and the finite resolution of the spectrometer. Assuming an ideal spectrometer,
|η|2 can be determined from the requirement of energy conservation:

|η|2
∫ ∞

−∞
|Ẽ+(�)|2d� = 2ε0cn

∫ ∞

−∞
Ẽ+(t)Ẽ−(t)dt (1.25)
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Figure 1.3 Temporal pulse profiles and the corresponding spectra (normalized).

———— Gaussian pulse E(t) ∝ exp [−1. 385(t/τp)2]
– – – – – – – Sech pulse E(t) ∝ sech [1. 763(t/τp)]

· · · · · · · · · Lorentzian pulse E(t) ∝ [1 + 1. 656(t/τp)2]−1

——— Asymm. sech pulse E(t) ∝ [exp(t/τp) + exp(−3t/τp)]−1

and Parseval’s theorem [2]:
∫ ∞

−∞
|Ẽ+(t)|2dt = 1

2π

∫ ∞

0
|Ẽ+(�)|2d� (1.26)

from which follows |η|2 = ε0cn/π. The complete expression for the spectral
intensity [from Eq. (1.24)] is thus:

S(�) = ε0cn

4π

∣∣∣Ẽ(� − ω	)
∣∣∣2 . (1.27)

Figure 1.3 gives examples of typical pulse shapes and the corresponding spectra.
The complex quantity Ẽ+ will be used most often throughout the book to

describe the electric field. Therefore, to simplify notations, we will omit the
superscript + whenever this will not cause confusion.

1.1.3. Pulse Duration and Spectral Width

Unless specified otherwise, we define the pulse duration τp as the full width
at half maximum (FWHM) of the intensity profile, |Ẽ(t)|2, and the spectral width

ωp as the FWHM of the spectral intensity |Ẽ(�)|2. Making that statement
is an obvious admission that other definitions exist. Precisely because of the
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difficulty of asserting the exact pulse shape, standard waveforms have been
selected. The most commonly cited are the Gaussian, for which the temporal
dependence of the field is:

Ẽ(t) = Ẽ0 exp{−(t/τG)2} (1.28)

and the secant hyperbolic:

Ẽ(t) = Ẽ0sech(t/τs). (1.29)

The parameters τG = τp/
√

2 ln 2 and τs = τp/1. 76 are generally more convenient
to use in theoretical calculations involving pulses with these assumed shapes than
the FWHM of the intensity, τp.

Because the temporal and spectral characteristics of the field are related to
each other through Fourier transforms, the bandwidth 
ωp and pulse duration τp

cannot vary independently of each other. There is a minimum duration–bandwidth
product:


ωpτp = 2π
vpτp ≥ 2πcB. (1.30)

cB is a numerical constant on the order of 1, depending on the actual pulse
shape. Some examples are shown in Table 1.1. The equality holds for pulses
without frequency modulation (unchirped) which are called “bandwidth limited”
or “Fourier limited.” Such pulses exhibit the shortest possible duration at a given

Table 1.1

Examples of standard pulse profiles. The spectral values given are for unmodulated
pulses. Note that the Gaussian is the shape with the minimum product of mean

square deviation of the intensity and spectral intensity.

Shape Intensity τp Spectral 
ωp cB 〈τp〉〈
�p〉
profile I(t) FWHM profile S(�) FWHM MSQ

Gauss e−2(t/τG)2 1.177τG e−
(�τG

2

)2
2.355/τG 0.441 0.5

Sech sech2(t/τs) 1.763τs sech2 π�τs
2 1.122/τs 0.315 0.525

Lorentz [1 + (t/τL)2]−2 1.287τL e−2|�|τL 0.693/τL 0.142 0.7

Asym.
[
et/τa + e−3t/τa

]−2
1.043τa sechπ�τa

2 1.677/τa 0.278

sech
Square 1 for |t/τr | ≤ 1, τr sinc2(�τr ) 2.78/τr 0.443 3.27

0 elsewhere
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spectral width and pulse shape. We refer the reader to Section 1.1.4, for a more
general discussion of the uncertainty relation between pulse and spectral width
based on mean square deviations (MSQ).

The shorter the pulse duration, the more difficult it becomes to assert its
detailed characteristics. In the femtosecond domain, even the simple concept
of pulse duration seems to fade away in a cloud of mushrooming definitions.
Part of the problem is that it is difficult to determine the exact pulse shape. For
single pulses, the typical representative function that is readily accessible to the
experimentalist is the intensity autocorrelation:

Aint(τ) =
∫ ∞

−∞
I(t)I(t − τ)dt (1.31)

The Fourier transform of the correlation (1.31) is the real function:

Aint(�) = Ĩ(�)Ĩ∗(�) (1.32)

where the notation Ĩ(�) is the Fourier transform of the function I(t) and should
not be confused with the spectral intensity S(�). The fact that the autocorrelation
function Aint(τ) is symmetric, hence its Fourier transform is real, [2] implies that
little information about the pulse shape can be extracted from such a measure-
ment. Furthermore, the intensity autocorrelation (1.31) contains no information
about the pulse phase or coherence. This point is discussed in detail in Chapter 9.

Gaussian Pulses

Having introduced essential pulse characteristics, it seems convenient to
discuss an example to which we can refer to in later chapters. We choose a
Gaussian pulse with linear chirp. This choice is one of analytical convenience:
the Gaussian shape is not the most commonly encountered temporal shape.
The electric field is given by

Ẽ(t) = E0e−(1+ia)(t/τG)2
(1.33)

with the pulse duration

τp = √
2 ln 2 τG. (1.34)

Note that with the definition (1.33) the chirp parameter a is positive for a
downchirp (dϕ/dt = −2at/τ2

G). The Fourier transform of (1.33) yields

Ẽ(�) = E0
√
πτG

4
√

1 + a2
exp

{
i� − �2τG

2

4(1 + a2)

}
(1.35)
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with the spectral phase given by:

φ(�) = −1

2
arctan(a) + aτG

2

4(1 + a2)
�2. (1.36)

It can be seen from Eq. (1.35) that the spectral intensity is the Gaussian:

S(ω	 + �) = |η|2πE2
0 τ

2
G√

1 + a2
exp

{
− �2τG

2

2(1 + a2)

}
(1.37)

with a FWHM given by:


ωp = 2π
vp = 1

τG

√
8 ln 2(1 + a2) (1.38)

For the pulse duration–bandwidth product we find


vpτp = 2 ln 2

π

√
1 + a2 (1.39)

Obviously, the occurrence of chirp (a �= 0) results in additional spectral compo-
nents which enlarge the spectral width and lead to a duration–bandwidth product
exceeding the Fourier limit (2 ln 2/π ≈ 0. 44) by a factor

√
1 + a2, consistent

with Eq. (1.30). We also want to point out that the spectral phase given by
Eq. (1.36) changes quadratically with frequency if the input pulse is linearly
chirped. Although this is exactly true for Gaussian pulses as can be seen from
Eq. (1.36), it holds approximately for other pulse shapes. In the next section, we
will develop a concept that allows one to discuss the pulse duration–bandwidth
product from a more general point of view, which is independent of the actual
pulse and spectral profile.

1.1.4. Wigner Distribution, Second-Order Moments,
Uncertainty Relations

Wigner Distribution

The Fourier transform as defined in Section 1.1.1 is a widely used tool in
beam and pulse propagation. In beam propagation, it leads directly to the far
field pattern of a propagating beam (Fraunhofer approximation) of arbitrary trans-
verse profile. Similarly, the Fourier transform leads directly to the pulse temporal
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profile, following propagation through a dispersive medium, as we will see at the
end of this chapter. The Fourier transform gives a weighted average of the spectral
components contained in a signal. Unfortunately, the exact spatial or temporal
location of these spectral components is hidden in the phase of the spectral field.
There has been therefore a need for new two-dimensional representation of the
waves in either the plane of space–wave vector, or time–angular frequency. Such
a function was introduced by Wigner [3] and applied to quantum mechanics.
The same distribution was applied to the area of signal processing by Ville [4].
Properties and applications of the Wigner distribution in quantum mechanics and
optics are reviewed in two recent books by Schleich [5] and Cohen [6]. A clear
analysis of the close relationship between quantum mechanics and optics can be
found in Praxmeir and Wókiewicz [7]. The Wigner distribution of a function Ẽ(t)
is defined by1:

WE(t,�) =
∫ ∞

−∞
Ẽ
(

t + s

2

)
Ẽ∗ (t − s

2

)
e−i�sds

= 1

2π

∫ ∞

−∞
Ẽ
(
� + s

2

)
Ẽ∗ (� − s

2

)
eitsds. (1.40)

One can see that the definition is a local representation of the spectrum of the
signal, because:

∫ ∞

−∞
WE(t,�)dt = ∣∣Ẽ(�)

∣∣2 (1.41)

and

∫ ∞

−∞
WE(t,�)d� = 2π

∣∣Ẽ(t)
∣∣2 . (1.42)

The subscript E refers to the use of the instantaneous complex electric field Ẽ
in the definition of the Wigner function, rather than the electric field envelope
Ẽ = E exp[iω	t + iϕ(t)] defined at the beginning of this chapter. There is a
simple relation between the Wigner distribution WE of the instantaneous field Ẽ,

1t and � are conjugated variables as in Fourier transforms. The same definitions can be made in
the space–wave vector domain, where the variables are then x and k.
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and the Wigner distribution WE of the real envelope amplitude E :

WE(t,�) =
∫ ∞

−∞
E
(

t + s

2

)
ei[ω	(t+s/2)+ϕ(t+s/2)]

× E∗ (t − s

2

)
e−i[ω	(t−s/2)+ϕ(t−s/2)]e−i�sds

=
∫ ∞

−∞
E
(

t + s

2

)
E∗ (t − s

2

)
e−i[�−(ω	+ϕ̇(t))]sds

= WE {t, [� − (ω	 + ϕ̇)]}. (1.43)

We will drop the subscript E and E for the Wigner function when the distinction
is not essential.

The intensity and spectral intensities are directly proportional to frequency
and time integrations of the Wigner function. In accordance with Eqs. (1.21)
and (1.27):

1

2
√
µ0/ε

∫ ∞

−∞
WE (t,�)d� = I(t) (1.44)

1

2
√
µ0/ε

∫ ∞

−∞
WE (t,�)dt = S(�). (1.45)

Figure 1.4 shows the Wigner distribution of an unchirped Gaussian pulse [(a), left]
versus a Gaussian pulse with a quadratic chirp [(b), right]. The introduction of a
quadratic phase modulation leads to a tilt (rotation) and flattening of the distribu-
tion. This distortion of the Wigner function results directly from the relation (1.43)
applied to a Gaussian pulse. We have defined in Eq. (1.33) the phase of the linearly
chirped pulse as ϕ(t) = −at2/τ2

G. If Wunchirp is the Wigner distribution of the
unchirped pulse, the linear chirp transforms that function into:

Wchirp = Wunchirp

(
t,� − 2at

τ2
G

)
, (1.46)

hence the tilt observed in Fig. 1.4. Mathematical tools have been developed
to produce a pure rotation of the phase space (t, �). We refer the interested
reader to the literature for details on the Wigner distribution and in particular
on the fractional Fourier transform [8, 9]. It has been shown that such a rotation
describes the propagation of a pulse through a medium with a quadratic dispersion
(index of refraction being a quadratic function of frequency) [10].
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Figure 1.4 Wigner distribution for a Gaussian pulse. Left (a), the phase function ϕ(t) = ϕ0 is a
constant. On the right (b), Wigner distribution for a linearly chirped pulse, i.e., with a quadratic
phase modulation ϕ(t) = at2.

Moments of the Electric Field

It is mainly history and convenience that led to the adoption of the FWHM of
the pulse intensity as the quantity representative of the pulse duration. Sometimes
pulse duration and spectral width defined by the FWHM values are not suitable
measures. This is, for instance, the case in pulses with substructure or broad
wings causing a considerable part of the energy to lie outside the range given by
the FWHM. In these cases it may be preferable to use averaged values derived
from the appropriate second-order moments. It appears in fact, as will be shown
in examples of propagation, that the second moment of the field distribution is a
better choice.

For the sake of generality, let us designate by f (x) the field as a function of
the variable x (which can be the transverse coordinate, transverse wave vector,
time or frequency). The moment of order n for the quantity x with respect to
intensity is defined as:

〈xn〉 =
∫∞
−∞ xn| f (x)|2dx∫∞
−∞ | f (x)|2dx

(1.47)

The first-order moment, 〈x〉, is the “center of mass” of the intensity distribution
and is most often chosen as reference, in such a way as to have a zero value.
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For example, the center of the transverse distribution will be on axis, x = 0,
or a Gaussian temporal intensity distribution E0 exp[−(t/τG)2] will be centered
at t = 0. A good criterium for the width of a distribution is the mean square
deviation (MSQ):

〈
x〉 =
√

〈x2〉 − 〈x〉2. (1.48)

The explicit expressions in the time and frequency domains are:

〈τp〉 = 〈
t〉 =
[

1

W

∫ ∞

−∞
t2I(t)dt − 1

W2

(∫ ∞

−∞
tI(t)dt

)2
] 1

2

(1.49)

〈
ωp〉 = 〈
�〉 =
[

1

W

∫ ∞

−∞
�2S(�)d� − 1

W2

(∫ ∞

−∞
�S(�)d�

)2
] 1

2

(1.50)

where S(�) is the spectral intensity defined in Eq. (1.24). Whenever appropriate
we will assume that the first-order moments are zero, which yields 〈
x〉 = √〈x2〉.

The second-order moments can also be defined using the Wigner distribution
[Eq. (1.40)]:

〈t2〉 =
∫ ∫∞

−∞ t2WE(t,�)dtd�∫ ∫∞
−∞ WE(t,�)dtd�

=
∫∞
−∞ t2|Ẽ(t)|2dt∫∞
−∞ |Ẽ(t)|2dt

(1.51)

〈�2〉 =
∫ ∫∞

−∞ �2WE(t,�)dtd�∫ ∫∞
−∞ WE(t,�)dtd�

=
∫∞
−∞ �2|Ẽ(�)|2d�∫∞

−∞ |Ẽ(�)|2d�
. (1.52)

Although the above equations do not bring anything new, the Wigner distribution
lets us define another quantity, which describes the coupling between conjugated
variables:

〈t,�〉 =
∫ ∫∞

−∞(t − 〈t〉)(� − 〈�〉)WE(t,�)dtd�∫ ∫∞
−∞ WE(t,�)dtd�

. (1.53)

A nonzero 〈t,�〉 implies that the center of mass of the spectral intensity evolves
with time, as in Fig. 1.4. One can thus define an instantaneous frequency:

ω(t) =
∫∞
−∞ �WE(t,�)d�∫∞
−∞ WE(t,�)d�

. (1.54)



Characteristics of Femtosecond Light Pulses 17

By substituting the definition of the Wigner distribution Eq. (1.40) in Eq. (1.54),
it is possible to demonstrate rigourously the relation (1.17). Indeed, substituting
the definition (1.43) in Eq. (1.54) leads to:

ω(t) =
∫∞
−∞ �WE [t,� − (ω	 + ϕ̇)]d�∫∞

−∞ WE(t,�)d�

=
∫∞
−∞[�′ + ω	 + ϕ̇(t)]WE [t,�′]d�′

∫∞
−∞ WE(t,�)d�

= ω	 + ϕ̇(t), (1.55)

where we used the fact that
∫
�′WE (t,�′)d�′ = 0.

There is a well-known uncertainty principle between the second moment of
conjugated variables. If k is the Fourier-conjugated variable of x, it is shown in
Appendix A that:

〈x2〉〈k2〉 = M4

4
≥ 1

4
, (1.56)

where we have defined a shape factor M2, which has been extensively used
to describe the departure of beam profile from the “ideal Gaussian” [11]. This
relation can be applied to time and frequency:

〈t2〉〈�2〉 = M4

4
≥ 1

4
. (1.57)

Equality only holds for a Gaussian pulse (beam) shape free of any phase modu-
lation, which implies that the Wigner distribution for a Gaussian shape occupies
the smallest area in the time–frequency plane. It is also important to note that the
uncertainty relations (1.56) and (1.57) only hold for the pulse widths defined
as the MSQ. For Gaussian pulses, 〈τp〉〈
ωp〉 = √〈t2〉〈�2〉 = 1/2 is true,
while for the products of the FWHM of the intensity and spectral intensity
cB = τp
vp = 0.441. In fact, the pulse duration–bandwidth product is not
minimum for a Gaussian pulse, as illustrated in Table 1.1, which gives the value
of cB for various pulse shapes without phase modulation. It remains that, for
a given pulse shape, cB is the smallest for pulses without frequency modula-
tion (unchirped) which are called bandwidth limited or Fourier limited. Such
pulses exhibit the shortest possible duration at a given spectral width and pulse
shape.
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If there is a frequency variation across a pulse, its spectrum will contain
additional spectral components. Consequently, the modulated pulse possesses
a spectral width that is larger than the Fourier limit given by column five in
Table 1.1.

Chirped Pulses

A quadratic phase modulation plays an essential role in light propagation,
be it in time or space. Because a spherical wavefront can be approximated by a
quadratic phase (ϕ(x) ∝ x2, where x is the transverse dimension) near any prop-
agation axis of interest, imparting a quadratic spatial phase modulation will lead
to focusing or defocusing of a beam. The analogue is true in time: Imparting a
quadratic phase modulation (ϕ(t) ∝ t2) will lead to pulse compression or broad-
ening after propagation through a dispersive medium. These problems relating to
pulse propagation will be discussed in several sections and chapters of this book.
In this section we attempt to clarify quantitatively the relation between a quadratic
chirp in the temporal or frequency space and the corresponding broadening of
the spectrum or pulse duration, respectively. The results are interchangeable from
frequency to temporal space.

Let us first assume that a laser pulse, initially unchirped, propagates through a
dispersive material that leaves the pulse spectrum, |Ẽ(�)|2, unchanged but pro-
duces a quadratic phase modulation in the frequency domain. The pulse spectrum
is centered at the average frequency 〈�〉 = ω	. The average frequency does not
change, hence the first nonzero term in the Taylor expansion of φ(�) is

φ(�) = 1

2

d2φ

d�2

∣∣∣∣
0
〈�2〉, (1.58)

where φ(�) determines the phase factor of Ẽ(�):

Ẽ(�) = E(�)eiφ(�). (1.59)

The first- and second-order moments are, according to the definitions (1.47):

〈t〉 =
∫∞
−∞ tẼ(t)Ẽ(t)∗dt∫∞

−∞ |Ẽ(t)|2dt
=
∫∞
−∞

dẼ(�)
d� Ẽ∗(�)d�∫∞

−∞ |Ẽ(�)|2d�
=
〈

dφ

d�

〉
(1.60)



Characteristics of Femtosecond Light Pulses 19

and

〈t2〉 =
∫∞
−∞ tẼ(t)tẼ(t)∗dt∫∞

−∞ |Ẽ(t)|2dt
=
∫∞
−∞

∣∣∣ dẼ(�)
d�

∣∣∣2 d�
∫∞
−∞ |Ẽ(t)|2dt

=
∫∞
−∞

[
dE(�)

d�

]2
d�

∫∞
−∞ |Ẽ(�)|2d�

+
〈(

dφ

d�

)2
〉

. (1.61)

It is left to a problem at the end of this chapter to derive these results. Because
the initial pulse was unchirped and its spectral amplitude is not affected by
propagation through the transparent medium, the first term in Eq. (1.61) rep-
resents the initial second-order moment 〈t2〉0. Substituting the expression for the
quadratic phase Eq. (1.58) into Eq. (1.47) for the first-order moment, we find
from Eq. (1.61):

〈t2〉 = 〈t2〉0 +
[

d2φ

d�2

∣∣∣∣
0

]2

〈�2〉. (1.62)

The frequency chirp introduces a temporal broadening (of the second-order

moment) directly proportional to the square of the chirp coefficient,
[

d2φ

d�2

∣∣∣
0

]2
.

Likewise we can analyze the situation where a temporal phase modulation

ϕ(t) = dϕ
dt

∣∣∣
0

t2 is impressed on the pulse while the pulse envelope, |Ẽ(t)|2,

remains unchanged. This temporal frequency modulation or chirp, characterized
by the second derivative in the middle (center of mass) of the pulse, leads to a
spectral broadening given by:

〈�2〉 = 〈�2〉0 +
[

d2ϕ

dt2

∣∣∣∣
0

]2

〈t2〉 (1.63)

where 〈�2〉0 refers to the spectrum of the input pulse and 〈t2〉 is the (constant)
second-order moment of time.

Equations (1.62) and (1.63) demonstrate the advantage of using the MSQ
to define the pulse duration and bandwidth, because it shows a simple relation
between the broadening in the time or spectral domain, because of a chirp in
the spectral or time domain, respectively independent of the pulse and spectral
shape. For the two different situations described by Eqs. (1.62) and (1.63),
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we can apply the uncertainty relation, Eq. (1.57),

〈t2〉〈�2〉 = M4

4
κc ≥ 1

4
. (1.64)

We have introduced a factor of chirp κc, equal to

κc = 1 + M4

4〈t2〉2
0

[
d2φ

d�2

∣∣∣∣
0

]2

(1.65)

in case of a frequency chirp and constant spectrum, or

κc = 1 + M4

4〈�2〉2
0

[
d2ϕ

dt2

∣∣∣∣
0

]2

(1.66)

in case of a temporal chirp and constant pulse envelope.
In summary, using the mean square deviation (MSQ) to define the pulse

duration and bandwidth:

• The duration–bandwidth product
√〈t2〉〈�2〉 is minimum 0.5 for a Gaussian

pulse shape, without phase modulation.
• For any pulse shape, one can define a shape factor M2 equal to the minimum

duration–bandwidth product for that particular shape.
• Any quadratic phase modulation—or linear chirp—whether in frequency

or time, increases the bandwidth–duration product by a chirp factor κc.
The latter increases proportionally to the second derivative of the phase
modulation, whether in time or in frequency.

1.2. PULSE PROPAGATION

So far we have considered only temporal and spectral characteristics of light
pulses. In this subsection we shall be interested in the propagation of such pulses
through matter. This is the situation one always encounters when working with
electromagnetic wave packets (at least until somebody succeeds in building a
suitable trap). The electric field, now considered in its temporal and spatial
dependence, is again a suitable quantity for the description of the propagating
wave packet. In view of the optical materials that will be investigated, we can
neglect external charges and currents and confine ourselves to nonmagnetic per-
meabilities and uniform media. A wave equation can be derived for the electric
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field vector E from Maxwell equations (see for instance [12]) which in Cartesian
coordinates reads

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− 1

c2

∂2

∂t2

)
E(x, y, z, t) = µ0

∂2

∂t2
P(x, y, z, t) , (1.67)

where µ0 is the magnetic permeability of free space. The source term of Eq. (1.67)
contains the polarization P and describes the influence of the medium on the field
as well as the response of the medium. Usually the polarization is decomposed
into two parts:

P = PL + PNL . (1.68)

The decomposition of Eq. (1.68) is intended to distinguish a polarization that
varies linearly (PL) from one that varies nonlinearly (PNL) with the field.
Historically, PL represents the medium response in the frame of “ordinary” optics,
e.g., classical optics [13] and is responsible for effects such as diffraction, disper-
sion, refraction, linear losses and linear gain. Frequently, these processes can be
attributed to the action of a host material which in turn may contain sources of a
nonlinear polarization PNL . The latter is responsible for nonlinear optics [14–16]
which includes, for instance, saturable absorption and gain, harmonic generation
and Raman processes.

As will be seen in Chapters 3 and 4, both PL and in particular PNL are often
related to the electric field by complicated differential equations. One reason is
that no physical phenomenon can be truly instantaneous. In this chapter we will
omit PNL . Depending on the actual problem under consideration, PNL will have
to be specified and added to the wave equation as a source term.

1.2.1. The Reduced Wave Equation

Equation (1.67) is of rather complicated structure and in general can solely
be solved by numerical methods. However, by means of suitable approximations
and simplifications, one can derive a “reduced wave equation” that will enable
us to deal with many practical pulse propagation problems in a rather simple
way. We assume the electric field to be linearly polarized and propagating in
the z-direction as a plane wave, i.e., the field is uniform in the transverse x, y
direction. The wave equation has now been simplified to:

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
E(z, t) = µ0

∂2

∂t2
PL(z, t). (1.69)
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As known from classical electrodynamics [12] the linear polarization of a medium
is related to the field through the dielectric susceptibility χ. In the frequency
domain we have

P̃L(�, z) = ε0 χ(�)Ẽ(�, z), (1.70)

which is equivalent to a convolution integral in the time domain

PL(t, z) = ε0

∫ t

−∞
dt′ χ(t′)E(z, t − t′). (1.71)

Here ε0 is the permittivity of free space. The finite upper integration limit, t,
expresses the fact that the response of the medium must be causal. For a
nondispersive medium (which implies an infinite bandwidth for the suscepti-
bility, χ(�) = const.) the medium response is instantaneous, i.e., memory free.
In general, χ(t) describes a finite response time of the medium, which in the
frequency domain, means nonzero dispersion. This simple fact has important
implications for the propagation of short pulses and time varying radiation in
general. We will refer to this point several times in later chapters—in particular
when dealing with coherent interaction.

The Fourier transform of (1.69) together with (1.70) yields

[
∂2

∂z2
+ �2ε(�)µ0

]
Ẽ(z,�) = 0 (1.72)

where we have introduced the dielectric constant

ε(�) = [1 + χ(�)]ε0. (1.73)

For now we will assume a real susceptibility and dielectric constant. Later we will
discuss effects associated with complex quantities. The general solution of (1.72)
for the propagation in the +z direction is

Ẽ(�, z) = Ẽ(�, 0)e−ik(�)z, (1.74)

where the propagation constant k(�) is determined by the dispersion relation of
linear optics

k2(�) = �2ε(�)µ0 = �2

c2
n2(�), (1.75)
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and n(�) is the refractive index of the material. For further consideration we
expand k(�) about the carrier frequency ω	

k(�) = k(ω	) + δk, (1.76)

where

δk = dk

d�

∣∣∣∣
ω	

(� − ω	) + 1

2

d2k

d�2

∣∣∣∣
ω	

(� − ω	)2 + · · · (1.77)

and write Eq. (1.74) as

Ẽ(�, z) = Ẽ(�, 0)e−ik	ze−iδkz, (1.78)

where k2
	 = ω2

	ε(ω	)µ0 = ω2
	n2(ω	)/c2. In most practical cases of interest, the

Fourier amplitude will be centered on a mean wave vector k	, and will have
appreciable values only in an interval 
k small compared to k	. In analogy
to the introduction of an envelope function slowly varying in time, after the
separation of a rapidly oscillating term, cf. Eqs. (1.11)–(1.14), we can define
now an amplitude which is slowly varying in the spatial coordinate

Ẽ(�, z) = Ẽ(� + ω	, 0)e−iδkz. (1.79)

Again, for this concept to be useful we must require that

∣∣∣∣ d

dz
Ẽ(�, z)

∣∣∣∣	 k	
∣∣∣Ẽ(�, z)

∣∣∣ (1.80)

which implies a sufficiently small wave number spectrum

∣∣∣∣
k

k	

∣∣∣∣	 1. (1.81)

In other words, the pulse envelope must not change significantly while travel-
ling through a distance comparable with the wavelength λ	 = 2π/ω	. Fourier
transforming of Eq. (1.78) into the time domain gives

Ẽ(t, z) = 1

2

{
1

π

∫ ∞

−∞
d� Ẽ(�, 0)e−iδkzei(�−ω	)t

}
ei(ω	t−k	z) (1.82)
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which can be written as

Ẽ(t, z) = 1

2
Ẽ(t, z)ei(ω	t−k	z) (1.83)

where Ẽ(t, z) is now the envelope varying slowly in space and time, defined by
the term in the curled brackets in Eq. (1.82).

Further simplification of the wave equation requires a corresponding equation
for Ẽ utilizing the envelope properties. Only a few terms in the expansion of
k(�) and ε(�), respectively, will be considered. To this effect we expand ε(�) as
series around ω	, leading to the following form for the linear polarization (1.70)

P̃L(�, z) =
(
ε(ω	) − ε0 +

∞∑
n=1

1

n!
dnε

d�n

∣∣∣∣
ω	

(� − ω	)n

)
Ẽ(�, z). (1.84)

In terms of the pulse envelope, the above expression corresponds in the time
domain to

P̃L(t, z) = 1

2

{
[ε(ω	) − ε0]Ẽ(t, z)

+
∞∑

n=1

(−i)n ε
(n)(ω	)

n!
∂n

∂tn
Ẽ(t, z)

}
ei(ω	t−k	z), (1.85)

where ε(n)(ω	) = ∂n

∂�n ε

∣∣∣
ω	

. The term in the curled brackets defines the slowly

varying envelope of the polarization, P̃L . The next step is to replace the electric
field and the polarization in the wave equation (1.69) by Eq. (1.82) and Eq. (1.85),
respectively. We transfer thereafter to a coordinate system (η, ξ) moving with the

group velocity νg =
(

dk
d�

∣∣∣
ω	

)−1

, which is the standard transformation to a

“retarded” frame of reference:

ξ = z η = t − z

νg
(1.86)

and

∂

∂z
= ∂

∂ξ
− 1

νg

∂

∂η
;

∂

∂t
= ∂

∂η
. (1.87)
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A straightforward calculation leads to the final result:

∂

∂ξ
Ẽ − i

2
k′′
	

∂2

∂η2
Ẽ + D = − i

2k	

∂

∂ξ

(
∂

∂ξ
− 2

νg

∂

∂η

)
Ẽ (1.88)

The quantity

D = − iµ0

2k	

∞∑
n=3

(−i)n

n!
[
ω2

	ε
(n)(ω	) − 2nω	ε

(n−1)(ω	)

+ n(n − 1)ε(n−2)(ω	)
] ∂n

∂ηn
Ẽ (1.89)

contains dispersion terms of higher order, and has been derived by taking directly
the second order derivative of the polarization defined by the product of envelope
and fast oscillating terms in Eq. (1.85). The indices of the three resulting terms
have been redefined to factor out a single derivative of order (n) of the field
envelope. The second derivative of k:

k′′
	 = ∂2k

∂�2

∣∣∣∣
ω	

= − 1

ν2
g

dvg

d�

∣∣∣∣∣
ω	

= 1

2k	

[
2

ν2
g

− 2µ0ε(ω	) − 4ω	µ0ε
(1)(ω	) − ω2

	µ0ε
(2)(ω	)

]
(1.90)

is the group velocity dispersion (GVD) parameter. It should be mentioned that
the GVD is usually defined as the derivative of νg with respect to λ, dvg/dλ,
related to k′′ through

dvg

dλ
= �2ν2

g

2πc

d2k

d�2
. (1.91)

So far we have not made any approximations, and the structure of Eq. (1.88)
is still rather complex. However, we can exploit at this point the envelope
properties (1.14) and (1.80), which, in this particular situation, imply:

∣∣∣∣ 1

k	

(
∂

∂ξ
− 2

νg

∂

∂η

)
Ẽ
∣∣∣∣ =

∣∣∣∣ 1

k	

(
∂

∂z
− 1

νg

∂

∂t

)
Ẽ
∣∣∣∣	

∣∣∣Ẽ
∣∣∣ . (1.92)

The right-hand side of (1.88) can thus be neglected if the prerequisites for intro-
ducing pulse envelopes are fulfilled. This procedure is SVEA and reduces the
wave equation to first-order derivatives with respect to the spatial coordinate.
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If the propagation of short pulses is computed over long distances, the cumu-
lative error introduced by neglecting the right-hand side of Eq. (1.88) may be
significant. In those cases, a direct numerical treatment of the second-order wave
equation is required.

Further simplifications are possible for a broad class of problems of practical
interest, where the dielectric constant changes slowly over frequencies within the
pulse spectrum. In those cases, terms with n ≥ 3 can be omitted too (D = 0),
leading to a greatly simplified reduced wave equation:

∂

∂ξ
Ẽ(η, ξ) − i

2
k′′
	

∂2

∂η2
Ẽ(η, ξ) = 0, (1.93)

which describes the evolution of the complex pulse envelope as it propagates
through a loss-free medium with GVD. The reader will recognize the structure
of the one-dimensional Schrödinger equation.

1.2.2. Retarded Frame of Reference

In the case of zero GVD [k′′
	 = 0 in Eq. (1.93)], the pulse envelope does

not change at all in the system of local coordinates (η, ξ). This illustrates the
usefulness of introducing a coordinate system moving at the group velocity. In the
laboratory frame, the pulse travels at the group velocity without any distortion.

In dealing with short pulses as well as in dealing with white light
(see Chapter 2) the appropriate retarded frame of reference is moving at the
group rather than at the wave (phase) velocity. Indeed, while a monochromatic
wave of frequency � travels at the phase velocity νp(�) = c/n(�), it is the
superposition of many such waves with differing phase velocities that leads to a
wave packet (pulse) propagating with the group velocity. The importance of the
frame of reference moving at the group velocity is such that, in the following
chapters, the notation z and t will be substituted for ξ and η, unless the laboratory
frame is explicitly specified.

Some propagation problems—such as the propagation of coupled waves in
nonlinear crystals discussed in Chapter 3—are more appropriately treated in the
frequency domain. As a simple exercise, let us derive the group velocity directly
from the solution of the wave equation in the form of Eq. (1.78)

Ẽ(�, z) = Ẽ(�, 0)e−ik	ze−iδkz. (1.94)

The Fourier transform amplitude E(�, 0) represented on the top left of Fig. 1.5
is not changed by propagation. On the top right, the time domain representation
of the pulse, or the inverse transform of E(�, 0), is centered at t = 0 (solid line).
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E(�)
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IFT

ε(t)

�d
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t

ε(0,t)e-i�t ε(z,t)e-i�t

t
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Figure 1.5 The Fourier transform amplitude E(�, 0) is sketched in the upper left, and the cor-
responding field in the time domain on the upper right (solid line). The lower part of the figure
displays the field amplitudes, E(�) on the left, centered at the origin of the frequency scale, and the
corresponding inverse Fourier transform E(t). Propagation in the frequency domain is obtained by
multiplying the field at z = 0 by the phase factor exp(−iτd�), where τd = z/νg is the group delay. In
the time domain, this corresponds to delaying the pulse by an amount τd (right). The delayed fields
|E(z, t)| and E(z, t) are shown in dotted lines on the right of the figure.

We assume that the expansion of the wave vector k(�), Eq. (1.76), can be
terminated after the linear term, that is

δk = dk

d�

∣∣∣∣
ω	

(� − ω	). (1.95)

The inverse Fourier transform of Eq. (1.94) now yields

Ẽ(t, z) = e−ik	z
∫ ∞

−∞
Ẽ(�, 0) exp

[
−i

dk

d�

∣∣∣∣
ω	

(� − ω	)z

]
ei�td� (1.96)

= ei(ω	t−k	z)
∫ ∞

−∞
Ẽ(�′ + ω	, 0) exp

[
i

(
t − dk

d�

∣∣∣∣
ω	

z

)
�′
]

d�′

where we substituted � = �′ + ω	 to obtain the last equation. This equation
is just the inverse Fourier transform of the field spectrum shifted to the origin
(i.e., the spectrum of the envelope Ẽ(�), represented on the lower left of Fig. 1.5)
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with the Fourier variable “time” now given by t − dk
d� |ω	z. Carrying out the

transform yields

Ẽ(t, z) = 1

2
Ẽ(t, z)ei(ω	t−k	z) = 1

2
Ẽ
(

t − dk

d�

∣∣∣∣
ω	

z, 0

)
ei(ω	t−k	z). (1.97)

We have thus the important result that, in the time domain, the light pulse has
been delayed by an amount (τd = dk

d� |ω	z) proportional to distance. Within the
approximation that the wave vector is a linear function of frequency, the pulse is
seen to propagate without distortion with a constant group velocity νg given by
either of the three expressions:

1

νg
= dk

d�

∣∣∣∣
ω	

(1.98)

1

νg
= n0

c
+ ω	

c

dn

d�

∣∣∣∣
ω	

(1.99)

1

νg
= n0

c
− λ

c

dn

dλ

∣∣∣∣
λ

. (1.100)

The first term in Eqs. (1.99) and (1.100) represent the phase delay per unit length,
while the second term in these equations is the change in carrier to envelope phase
per unit length. We note that the dispersion of the wave vector (dk/d�) or of
the index of refraction (dn/dλ) is responsible for a difference between the phase
velocity νp = c/n0 and the group velocity νg. In a frame of reference moving at
the velocity νg, Ẽ(z, t) remains identically unchanged. Pulse distortions thus only
result from high order (higher than 1) terms in the Taylor series expansion of
k(�). For this reason, most pulse propagation problems are treated in a retarded
frame of reference, moving at the velocity νg.

Forward–Backward Propagating Waves

We consider an ultrashort pulse plane wave propagating through a dielectric
medium. Before the arrival of the pulse, there are no induced dipoles, and for the
index of refraction we assume that of a vacuum (n = 1). As the dipoles are driven
into motion by the first few cycles of the pulse, the index of refraction changes
to the value n of the dielectric. One consequence of this causal phenomenon is
the “precursor” predicted by Sommerfeld and Brillouin, see for example [12].
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One might wonder if the discontinuity in index created by a short and intense
pulse should not lead to a reflection for a portion of the pulse. This is an important
question regarding the validity of the first-order approximation to Maxwell’s
propagation equations. If, at t = 0, a short wave packet is launched in the +z
direction in a homogeneous medium, is it legitimate to assume that there will be
no pulse generated in the opposite direction?

The answer that we give in this section is, that in the framework of Maxwell’s
second-order equation and a linear polarization, there is no such “induced reflec-
tion.” This property extends even to the nonlinear polarization created by the
interaction of the light with a two-level system.

If we include the nonresonant part of the linear polarization in the index of
refraction n (imaginary part of n), incorporate in the remainder polarization P all
nonlinear and resonant interaction effects, and add a phenomenological scattering
term σ we find to the following form for the second-order wave equation:

(
∂2

∂z2
− n2

c2

∂2

∂t2

)
Ẽ = µ0

∂2

∂t2
P̃ + nσ

c

∂

∂t
Ẽ (1.101)

The polarization appearing in the right-hand side can be instantaneous, or be
the solution of a differential equation as in the case of most interactions with
resonant atomic or molecular systems. Resonant light–matter interactions will
be studied in detail in Chapters 3 and 4. The wave equation Eq. (1.101) can be
written as a product of a forward and backward propagating operator. Instead
of the variables t and z, it is more convenient to use the retarded time variable
corresponding to the two possible wave velocities ±c/n:

s = t − n

c
z

r = t + n

c
z. (1.102)

In the new variables, Maxwell’s equation (1.101) becomes:

∂2

∂s∂r
Ẽ = c2

n2

{
µ0

4

(
∂

∂s
+ ∂

∂r

)2

P̃ + nσ

c

(
∂

∂s
+ ∂

∂r

)}
Ẽ. (1.103)

We seek a solution in the form of a forward and a backward propagating field of
amplitude ẼF and ẼB:

Ẽ = 1

2
ẼFeiω	s + 1

2
ẼBeiω	r . (1.104)
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Substitution into Maxwell’s Eq. (1.101):

eiω	s
[

2iω	

∂

∂r
+ ∂2

∂s∂r
+ cσ

2n

(
∂

∂s
+ ∂

∂r
+ 2iω	

)]
1

2
ẼF

+ eiω	r
[

2iω	

∂

∂s
+ ∂2

∂s∂r
+ cσ

2n

(
∂

∂s
+ ∂

∂r
+ 2iω	

)]
1

2
ẼB

= − µ0c2

4n2

(
∂

∂s
+ ∂

∂r

)2

P̃, (1.105)

which we rewrite in an abbreviated way using the differential operators L and
M for the forward and backward propagating waves, respectively:

LẼFeiω	s + MẼBeiω	r = −µ0c2

4n2

(
∂

∂s
+ ∂

∂r

)2

P̃. (1.106)

In the case of a linear medium, the forward and backward wave travel indepen-
dently. If, as initial condition, we choose ẼB = 0 along the line r + s = 0 (t = 0),
there will be no back scattered wave. If the polarization is written as a slowly
varying amplitude:

P̃ = 1

2
P̃Feiω	s + 1

2
P̃Beiω	r , (1.107)

the equations for the forward and backward propagating wave also separate if P̃F

is only a function of ẼF , and P̃B only a function of ẼB. This is because a source
term for P̃B can only be formed by a “grating” term, which involves a product
of ẼBẼF . It applies to a polarization created by near resonant interaction with a
two-level system, using the semiclassical approximation, as will be considered
in Chapters 3 and 4. The separation between forward and backward traveling
waves has been demonstrated by Eilbeck [17, 18] outside of the slowly varying
approximation. Within the slowly varying approximation, we generally write
the second derivative with respect to time of the polarization as −ω2

	P̃ , and
therefore, the forward and backward propagating waves are still uncoupled, even
when P̃ = P̃(ẼF , ẼB), provided there is only a forward propagating beam as
initial condition.

1.2.3. Dispersion

For nonzero GVD (k′′
	 �= 0) the propagation problem (1.93) can be solved

either directly in the time or in the frequency domain. In the first case, the
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solution is given by a Poisson integral [19] which here reads

Ẽ(t, z) = 1√
2πik′′

	 z

∫ t

−∞
Ẽ(t′, z = 0) exp

(
i
(t − t′)2

2k′′
	 z

)
dt′. (1.108)

As we will see in subsequent chapters, it is generally more convenient to
treat linear pulse propagation through transparent linear media in the frequency
domain, because only the phase factor of the envelope Ẽ(�) is affected by
propagation.

It follows directly from the solution of Maxwell’s equations in the frequency
domain [for instance Eqs. (1.74) and (1.79)] that the spectral envelope after
propagation through a thickness z of a linear transparent material is given by:

Ẽ(�, z) = Ẽ(�, 0) exp

(
− i

2
k′′
	�

2z − i

3!k′′′
	 �3z − · · ·

)
. (1.109)

Thus we have for the temporal envelope

Ẽ(t, z) = F−1
{
Ẽ(�, 0) exp

(
− i

2
k′′
	�

2z − i

3!k′′′
	 �3z − · · ·

)}
. (1.110)

If we limit the Taylor expansion of k to the GVD term k′′
	 , we find that an initially

bandwidth-limited pulse develops a spectral phase with a quadratic frequency
dependence, resulting in chirp.

We had defined a “chirp coefficient”

κc = 1 + M4

4〈t2〉2
0

[
dφ

d�

∣∣∣∣
ω	

]2

when considering in Section 1.1.4 the influence of quadratic chirp on the
uncertainty relation Eq. (1.64) based on the successive moments of the field
distribution. In the present case, we can identify the phase modulation:

dφ

d�

∣∣∣∣
ω	

= −k′′
	 z. (1.111)

Because the spectrum (in amplitude) of the pulse |Ẽ(�, z)|2 remains constant
[as shown for instance in Eq. (1.109)], the spectral components responsible for
chirp must appear at the expense of the envelope shape, which has to become
broader.
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At this point we want to introduce some useful relations for the characterization
of the dispersion. The dependence of a dispersive parameter can be given as
a function of either the frequency � or the vacuum wavelength λ. The first-,
second-, and third-order derivatives are related to each other by

d

d�
= − λ2

2πc

d

dλ
(1.112)

d2

d�2
= λ2

(2πc)2

(
λ2 d2

dλ2
+ 2λ

d

dλ

)
(1.113)

d3

d�3
= − λ3

(2πc)3

(
λ3 d3

dλ3
+ 6λ2 d2

dλ2
+ 6λ

d

dλ

)
. (1.114)

The dispersion of the material is described by either the frequency dependence
n(�) or the wavelength dependence n(λ) of the index of refraction. The deriva-
tives of the propagation constant used most often in pulse propagation problems,
expressed in terms of the index n, are:

dk

d�
= n

c
+ �

c

dn

d�
= 1

c

(
n − λ

dn

dλ

)
(1.115)

d2k

d�2
= 2

c

dn

d�
+ �

c

d2n

d�2
=
(

λ

2πc

)
1

c

(
λ2 d2n

dλ2

)
(1.116)

d3k

d�3
= 3

c

d2n

d�2
+ �

c

d3n

d�3
= −

(
λ

2πc

)2 1

c

(
3λ2 d2n

dλ2
+ λ3 d3n

dλ3

)
. (1.117)

The second equation, Eq. (1.116), defining the GVD is the frequency deriva-
tive of 1/νg. Multiplied by the propagation length L, it describes the frequency
dependence of the group delay. It is sometimes expressed in fs2 µm−1.

A positive GVD corresponds to

d2k

d�2
> 0. (1.118)
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1.2.4. Gaussian Pulse Propagation

For a more quantitative picture of the influence that GVD has on the pulse
propagation we consider the linearly chirped Gaussian pulse of Eq. (1.33)

Ẽ(t, z = 0) = E0e−(1+ia)(t/τG0)2 = E0e−(t/τG0)2
eiϕ(t,z=0)

entering the sample. To find the pulse at an arbitrary position z, we multiply

the field spectrum, Eq. (1.35), with the propagator exp
(
−i 1

2 k′′
	�

2z
)

as done in

Eq. (1.109), to obtain

Ẽ(�, z) = Ã0e−x�2
eiy�2

(1.119)

where

x = τ2
G0

4(1 + a2)
(1.120)

and

y(z) = aτ2
G0

4(1 + a2)
− k′′

	 z

2
. (1.121)

Ã0 is a complex amplitude factor which we will not consider in what follows and
τG0 describes the pulse duration at the sample input. The time dependent electric
field that we obtain by Fourier transforming Eq. (1.119) can be written as

Ẽ(t, z) = Ã1 exp

⎧⎪⎨
⎪⎩−

(
1 + i

y(z)

x

)⎛⎜⎝ t√
4
x [x2 + y2(z)]

⎞
⎟⎠

2⎫⎪⎬
⎪⎭ . (1.122)

Obviously, this describes again a linearly chirped Gaussian pulse. For the “pulse
duration” (note τp = √

2 ln 2 τG) and phase at position z we find

τG(z) =
√

4

x
[x2 + y2(z)] (1.123)

and

ϕ(t, z) = − y(z)

4[x2 + y2(z)] t2. (1.124)



34 Fundamentals

Let us consider first an initially unchirped input pulse (a = 0). The pulse duration
and chirp parameter develop as:

τG(z) = τG0

√
1 +

(
z

Ld

)2

(1.125)

∂2

∂t2
ϕ(t, z) =

(
1

τ2
G0

)
2z/Ld

1 + (z/Ld)2
. (1.126)

We have defined a characteristic length:

Ld = τ2
G0

2
∣∣k′′

	

∣∣ . (1.127)

For later reference let us also introduce a so-called dispersive length defined as

LD = τ2
p0

|k′′
	 | (1.128)

where for Gaussian pulses LD ≈ 2. 77Ld . Bandwidth-limited Gaussian pulses
double their length after propagation of about 0. 6LD. For propagation lengths
z � Ld the pulse broadening of an unchirped input pulse as described by
Eq. (1.125) can be simplified to

τG(z)

τG0
≈ z

Ld
= 2|k′′

	 |
τ2

G0

z. (1.129)

It is interesting to compare the result of Eq. (1.125) with that of Eq. (1.62),
where we used the second moment as a measure for the pulse duration. Because
the Gaussian is the shape for minimum uncertainty [Eq. (1.57)], and because
d2φ/d�2 = −k′′z, Eq. (1.125) is equivalent to

〈t2〉 = 〈t2〉0 + 4
(k′′)2z2

〈t2〉0
.

If the input pulse is chirped (a �= 0) two different behaviors can occur depending
on the relative sign of a and k′′

	 . In the case of opposite sign, y2(z) increases
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monotonously resulting in pulse broadening, cf. Eq. (1.123). If a and k′′
	 have

equal sign y2(z) decreases until it becomes zero after a propagation distance

zc = τ2
G0a

2|k′′
	 |(1 + a2)

. (1.130)

At this position the pulse reaches its shortest duration

τG(zc) = τGmin = τG0√
1 + a2

(1.131)

and the time-dependent phase according to Eq. (1.124) vanishes. From here on
the propagation behavior is that of an unchirped input pulse of duration τGmin,
that is, the pulse broadens and develops a time-dependent phase. The larger the
input chirp (|a|), the shorter the minimum pulse duration that can be obtained
[see Eq. (1.131)]. The underlying reason is that the excess bandwidth of a chirped
pulse is converted into a narrowing of the envelope by chirp compensation, until
the Fourier limit is reached. The whole procedure including the impression of
chirp on a pulse will be treated in Chapter 8 in more detail.

There is a complete analogy between the propagation (diffraction) effects of
a spatially Gaussian beam and the temporal evolution of a Gaussian pulse in a
dispersive medium. For instance, the pulse duration and the slope of the chirp
follow the same evolution with distance as the waist and curvature of a Gaussian
beam, as detailed at the end of this chapter. A linearly chirped Gaussian pulse in
a dispersive medium is completely characterized by the position and (minimum)
duration of the unchirped pulse, just as a spatially Gaussian beam is uniquely
defined by the position and size of its waist. To illustrate this point, let us consider
a linearly chirped pulse whose “duration” τG and chirp parameter a are known at
a certain position z1. The position zc of the minimum duration (unchirped pulse)
is found again by setting y = 0 in Eq. (1.121):

zc = z1 + τ2
G

2k′′
	

a

1 + a2
= z1 + a

τ2
Gmin

2k′′
	

. (1.132)

The position zc is after z1 if a and k′′
	 have the same sign2; before z1 if they have

opposite sign. All the temporal characteristics of the pulse are most conveniently
defined in terms of the distance L = z − zc to the point of zero chirp, and the
minimum duration τGmin. This is similar to Gaussian beam propagation where

2For instance, an initially downchirped (a > 0) pulse at z = zc will be compressed in a medium
with positive dispersion (k′′ > 0).
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the location of the beam waist often serves as reference. The chirp parameter a
and the pulse duration τG at any point L are then simply given by

a(L) = L/Ld (1.133)

τG(L) = τGmin

√
1 + [a(L)]2 (1.134)

where the dispersion parameter Ld = τ2
Gmin/(2|k′′

	 |). The pulse duration-bandwidth
product varies with distance L as

cB(L) = 2 ln 2

π

√
1 + [a(L)]2. (1.135)

To summarize, Figure 1.6 illustrates the behavior of a linearly chirped Gaussian
pulse as it propagates through a dispersive sample.

Simple physical consideration can lead directly to a crude approximation for
the maximum broadening that a bandwidth-limited pulse of duration τp and spec-
tral width 
ωp will experience. Each group of waves centered around a frequency
� travels with its own group velocity νg(�). The difference of group velocities
over the pulse spectrum then becomes:


νg =
[

dνg

d�

]
ω	


ωp. (1.136)

Accordingly, after a travel distance L the pulse spread can be as large as


τp =
∣∣∣∣

(

L

νg

)∣∣∣∣ ≈ L

ν2
g
|
νg| (1.137)

which, by means of Eqs. (1.90) and (1.136), yields:


τp = L|k′′
	 |
ωp. (1.138)

Approximating τp ≈ 
ω−1
p , a characteristic length after which a pulse has

approximately doubled its duration can now be estimated as:

L′
D = 1

|k′′
	 |
ω2

p
. (1.139)

Measuring the length in meter and the spectral width in nm the GVD of materials
is sometimes given in fs/(m nm) which pictorially describes the pulse broadening
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Figure 1.6 Propagation of a linearly chirped Gaussian pulse in a medium with GVD [pulse
shape (a), pulse duration for different input chirp (b)].
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per unit travel distance and unit spectral width. From Eq. (1.138) we find for the
corresponding quantity


τp

L
λ
= 2π

c

λ2
	

|k′′
	 |. (1.140)

For BK7 glass at 620 nm, k′′
	 ≈ 1. 02 × 10−25 s2/m, and the GVD as introduced

above is about 500 fs per nm spectral width and m propagation length.

1.2.5. Complex Dielectric Constant

In general, the dielectric constant, which was introduced in Eq. (1.72) as a real
quantity, is complex. Indeed a closer inspection of Eq. (1.71) shows that the finite
memory time of matter requires not only ε, χ to be frequency dependent but also
that they be complex. The real and imaginary part of ε̃, χ̃ are not independent
of each other but related through a Kramers–Kronig relation. The consideration
of a real ε(�) is justified as long as we can neglect (linear) losses or gain. This
is valid for transparent samples or propagation lengths which are too short for
these processes to become essential for the pulse shaping. For completeness we
will modify the reduced wave equation (1.93) by taking into account a complex
dielectric constant ε̃(�) represented as

ε̃(�) = ε(�) + iεi(�). (1.141)

Let us assume ε̃(�) to be weakly dispersive. The same procedure introduced to
derive Eq. (1.93) can be used after inserting the complex dielectric constant ε̃ into
the expression of the polarization Eq. (1.84). Now the reduced wave equation
becomes

∂

∂z
Ẽ(t, z) − i

2
k′′ ∂2

∂t2
Ẽ(t, z) = κ1Ẽ(t, z) + iκ2

∂

∂t
Ẽ(t, z) + κ3

∂2

∂t2
Ẽ(t, z) (1.142)

where

κ1 = ω	

2
η0εi(ω	) (1.143)

κ2 = 1

2
η0

[
2εi(ω	) + ω	

d

d�
εi(�)

∣∣∣∣
ω	

]
(1.144)

κ3 = 1

4ω	

η0

[
2εi(ω	) + 4ω	

d

d�
εi(�)

∣∣∣∣
ω	

+ ω2
	

d2

d�2
εi(�)

∣∣∣∣
ω	

]
. (1.145)
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In the preceding expressions, η0 = √
µ0/ε0 ≈ 377�ms is the characteristic

impedance of vacuum. For zero GVD, and neglecting the two last terms in the
right-hand side of Eq. (1.142), the pulse evolution with propagation distance z is
described by

∂

∂z
Ẽ(t, z) − κ1Ẽ(t, z) = 0 (1.146)

which has the solution

Ẽ(t, z) = Ẽ(t, 0)eκ1z. (1.147)

The pulse experiences loss or gain depending on the sign of κ1 and does not
change its shape. Equation (1.147) states simply the Lambert-Beer law of linear
optics.

An interesting situation is that in which there would be neither gain nor loss

at the pulse carrier frequency, i.e., εi(ω	) = 0 and d
d�εi(�)

∣∣∣
ω	

�= 0, which could

occur between an absorption and amplification line. Neglecting the terms with
the second temporal derivative of Ẽ , the propagation problem is governed by the
equation

∂

∂z
Ẽ(t, z) − iκ2

∂

∂t
Ẽ(t, z) = 0. (1.148)

The solution of this equation is simply

Ẽ(t, z) = Ẽ(t + iκ2z, 0). (1.149)

To get an intuitive picture on what happens with the pulse according to
Eq. (1.149), let us choose an unchirped Gaussian pulse Ẽ(t, 0) [see Eq. (1.33) for
a = 0] entering the sample at z = 0. From Eq. (1.149) we find:

Ẽ(t, z) = Ẽ(t, 0) exp
[
κ2

2(z/τG)2
]

exp
[
−i2κ2tz/τ2

G

]
. (1.150)

The pulse is amplified, and simultaneously its center frequency is shifted with
propagation distance. The latter shift is because of the amplification of one part of
the pulse spectrum (the high (low) frequency part if κ2 < (>)0) while the other
part is absorbed. The result is a continuous shift of the pulse spectrum in the
corresponding direction and a net gain while the pulse shape is preserved.

In the beginning of this section we mentioned that there is always an imaginary
contribution of the dielectric constant leading to gain or loss. The question arises
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whether a wave equation such as Eq. (1.93), where only the real part of ε̃ was
considered, is of any practical relevance for describing pulse propagation through
matter. The answer is yes, because in (almost) transparent regions the pulse
change owing to dispersion can be much larger than the change caused by losses.
An impressive manifestation of this fact is pulse propagation through optical
fibers. High-quality fibers made from fused silica can exhibit damping constants
as low as 1 dB/km at wavelengths near 1 µm, where the GVD term is found to
be k′′ ≈ 75 ps2/km, see for example [20]. Consequently, a 100 fs pulse launched
into a 10 m fiber loses just about 2% of its energy while it broadens by about a
factor of 150. To illustrate the physics underlying the striking difference between
the action of damping and dispersion, let us consider a dielectric constant ε̃(�)
originating from a single absorption line.

We will use the simple model of a classical harmonic oscillator consisting of
an electron bound to a nucleus to calculate the dispersion and absorption of that
line. The equation of motion of the electron is:

d2r

dt2
+ ω2

0r + 1

Tc

dr

dt
= e

me
E, (1.151)

where ω0 = √
C/me (C being the “spring constant”) is the resonance frequency,

me the electron mass, e its charge, and 1/Tc the damping constant. Assuming
an electric field of the form E = (1/2)Ẽ0 exp(i�t), one finds the polarization
P = N0er (N0 being the number of oscillators (dipoles) per unit volume):

P(�) = N0e2

me

E

ω2
0 − �2 + i�/Tc

. (1.152)

Using the general relation between polarization and electric field P = ε0χE
we obtain an expression for the complex susceptibility:

χ(�) = N2
0 e2

ε0me

1

ω2
0 − �2 + i�/Tc

. (1.153)

The real and imaginary parts of the susceptibility χ can be calculated:

χr = N0e2

ε0me

(ω2
0 − �2)

(ω2
0 − �2)2 + �2/T2

c

≈ N0e2T2

2meε0ω0


ωT2

1 + 
ω2T2
2

(1.154)

χi = −N0e2

ε0me

(�/Tc)

(ω2
0 − �2)2 + �2/T2

c

≈ − N0e2T2

2meε0ω0

1

1 + 
ω2T2
2

(1.155)
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The second term of each preceding equation corresponds to the approximation
of small detuning 
ω = ω0 − � 	 ω0. 1/T2 is the linewidth of the Lorentzian
absorption line, and T2 = 2Tc will be assimilated in Chapters 3 and 4 to the phase
relaxation time of the oscillators. The real and imaginary parts of the oscillator
contribution to the susceptibility are responsible for a frequency dependence of
the wave vector. One can write

k(�) = �
√
µ0ε0 [1 + χ(�)] ≈ �

c

[
1 + 1

2
χ(�)

]
(1.156)

For frequencies � being sufficiently far from resonance, i.e., |(ω0 − �)T2)| =
|
ωT2| � 1, but with |ω	 − �| 	 ω	 (narrow pulse spectrum), the real and
imaginary parts of the propagation constant are given by:

kr(�) � �

c
+ B

�


ωT2
(1.157)

ki(�) � −B
�

(
ωT2)2
, (1.158)

where B = (N0e2T2)/(4ε0ω0cme). The GVD, responsible for pulse reshaping, is:

k′′(�) � 2BT2
2 ω0

[
ωT2]3
. (1.159)

For small travel distances L the relative change of pulse energy can be estimated
from Eq. (1.74) and Eq. (1.20) to be:


Wrel = 1 − W(L)

W(0)
≈ −2kiL. (1.160)

The relative change of pulse duration because of GVD can be evaluated from
Eq. (1.125) and we find:


τrel = τG(L)

τG0
− 1 ≈ 2

(
k′′
	 L

τ2
G0

)2

. (1.161)

To compare both relative pulse distortions we consider their ratio, using
Eqs. (1.158), (1.159), (1.160), and (1.161):


τrel


Wrel
= 
Wrel

2

(
ωT2)2

(
T2

τG0

)4

. (1.162)
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At given material parameters and carrier frequency, shorter pulses always lead
to a dominant pulse spreading. For T2 = 10−10 s (typical value for a single
electronic resonance), and a detuning 
ωT2 = 104, we find for example:


τrel


Wrel
≈ 
Wrel

(
1200 fs

τG0

)4

. (1.163)

To summarize, a resonant transition of certain spectral width 1/T2 influences short
pulse (pulse duration < 1ps) propagation outside resonance mainly because of
dispersion. Therefore, the consideration of a transparent material (εi ≈ 0) with
a frequency dependent, real dielectric constant ε(�), which was necessary to
derive Eq. (1.93), is justified in many practical cases involving ultrashort pulses.

1.3. INTERACTION OF LIGHT PULSES WITH
LINEAR OPTICAL ELEMENTS

Even though this topic is treated in detail in Chapter 2, we want to discuss
here some general aspects of pulse distortions induced by linear optical elements.
These elements comprise typical optical components, such as mirrors, prisms,
and gratings, which one usually finds in all optical setups. Here we shall restrict
ourselves to the temporal and spectral changes the pulse experiences and shall
neglect a possible change of the beam characteristics. A linear optical element of
this type can be characterized by a complex optical transfer function

H̃(�) = R(�)e−i�(�) (1.164)

that relates the incident field spectrum Ẽin(�) to the field at the sample
output Ẽ(�)

Ẽ(�) = R(�)e−i�(�)Ẽin(�). (1.165)

Here R(�) is the (real) amplitude response and �(�) is the phase response.
As can be seen from Eq. (1.165), the influence of R(�) is that of a frequency
filter. The phase factor �(�) can be interpreted as the phase delay which a
spectral component of frequency � experiences. To get an insight of how the
phase response affects the light pulse, we assume that R(�) does not change over
the pulse spectrum whereas �(�) does. Thus, we obtain for the output field from
Eq. (1.165):

Ẽ(t) = 1

2π
R
∫ +∞

−∞
Ẽin(�)e−i�(�)ei�t d�. (1.166)
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Replacing �(�) by its Taylor expansion around the carrier frequency ω	 of the
incident pulse

�(�) =
∞∑

n=0

bn(� − ω	)n (1.167)

with the expansion coefficients

bn = 1

n!
dn�

d�n

∣∣∣∣
ω	

(1.168)

we obtain for the pulse

Ẽ(t) = 1

2
Ẽ(t)eiω	t

= 1

2π
Re−ib0 eiω	t

∫ +∞

−∞
Ẽin(�)

× exp

(
−i

∞∑
n=2

bn(� − ω	)n

)
ei(�−ω	)(t−b1) d�. (1.169)

By means of Eq. (1.169) we can easily interpret the effect of the various expansion
coefficients bn. The term e−ib0 is a constant phase shift (phase delay) having no
effect on the pulse envelope. A nonvanishing b1 leads solely to a shift of the
pulse on the time axis t; the pulse would obviously keep its position on a time
scale t′ = t − b1. The term b1 determines a group delay in a similar manner
as the first-order expansion coefficient of the propagation constant k defined
a group velocity in Eq. (1.97). The higher-order expansion coefficients produce
a nonlinear behavior of the spectral phase which changes the pulse envelope and
chirp. The action of the term with n = 2, for example, producing a quadratic
spectral phase, is analogous to that of GVD in transparent media.

If we decompose the input field spectrum into modulus and phase Ẽin(�) =
|Ẽin(�)| exp(i�in(�)), we obtain from Eq. (1.165) for the spectral phase at the
output

�(�) = �in(�) −
∞∑

n=0

bn(� − ω	)n. (1.170)
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It is interesting to investigate what happens if the linear optical element is chosen
to compensate for the phase of the input field. For Taylor coefficients with n ≥ 2:

bn = 1

n!
dn

d�n
�in(�)

∣∣∣∣
ω	

. (1.171)

A closer inspection of Eq. (1.169) shows that when Eq. (1.171) is satisfied, all
spectral components are in phase for t−b1 = 0, leading to a pulse with maximum
peak intensity, as was discussed in previous sections. We will come back to this
important point when discussing pulse compression. We want to point out the
formal analogy between the solution of the linear wave equation (1.74) and
Eq. (1.165) for R(�) = 1 and �(�) = k(�)z. This analogy expresses the fact
that a dispersive transmission object is just one example of a linear element.
In this case we obtain for the spectrum of the complex envelope

Ẽ(�, z) = Ẽin(�, 0) exp

[
−i

∞∑
n=0

1

n!k(n)
	 (� − ω	)nz

]
(1.172)

where k(n)
	 = (dn/d�n)k(�)|ω	

.
Next let us consider a sequence of m optical elements. The resulting transfer

function is given by the product of the individual contributions H̃j(�)

H̃(�) =
m∏

j=1

H̃j(�) =
⎛
⎝ m∏

j=1

Rj(�)

⎞
⎠ exp

⎡
⎣−i

m∑
j=1

�j(�)

⎤
⎦ (1.173)

which means an addition of the phase responses in the exponent. Subsequently,
by a suitable choice of elements, one can reach a zero-phase response so that
the action of the device is through the amplitude response only. In particular,
the quadratic phase response of an element (e.g., dispersive glass path) leading
to pulse broadening can be compensated with an element having an equal phase
response of opposite sign (e.g., grating pair) which automatically would recom-
press the pulse to its original duration. Such methods are of great importance for
the handling of ultrashort light pulses. Corresponding elements will be discussed
in Chapter 2.

1.4. GENERATION OF PHASE MODULATION

At this point let us briefly discuss essential physical mechanisms to produce a
time-dependent phase of the pulse, i.e., a chirped light pulse. Processes resulting
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in a phase modulation can be divided into those that increase the pulse spectral
width and those that leave the spectrum unchanged. The latter can be attributed
to the action of linear optical processes. Any transparent linear medium, or
spectrally “flat” reflector, can change the phase of a pulse, without affecting
its spectral amplitude. The action of these elements is most easily analyzed in
the frequency domain. As we have seen in the previous section, the phase mod-
ulation results from the different phase delays that different spectral components
experience on interaction. The result for an initially bandwidth-limited pulse,
in the time domain, is a temporally broadened pulse with a certain frequency
distribution across the envelope, such that the spectral amplitude profile remains
unchanged. For an element to act in this manner its phase response �(�) must
have nonzero derivatives of at least second order as explained in the previous
section.

A phase modulation that leads to a spectral broadening is most easily discussed
in the time domain. Let us assume that the action of a corresponding optical
element on an unchirped input pulse can be formally written as:

Ẽ(t) = T (t)ei�(t)Ẽin(t) (1.174)

where T and � define a time-dependent amplitude and phase response,
respectively. For our simplified discussion here let us further assume that
T = const., leaving the pulse envelope unaffected. Because the output pulse
has an additional phase modulation �(t) its spectrum must have broadened dur-
ing the interaction. If the pulse under consideration is responsible for the time
dependence of �, then we call the process self-phase modulation. If additional
pulses cause the temporal change of the optical properties we will refer to it
as cross-phase modulation. Often, phase modulation occurs through a temporal
variation of the index of refraction n of a medium during the passage of the pulse.
For a medium of length d the corresponding phase is:

�(t) = −k(t)d = −2π

λ
n(t)d. (1.175)

In later chapters we will discuss in detail several nonlinear optical interaction
schemes with short light pulses that can produce a time dependence of n.

A time dependence of n can also be achieved by applying a voltage pulse at an
electro-optic material for example. However, with the view on phase shaping of
femtosecond light pulses the requirements for the timing accuracy of the voltage
pulse make this technique difficult.
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1.5. BEAM PROPAGATION

1.5.1. General

So far we have considered light pulses propagating as plane waves, which
allowed us to describe the time varying field with only one spatial coordinate.
This simplification implies that the intensity across the beam is constant and,
moreover, that the beam diameter is infinitely large. Both features hardly fit
what we know from laser beams. Despite the fact that both features do not
match the real world, such a description has been successfully applied for many
practical applications and will be used in this book whenever possible. This
simplified treatment is justified if the processes under consideration either do not
influence the transverse beam profile (e.g., sufficiently short sample length) or
allow one to discuss the change of beam profile and pulse envelope as if they
occur independently from each other. The general case, where both dependencies
mix, is often more complicated and, frequently, requires extensive numerical
treatment. Here we will discuss solely the situation where the change of such
pulse characteristics as duration, chirp, and bandwidth can be separated from the
change of the beam profile. Again we restrict ourselves to a linearly polarized field
which now has to be considered in its complete spatial dependence. Assuming a
propagation in the z-direction, we can write the field in the form:

E = E(x, y, z, t) = 1

2
ũ(x, y, z)Ẽ(t)ei(ωt−k	z) + c. c. (1.176)

In the definition (1.176) the scalar ũ(x, y, z) is to describe the transverse beam
profile and Ẽ(t) is the slowly varying complex envelope introduced in Eq. (1.82).
Note that the rapid z-dependence of E is contained in the exponential function.
Subsequently, ũ is assumed to vary slowly with z. Under these conditions the
insertion of Eq. (1.176) into the wave equation (1.67) yields after separation of
the time dependent part in paraxial approximation [11]:

(
∂2

∂x2
+ ∂2

∂y2
− 2ik	

∂

∂z

)
ũ(x, y, z) = 0, (1.177)

which is usually solved by taking the Fourier transform along the space
coordinates x and y, yielding:

[
∂

∂z
− i

2k	

(
k2

x + k2
y

)]
ũ(kx , ky, z) = 0, (1.178)
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where kx and ky are the Fourier variables (spatial frequencies, wave numbers).
This equation can be integrated, to yield the integral form of Fresnel equation:

ũ(kx , ky, z) = ũ(kx , ky, 0)e
i

2k	

(
k2

x +k2
y

)
z
. (1.179)

Paraxial approximation means that the transverse beam dimensions remain
sufficiently small compared with typical travel distances of interest. An important
particular solution of the wave equation within the paraxial approximation is the
Gaussian beam (see [11]), which can be written in the form:

ũ(x, y, z) = u0√
1 + z2

/
ρ2

0

e−i�(z)e−ik	(x2+y2)/2R(z)e−(x2+y2)/w2(z). (1.180)

where

R(z) = z + ρ2
0/z (1.181)

w(z) = w0

√
1 + z2

/
ρ2

0 (1.182)

�(z) = arctan(z
/
ρ0) (1.183)

ρ0 = nπw2
0

λ
. (1.184)

Sometimes it is convenient to write Eq. (1.180) as

ũ(x, y, z) = u0√
1 + z2

/
ρ2

0

e−i�(z)e−ik	(x2+y2)/2q̃(z) (1.185)

where q̃(z) is the complex beam parameter which is defined by:

1

q̃(z)
= 1

R(z)
− iλ

πw2(z)
= 1

q̃(0) + z
. (1.186)

Optical beams described by Eq. (1.180) exhibit a Gaussian intensity profile
transverse to the propagation direction with w(z) as a measure of the beam
diameter, as sketched in Figure 1.7. The origin of the z-axis (z = 0) is chosen
to be the position of the beam waist w0 = w(z = 0). The radius of curva-
ture of planes of constant phase is R(z). Its value is infinity at the beam waist
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Figure 1.7 Parameters of Gaussian beams.

(plane phase front)3 and at z = ∞. The length ρ0 is called the Rayleigh range;
2ρ0 being the confocal parameter. For −ρ0 ≤ z ≤ ρ0, the beam size is within
the limits w0 ≤ w ≤ √

2w0. Given the amplitude u0 at a given beam waist and
wavelength λ, the field at an arbitrary position (x, y, z) is completely predictable
by means of Eqs. (1.180) through (1.184).

Instead of using the differential equation (1.177), one can equivalently describe
the field propagation by an integral equation. The basic approach is to start
with Huygens’ principle, and apply the Fresnel approximation assuming paraxial
wave propagation [11]. Assuming that the field distribution (or beam profile)
ũ(x′, y′, z′) = ũ0(x′, y′) is known at a plane z′ = const.; the field distribution
ũ(x, y, z) at a plane z = z′ + L is given by:

ũ(x, y, z) = ieik	L

λL

∫ ∞

−∞

∫ ∞

−∞
ũ0(x′, y′)e−ik	[(x′−x)2+(y′−y)2]/(2L)dx′dy′. (1.187)

Note that both ways of describing the field variation because of diffraction are
equivalent. One can easily show that the field (1.187) is a convolution of ũ(x, y, 0)
and exp[−ik(x2 + y2)/(2L)].

3The phase term �(z) in Eq. (1.180) takes on a constant value and need not be considered for
z � ρ0. A Gaussian beam at the position of its waist must not be confused with a plane wave.
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1.5.2. Analogy between Pulse and Beam
Propagation

Comparing the paraxial wave equation (1.177) and the reduced wave
equation (1.93) describing pulse propagation through a GVD medium we notice
an interesting correspondence. Both equations are of similar structure. In terms
of the reduced wave equation the transverse space coordinates x, y in Eq. (1.177)
seem to play the role of the time variable. This space–time analogy suggests the
possibility of translating simply the effects related to dispersion into beam prop-
agation properties. For instance, we may compare the temporal broadening of an
unchirped pulse because of dispersion with the change of beam size because of
diffraction. In this sense free-space propagation plays a similar role for the beam
characteristics as a GVD medium does for the pulse envelope. To illustrate this
in more detail let us start with Eq. (1.179), and, for simplicity, restrict ourselves
to one dimension. The field spectrum at z = L

ũ(kx , L) = ũ(kx , z = 0)eik2
x L/(2k	), (1.188)

which after inverse Fourier transform yields

ũ(x, L) ∝ F−1
{

ũ0(kx)eiLk2
x /(2k	)

}
. (1.189)

Let us next recall Eq. (1.110) which described the temporal pulse envelope
after a GVD medium of length L

Ẽ(η, L) = F−1
{
Ẽ0(�)e− i

2 k′′
	�

2L
}

. (1.190)

A comparison with Eq. (1.189) clearly shows the similarity between the
diffraction and the dispersion problem. This is to be illustrated in more detail
for Gaussian pulse profiles and Gaussian beams. As we have seen in the previous
section the quadratic phase factor in Eq. (1.190) broadens an unchirped input
pulse and leads to a (linear) frequency sweep across the pulse (chirp) although
the pulse spectrum remains unchanged. In an analogous manner we can interpret
Eq. (1.189) for the beam profile. A bandwidth-limited Gaussian beam means a
beam without phase variation across the beam, which, in terms of Eq. (1.180),
requires a radius of curvature of the phase front R = ∞. Thus, a Gaussian
beam is bandwidth-limited at its waist where it takes on its minimum possi-
ble size (at a given spatial frequency spectrum). Multiplication with a quadratic
phase factor to describe the beam propagation, cf. Eq. (1.189), leads to beam
broadening and “chirp.” The latter simply accounts for a finite phase front cur-
vature. Roughly speaking, the spatial frequency components that are not needed
to form the broadened beam profile are responsible for the beam divergence.
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Table 1.2

Comparison of dispersion and diffraction.

Gaussian pulse Gaussian beam

Bandwidth-limited pulse at z = 0 Beam waist at z = 0
(unchirped pulse) (plane phase fronts)

Ẽ0(t) ∝ e−(t/τG0)2

Ẽ0(�) ∝ e−(τG0�/2)2

ũ0(x) ∝ e−(x/w0)2

ũ0(kx) ∝ e−(kxw0/2)2

Propagation through a medium of Free space propagation over
length L (dispersion) distance L (diffraction)

Ẽ(�, L) ∝ exp

[
−
(
τG0�

2

)2
− i

k′′
	 L�2

2

]

Ẽ(t, L) ∝ exp

[
−(1 + iā)

(
t

τG

)2
]

∝ exp

[
iω	

t2

2p̃(L)

]

ā = L/Ld

τG(L) = τG0

√
1 + ā2

ũ(kx , L) ∝ exp

[
−
(

w0kx

2

)2
+ i

Lkx
2

2k	

]

ũ(x, L) ∝ exp

[
−(1 + ib̄)

( x

w

)2
]

∝ exp

[
−ik	

x2

2q̃(L)

]

b̄ = L/ρ0

w(L) = w0

√
1 + b̄2

Chirp coefficient (slope) Wavefront curvature

ϕ̈ = 2ā
1+ā2

1
τ2
G0

1
R = b̄

1+b̄2
1
ρ0

Characteristic (dispersion) length Characteristic (Rayleigh) length

Ld = τ2
G0

2|k′′
	
| ρ0 = nπw2

0
λ	

= k	w2
0

2

Complex pulse parameter Complex beam parameter

1
p̃(L) = ϕ̈(L)

ω	
+ 2i/ω	

τ2
G(L)

1
q̃(L) = 1

R(L) + iλ	
πw2(L)

Table 1.2 summarizes our discussion comparing the characteristics of Gaussian
beam and pulse propagation.

1.5.3. Analogy between Spatial and Temporal Imaging

The analogy between pulse and beam propagation was applied to establish a
time–domain analog of an optical imaging system by Kolner and Nazarathy [21].
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Optical microscopy, for example, serves to magnify tiny structures so that they
can be observed by a (relatively) low-resolution system such as our eyes. The
idea of the “time lens” is to magnify ultrafast fs transients so that they can be
resolved, for example, by a relatively slow oscilloscope. Of course, the opposite
direction is also possible, which would lead to data compression in space or
time. Although Table 1.2 illustrates the space–time duality for free-space prop-
agation, we now need to look for devices resembling imaging elements such as
lenses. From Fourier optics it is known that a lens introduces a quadratic phase
factor, thus transforming a (Fourier-limited) input beam (parallel beam) into a
spatially chirped (focused) beam. The “time equivalent” lens is a quadratic phase
modulator. Quadratic dispersion through a medium with GVD is the temporal
analogue of diffraction. Let us consider the lens arrangement of Figure 1.8, in
which the light from an object—represented by the field envelope E(r)—at a
distance d1 from the lens, is imaged on a screen at a distance d2 from the lens.
The real image is produced on the screen if the distance and focal distance of the
lens satisfy the lens formula:

1

d1
+ 1

d2
= 1

f
. (1.191)

With some approximations, one can derive the time–domain equivalent of the
Gaussian lens formula, [21] for an optical system [Fig. 1.8(b)] in which the
initial signal Ẽ(t) is propagated for a distance d1 through a dispersive medium
characterized by a wave vector k2, is given a quadratic phase modulation by a
time lens, and propagates for a distance d2 through a medium of wave vector k2:

(
d1

d2k1

d�2

)−1

+
(

d2
d2k2

d�2

)−1

= ( fT /ω0)
−1 . (1.192)

In this temporal lens formula, d1,2(d2k1,2/d�2) are the dispersion characteristics
of the object and image side, respectively, and ω0/fT = ∂2φ/∂t2 is the parameter
of the quadratic phase modulation impressed by the modulator. As in optical
imaging, to achieve large magnification with practical devices, short focal lengths
are desired. For time imaging this translates into a short focal time fT which in
turn requires a suitably large phase modulation.

Note that the real image of an object can only be recognized on a screen
located at a specific distance from the lens, i.e., in the image plane. At any other
distance the intensity distribution visible on a screen usually does not resemble
the object, because of diffraction. Likewise, the dispersive element broadens each
individual pulse (if we assume zero input chirp). It is only after the time lens and
a suitably designed second dispersive element that a “pulse train” with the same
contrast as the input (but stretched or compressed) emerges.
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Dispersion
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Figure 1.8 Space–time analogy of imaging. (a) Spatial imaging configuration. The “object” is a
graphic representation of a three pulse sequence. The “real image” shows a magnified, inverted
picture. (b) The temporal imaging configuration. A pair of gratings on either side of the time lens
represents a dispersive length characterized by d2k/d�2, see also Chapter 2. The object is a three
pulse sequence. The “image” is a reversed, expanded three pulse sequence. Possible time lenses are
explained in the text. (Adapted from [22].)

One possible approach to create a large phase modulation is cross-phase mod-
ulation, in which a properly shaped powerful “pump” pulse creates a large index
sweep (quadratic with time) in the material of the time lens. Another approach
is to use sum or difference frequency generation to impart the linear chirp of
one pulse onto the pulse to be “imaged.” The linear chirp can be obtained by
propagating a strong pulse through a fiber. A detailed review of this “parametric
temporal imaging” can be found in Bennett and Kolner [22, 23]. The time equiv-
alent of a long propagation distance (large diffraction) is a large dispersion, which
can be obtained with a pair of gratings, see Chapter 2. Note that in a standard
magnifying optical system with a single lens, the real image is inverted with
respect to the object. The same applies to the temporal imaging: The successive
pulses appear in reverse order in the image.
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1.6. NUMERICAL MODELING OF PULSE
PROPAGATION

The generation and application of femtosecond light pulses requires one to
study their propagation through linear and nonlinear optical media. Those studies
have been undertaken not only to satisfy theorists. They are necessary to design
and optimize experiments and to save time and money. Because of the complexity
of interactions taking place numerical methods have to be used in many cases.
From the mathematical point of view it is desirable to develop a numerical model
optimized with respect to computer time and accuracy for each experimental
situation to be described. In this section we will present a procedure that allows
one to study pulse propagation through a variety of materials. This model is
optimized neither with respect to computer time nor with respect to accuracy.
However, it is universal and is directly associated with the physics of the problem.
Moreover, it has been successfully applied to various situations. Among them are,
for instance, pulse propagation through nonlinear optical fibers and amplifiers and
pulse evolution in fs lasers. Without going into the numerical details, we will
briefly describe the main features of this concept. In the course of the book we
will then present various examples.

In the frame of approximations discussed in the section of beam propagation
the electric field can be represented as

E(x, y, z, t) = 1

2
ũ(x, y, z)Ẽ(z, t)ei(ω	t−k	z) + c. c.

= 1

2
U(x, y, z, t)ei(ω	t−k	z) + c. c. (1.193)

where Ẽ is the complex pulse envelope, and ũ describes the transverse beam pro-
file. The medium through which the pulse travels is not to be specified. In general,
it will respond linearly as well as nonlinearly to the electric field. For example,
the pulse changes shape and chirp because of dispersion while it is amplified or
absorbed nonlinearly because of a time-dependent gain coefficient. Therefore,
the wave equation derived before, for the case of linear dispersive media, must
be supplemented by certain nonlinear interaction terms. In following chapters we
will discuss those nonlinear processes in detail. For the moment we will intro-
duce them only formally. Let us first assume that a change in the beam profile
can be neglected. Then the behavior of the field is fully described by its complex
envelope Ẽ . The propagation equation in local coordinates reads

∂

∂z
Ẽ = 1

2
ik′′

	

∂2

∂t2
Ẽ − D + B1 + B2 + · · · + Bn (1.194)
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where the terms Bi stand for contributions from nonlinear light matter interaction.
A direct numerical evaluation of Eq. (1.194) often requires solving a set of non-
linear, partial differential equations. Note that for the determination of the Bi,
additional (differential) equations describing the medium must be considered. As
with partial differential equations in general, the numerical procedures are rather
complicated. Moreover, they may differ largely from each other even when the
problems seem to be similar from the physical point of view.

A more intuitive approach can be chosen, as outlined next. The sample of
length L is divided into M slices of length 
z = L/M; each slice sufficiently
thin as to induce only a small change in the pulse parameters. Assuming that the
complex envelope at propagation distance z = m
z (m = 1, 2, …, M) is given
by Ẽ(t, z), the envelope at the output of the next slice (z + 
z) can be obtained
from Eq. (1.194) as

Ẽ(t, z + 
z) = Ẽ(t, z) +
[

1

2
ik′′

	

∂2

∂t2
Ẽ(t, z) − D + B1(t, z, Ẽ)

+ B2(t, z, Ẽ) + · · · + Bn(t, z, Ẽ)
]

z (1.195)

which can be written formally as

Ẽ(t, z + 
z) = Ẽ(t, z) + δk′′ Ẽ(t, z) + δDẼ(t, z) + δ1Ẽ(t, z)

+ δ2Ẽ(t, z) +, · · · , + δnẼ(t, z). (1.196)

The quantities δiẼ(z, t) represent the (small) envelope changes because of the
various linear and nonlinear processes. For their calculation the envelope at z
only is required. The action of the individual processes is treated as if they occur
successively and independently in each slice. The pulse envelope at the end of
each slice is then the sum of the input pulse plus the different contributions.
The resulting envelope Ẽ(t, z + 
z) serves as input for the next slice, and so on
until z + 
z = L.

The methods which can be applied to determine δiẼ depend on the specific
kind of interaction. For example, it may be necessary to solve a set of differential
equations, but only with respect to the time coordinate. As mentioned before, the
discussion of nonlinear optical processes will be the subject of following chapters.

This type of numerical calculation is critically dependent on the number of
slices. It is the strongest interaction affecting the propagating pulse which deter-
mines the length of the slices. As a rule of thumb, the envelope distortion in each
slice must not exceed a few percent, and doubling and halving of M must not
change the results more than the required accuracy allows.
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Many propagation problems have been investigated already with ps and ns
light pulses, theoretically as well as experimentally. The severe problem when
dealing with fs light pulses is dispersion, which enters Eq. (1.196) through δ′′

k Ẽ
(GVD) and δDẼ (higher-order dispersion). From the discussion in the preceding
sections we can easily derive expressions for these quantities. If only GVD needs
to be considered, we can start from Eq. (1.109)

Ẽ(�, z + 
z) = Ẽ(�, z)e−ik′′
	�

2
z/2 (1.197)

which, for sufficiently small 
z, can be approximated as

Ẽ(�, z + 
z) ≈ Ẽ(�, z) − 1

2
ik′′

	�
2
zẼ(�, z). (1.198)

Thus we have for δk′′ Ẽ(t, z)

δk′′ Ẽ(t, z) ≈ F−1
{
−1

2
ik′′

	�
2
zẼ(�, z)

}
. (1.199)

If additional dispersion terms matter, we can utilize Eq. (1.172) and obtain

δDẼ(t, z) = F−1

{
−i

∞∑
n=3

1

n!k(n)
	 �n
zẼ(�, z)

}
. (1.200)

Next, let us consider a change in the beam profile. This must be taken into
account if the propagation length through the material is long as compared with
the confocal length. In addition, beam propagation effects can play a role if the
setup to be modeled consists of various individual elements separated from each
other by air or vacuum. This is the situation that is, for instance, encountered in
lasers. It is the evolution of Ũ = ũẼ rather than only that of Ẽ that has to be
modeled now. The change of Ũ from z to z + 
z is

Ũ(x, y, z + 
z, t) = Ũ(x, y, z, t) + δŨ (1.201)

where

δŨ = ũδẼ + Ẽδũ. (1.202)

The change of the pulse envelope δẼ can be derived as described previously.
For the determination of δũ we can evaluate the diffraction integral (1.187)
over a propagation length or equivalently proceed to the Fourier space and use
Eq. (1.179). For Gaussian beams we may simply use Eq. (1.185).
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1.7. SPACE–TIME EFFECTS

For short pulses a coupling of spatial and temporal effects becomes important
even for propagation in a nondispersive medium. The physical reason is that self-
diffraction of a beam of finite transverse size (e.g., Gaussian beam) is wavelength
dependent. A separation of time and frequency effects according to Eqs. (1.176)
and (1.177) is clearly not feasible if such processes matter. One can construct a
solution by solving the diffraction integral (1.187) for each spectral component.
The superposition of these solutions and an inverse Fourier transform then yields
the temporal field distribution. Starting with a field Ẽ(x′, y′,�) = F

{
Ẽ(x′, y′, t)

}
in a plane �′(x′, y′) at z = 0 we find for the field in a plane �(x, y) at z = L:

Ẽ(x, y, L, t) = F−1

{
i�e−i�L/c

2πcL

∫ ∫
dx′dy′ Ẽ(x′, y′,�)

× exp

[
−i

�

2Lc

(
(x − x′)2 + (y − y′)2

)]}
(1.203)

where we have assumed a nondispersive medium with refractive index n = 1.
Solutions can be found by solving numerically Eq. (1.203) starting with an arbi-
trary pulse and beam profile at a plane z = 0. Properties of these solutions were
discussed by Christov [24]. They revealed that the pulse becomes phase modu-
lated in space and time with a pulse duration that changes across the beam profile.
Because of the stronger diffraction of long wavelength components the spectrum
on axis shifts to shorter wavelengths.

For a Gaussian beam and pulse profile at z = 0, i.e., Ẽ(x′, y′, 0, t) ∝
exp(−r′2/w2

0) exp(−t2/τ2
G0) exp(iω	t) with r′2 = x′2 + y′2, the time–space

distribution of the field at z = L is of the form [24]:

Ẽ(r, z = L, t) ∝ exp

(
− η2

τ2
G

)
exp

[(
−w0ω	τG0

2LcτG
r

)2
]

exp

(
i
ω	τ

2
G0

τ2
G

η

)
(1.204)

where

τ2
G = τ2

G0 + [w0r/(Lc)]2 (1.205)

and η = [t − L/c − r2/(2Lc)
]
. This result shows a complex mixing of spatial and

temporal pulse and beam characteristics. The first term in Eq. (1.204) indicates a
pulse duration that increases with increasing distance r from the optical axis. For
an order of magnitude estimation let us determine the input pulse duration τG0 at
which the pulse duration has increased to 2τG0 at a radial coordinate r = w after
the beam has propagated over a certain distance L � ρ0. From Eq. (1.205) this
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is equivalent to τG0 = w0r/(Lc). For r = w with w ≈ Lλ/(πw), cf. Eq. (1.182),
the pulse duration becomes τG0 ≈ λ/(πc). Obviously, these effects become only
important if the pulses approach the single-cycle regime.

1.8. PROBLEMS

1. Verify the cB factors of the pulse duration–bandwidth product of a Gaussian
and sech pulse as given in Table 1.1.

2. Calculate the pulse duration τ̄p defined as the second moment in Eq. (1.49)
for a Gaussian pulse and compare with τp (FWHM).

3. Consider a medium consisting of particles that can be described by
harmonic oscillators so that the linear susceptibility in the vicinity of a
resonance is given by Eq. (1.153). Investigate the behavior of the phase
and group velocity in the absorption region. You will find a region where
νg > νp. Is the theory of relativity violated here?

4. Assume a Gaussian pulse which is linearly chirped in a phase modulator
that leaves its envelope unchanged. The chirped pulse is then sent through
a spectral amplitude only filter of spectral width (FWHM) 
ωF . Calculate
the duration of the filtered pulse and determine an optimum spectral width
of the filter for which the shortest pulses are obtained. (Hint: For simpli-
fication you may assume an amplitude only filter of Gaussian profile, i.e.,

H̃(ω − ω) = exp

[
− ln 2

(
ω−ω

ωF

)2
]

.)

5. Derive the general expression for dn/d�n in terms of derivatives with
respect to λ.

6. Assume that both the temporal and spectral envelope functions E(t) and
E(�), respectively, are peaked at zero. Let us define a pulse duration τ∗

p
and spectral width 
ω∗

p using the electric field and its Fourier transform by

τ∗
p = 1

|E(t = 0)|
∫ ∞

−∞
|E(t)|dt

and


ω∗
p = 1

|E(� = 0)|
∫ ∞

−∞
|E(�)|d�.

Show that for this particular definition of pulse duration and spectral width
the uncertainty relation reads

τ∗
p
ω∗

p ≥ 2π.
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7. Derive Eqs. (1.60) and (1.61). Hint: Make use of Parsival’s theorem

2π
∫ ∞

−∞
| f (t)|2dt =

∫ ∞

−∞
| f (�)|2d�

and the fact that F {t f (t)} = −i d
d�F { f (t)}.

8. A polarization—to second-order in the electric field—is defined as
P(2)(t) ∝ χ(2)E2(t). We have seen that the preferred representation for
the field is the complex quantity E+(t) = 1

2E(t) exp[i(ωt + ϕ(t)]. Give a
convenient description of the nonlinear polarization in terms of E+(t), E(t)
and ϕ(t). Consider in particular second harmonic generation and optical
rectification. Explain the physics associated with the various terms of P(2)

(or P+(2), if you can define one).
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2
Femtosecond Optics

2.1. INTRODUCTION

Whether short pulses or continuous radiation, light should follow the rules of
“classical optics.” There are, however, some properties related to the bending,
propagation, and focalization of light that are specific to fs pulses. Ultrashort
pulses are more “unforgiving” of some “defects” of optical systems, as compared
to ordinary light of large spectral bandwidth, i.e., white light.1 Studying optical
systems with fs pulses helps in turn to improve the understanding and perfor-
mances of these systems in white light. We will study properties of basic elements
(coatings, lenses, prisms, gratings) and some simple combinations thereof. The
dispersion of the index of refraction is the essential parameter for most of the
effects to be discussed in this chapter. Some values are listed for selected optical
materials in Table 2.1. As already noted in Chapter 1, the second derivative of
the index of refraction is positive over the visible spectrum for most transparent
materials, corresponding to a positive GVD. There is a sign reversal of the GVD
in fused silica around 1.3 µm, which has led to zero dispersion or negative
dispersion fibers.

Often a transparent material will be characterized by a fit of the index of
refraction as a function of wavelength. Values for most nonlinear materials can

1Such light can be regarded as superposition of random fluctuations (short light pulses), the mean
duration of which determines the spectral width. A measurement of the light intensity, however,
averages over these fluctuations.
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Table 2.1

Dispersion parameters for some optical materials. BK7 is the most commonly used
optical glass. The SFS are dispersive heavy flint glasses. SQ1 is fused silica.
The dispersion parameters for the glasses were calculated with Sellmeier’s

equations and data from various optical catalogs. The data for the UV wavelengths
must be considered as order of magnitude approximations. The ZnSe data are

taken from Duarte [2]. Using Eqs. (1.113)–(1.117), the dispersion values given in
terms of n(Ω) can easily be transformed into the corresponding values for k(Ω).

Material λ	 n(ω	) n′(ω	) n′(λ	) n′′(ω	) n′′(λ	) n′′′(ω	) n′′′(λ	)
(nm) 10−2 10−2 10−3 (µm−2) 10−4 (µm−3)

(fs) (µm−1) (fs2) (fs3)

BK7 400 1.5307 1.13 −13 3 1.10 6.9 −12
500 1.5213 0.88 −6.6 2.3 0.396 7.7 −3.5
620 1.5154 0.75 −3.6 1.6 0.150 13 −1.1
800 1.5106 0.67 −2 0.06 0.05 39 −0.29

1000 1.5074 0.73 −1.4 −3.2 0.016 114 −0.09

SF6 400 1.8674 5.8 −67 30 7.40 214 −120
500 1.8236 3.7 −28 16 2 86 −21
620 1.8005 2.7 −13 12 0.70 50 −5.3
800 1.7844 2 −5.9 8 0.22 56 −1.2

1000 1.7757 1.71 −3.2 4 0.08 115 −0.36

SF10 400 1.7784 4.6 −54 24 5.9 183 −98
500 1.7432 3 −22 13 1.6 69 −17
620 1.7244 2.2 −11 9 0.56 42 −4.2
800 1.7112 1.7 −5 6 0.17 58 −1

1000 1.7038 1.5 −2.8 2 0.06 132 −0.3

SF14 400 1.8185 5.3 −62 27 6.8 187 −10.9
500 1.7786 2.8 −25 15 1.9 85 −2
620 1.7576 2.5 −12 10 0.63 50 −4.8
800 1.7430 1.8 −5.5 7 0.20 54 −1.1

1000 1.7349 1.6 −3.0 3.4 0.072 110 −0.33

SQ1 248 1.5121 2.36 −72 11 15 76 −520
308 1.4858 1.35 −27 4.1 3.3 23 −66.0
400 1.4701 0.93 −11 2.3 0.86 6 −9.80
500 1.4623 0.73 −5.5 1.8 0.32 6 −2.80
620 1.4574 0.62 −3 1.2 0.13 13 −0.89
800 1.4533 0.58 −1.7 −0.4 0.04 41 −0.24

1000 1.4504 0.67 −1.3 −3.8 0.012 121 −0.08
1300 1.4469 1 −1.1 −14 −0.0003 446 −0.02
1500 1.4446 1.4 −1.2 −27 −0.0031 915 −0.01

LaSF9 620 1.8463 2.28 −11.2 9.04 0.50
800 1.8326 1.76 −5.20 5.79 0.17

ZnSe 620 2.586 14.24 −30 117.3 2 −15
800 2.511 8.35 −15 63.3 0.69 −3
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be found in Dmitriev et al. [1]. A common form is the Sellmeier equation:

n2(λ	) = 1 + B1λ
2
	

λ2
	 − C1

+ B2λ
2
	

λ2
	 − C2

+ B3λ
2
	

λ2
	 − C3

. (2.1)

In the case of fused silica, the parameters are2:

B1 6.96166300 · 10−1 µm−2

B2 4.07942600 · 10−1 µm−2

B3 8.97479400 · 10−1 µm−2

C1 4.67914826 · 10−3 µm2

C2 1.35120631 · 10−2 µm2

C3 9.79340025 · 10+1 µm2

with the wavelength λ	 expressed in microns. Another example of a possible fit
function is the Laurent series formula:

n2(λ	) = A + Bλ2
	 + C

λ2
	

+ D

λ4
	

+ E

λ6
	

+ F

λ8
	

. (2.2)

For crystalline quartz with extraordinary and ordinary index ne and no, respec-
tively, the parameters are2:

Parameter for ne for no Unit
A 2.38490000 · 10+0 2.35728000 · 10+0

B −1.25900000 · 10−2 −1.17000000 · 10−2 µm−2

C 1.07900000 · 10−2 1.05400000 · 10−2 µm2

D 1.65180000 · 10−4 1.34143000 · 10−4 µm4

E −1.94741000 · 10−6 −4.45368000 · 10−7 µm6

F 9.36476000 · 10−8 5.92362000 · 10−8 µm8

With the wavelength λ	 being expressed in microns.
An interesting material for its high index in the visible (VIS)–near infrared

(NIR) spectral range is ZnS. The first- and second-order dispersion are plotted
in Figure 2.1.

We shall start this chapter with an analysis of a simple Michelson
interferometer.

2The values for fused silica and quartz are courtesy of CVI, Albuquerque, New Mexico. Available
at: www.cvi.com.
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Figure 2.1 First-order dispersion in µm−1 (left) and second-order dispersion in µm−2 (right)
of ZnS.

2.2. WHITE LIGHT AND SHORT PULSE
INTERFEROMETRY

Incoherent radiation has received increasing attention as the poor man’s fs
source (even the wealthiest experimentalist will now treat bright incoherent
sources with a certain amount of deference). The similarities between white
light and femtosecond light pulses are most obvious when studying coherence
properties, but definitely transcend the field of coherent interactions.

Let us consider the basic Michelson interferometer sketched in Figure 2.2.
The real field on the detector, resulting from the interferences of E1 and E2,

S Ref

Ref1

DD(a) (b)

τ τ

Figure 2.2 Left: Balanced Michelson interferometer. Right: For the measurement of mirror dis-
persion, a reflecting sample is inserted between the beam splitter and the reference mirror Ref. (dotted
line). The deflected beam is shown as a dashed line orthogonal to the displaced reference mirror Ref1.
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is E = E1(t − τ) + E2(t) with τ being the delay parameter. The intensity at the
output of the interferometer is given by the electric field squared averaged over
one light period T [Eq. (1.21)]:

I(t, τ) = ε0cn
1

T

∫ t+T /2

t−T /2
[E1(t′ − τ) + E2(t′)]2dt′

= 2ε0cn[Ẽ+
1 (t − τ) + Ẽ+

2 (t)][Ẽ−
1 (t − τ) + Ẽ−

2 (t)]

= 1

2
ε0cn

{
E2

1 (t − τ) + E2
2 (t)

+ Ẽ∗
1 (t − τ)Ẽ2(t)eiω	τ + Ẽ1(t − τ)Ẽ∗

2 (t)e−iω	τ
}

. (2.3)

Here again, we have chosen to decompose the field in an amplitude function Ẽ
and a phase function centered around a somewhat arbitrary average frequency of
the radiation, ω	, as in Eqs. (1.10) and (1.11).

The actual signal recorded at the output of the interferometer is the intensity, Ī ,
averaged over the response time τR of the detector. In the case of ultrashort pulses
τR � τp holds and what is being measured is the time integral

∫ +∞
−∞ I(t′, τ)dt′.

We will use the notation 〈 〉 for either integration or averaging, which results in a
quantity that is time independent. Assuming thus that all fluctuations of the signal
are averaged out by the detector’s slow response, the measured signal reduces to
the following expression:

Ī(τ) = ε0cn

4

{
〈Ẽ2

1 〉 + 〈Ẽ2
2 〉 +

〈
Ẽ∗

1 (t − τ)Ẽ2(t)eiω	τ + Ẽ1(t − τ)Ẽ∗
2 (t)e−iω	τ

〉}

= ε0cn
{
A11(0) + A22(0) + Ã+

12(τ) + Ã−
12(τ)

}
. (2.4)

On the right hand side of the first line in Eq. (2.4) we recognize correlation
functions similar to that in Eq. (1.31), except that they involve the electric fields
rather than the intensities. In complete analogy with the definitions of the complex
electric fields, the two complex functions correspond to positive and negative
spectral components3 of a correlation function A12(τ) = Ã+

12(τ) + Ã−
12(τ), where,

3Spectrum is defined here with respect to the conjugate variable of the delay parameter τ.
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e.g., the positive frequency component is defined as:

Ã+
12(τ) = 1

4
〈Ẽ∗

1 (t − τ)Ẽ2(t)eiω	τ〉

= 1

2
Ã12(τ)eiω	τ . (2.5)

The Fourier transform of the correlation of two functions is the product of the
Fourier transforms [3]:

Ã+
12(�) =

∫ ∞

−∞
Ã+

12(τ)e−i�τdτ =
∫ ∞

−∞
Ã12(τ)e−i(�τ−ω	τ)dτ

= 1

4
Ẽ∗

1 (� − ω	)Ẽ2(� − ω	)

= Ẽ∗
1 (�)Ẽ2(�). (2.6)

In the ideal case of infinitely thin beam splitter, nondispersive broadband
reflectors and beam splitters, Ẽ1 = Ẽ2, and the expression (2.6) is real.
Correspondingly, the correlation defined by Eq. (2.5) is an electric field auto-
correlation which is a symmetric function with respect to the delay origin τ = 0.
This fundamental property is of little practical importance when manipulating
data from a real instrument, because, in the optical time domain, it is difficult
to determine exactly the “zero delay” point, which requires measurement of the
relative delays of the two arms with an accuracy better than 100 Å. It is therefore
more convenient to use an arbitrary origin for the delay τ, and use the generally
complex Fourier transformation of Eq. (2.6).

For an ideally balanced interferometer, the output from the two arms is iden-
tical, and the right-hand side of Eq. (2.6) is simply the spectral intensity of the
light. This instrument is therefore referred to as a Fourier spectrometer.

Let us turn our attention to the slightly “unbalanced” Michelson interferometer.
For instance, with a single beam splitter of finite thickness d′, beam 2 will
have traversed L = d′/cos(θr) = d (θr being the angle of refraction) more glass
than beam 1 (Figure 2.2). It is well-known that the “white light” interference
fringes are particularly elusive, because of the short coherence length of the
radiation, which translates into a restricted range of delays over which a fringe
pattern can be observed. How will that fringe pattern be modified and shifted by
having one beam traverse a path of length 2d in glass rather than in air (assumed
here to be dispersionless)? Let Ẽ1(t) refer to the field amplitude at the detector,
corresponding to the beam that has passed through the unmodified arm with
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the least amount of glass. Using Eq. (1.165) with R = 1, �(�) = k(�)L and
considering only terms with n ≤ 2 in the expansion of �, cf. Eq. (1.167), we
find the second beam through the simple transformation:

Ẽ2(�) = Ẽ1(�) exp {−iL [k(�) − �/c]}

≈ Ẽ1(�) exp

{
−i

[(
k	 − �

c

)
L + k′

	L(� − ω	) + k′′
	 L

2
(� − ω	)2

]}

(2.7)

where, as outlined earlier, (k′
	)−1 = ([ dk

d� ]ω	 )−1 determines the group velocity

of a wave packet centered around ω	 and k′′
	 = [ d2k

d�2 ]ω	 is responsible for GVD.
The time-dependent electric field is given by the Fourier transform of Eq. (2.7).
Neglecting GVD we find for the complex field envelope:

Ẽ2(t) = e−i(k	+k′
	ω	)LẼ1

[
t − (k′

	 − 1/c)L
]
. (2.8)

Apart from an unimportant phase factor the obvious change introduced by the
glass path in one arm of the interferometer is a shift of time origin, i.e., a shift
of the maximum of the correlation. This is a mere consequence of the longer
time needed for light to traverse glass instead of air. The shift in “time origin”
measured with the unbalanced versus “balanced” Michelson is


τ =
(

k′
	 − 1

c

)
L

= L

c

{
(n − 1) + ω	

[
dn

d�

]
ω	

}

= L

c

{
(n − 1) − λ	

[
dn

dλ

]
λ	

}
, (2.9)

where we replaced k′
	 by Eq. (1.116). The first term in the right-hand side of

the second and third equation represents the temporal delay resulting from the
difference of the optical pathlength in air (n ≈ 1) and glass. The second term
contains the contribution from the group velocity in glass. In the above derivation,
we have not specifically assumed that the radiation consists of short pulses.
It is also the case for white light continuous wave (cw) radiation that the group
velocity contributes to the shift of zero delay introduced by an unbalance of
dispersive media between the two arms of the interferometer.
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Figure 2.3 “White light” Michelson interferogram. The fringes of the balanced interferometer are
shown on the left. The fringe pattern shifts to the right and is broadened by the insertion of a thin
quartz plate in one arm of the interferometer.

The third (and following) terms of the expansion of k(�) account for the
deformation of the fringe pattern observed in the recording of Figure 2.3. The
propagation can be more easily visualized in the time domain for fs pulses.
The group velocity delay is because of the pulse envelope “slipping” with respect
to the waves. The GVD causes different parts of the pulse spectrum to travel at
different velocity, resulting in pulse deformation. The result of the Michelson
interferogram is a cross-correlation between the field amplitude of the “original”
pulse and the signal propagated through glass.

The same considerations can be applied to white light, which can be viewed
as a temporal random distribution of ultrashort pulses. The concept of incoherent
radiation being constructed out of a statistical time sequence of ultrashort pulses
is also useful for studying coherence in light–matter interactions, as will be stud-
ied in detail in Chapter 4 on coherent interactions. The correlation [Eqs. (2.4)
and (2.5)] is maximum for exactly overlapping statistical phase and intensity fluc-
tuations from both arms of the interferometer. These fluctuations have a duration
of the order of the inverse bandwidth of the radiation, and so can be in the fs range
for broad bandwidth light. Each of these individual fs spikes will travel at the
group velocity. Dispersion in group velocity causes individual frequency com-
ponents of these spikes to travel at different speeds, resulting most often in pulse
stretching. If the source for the interferogram of Fig. 2.3 had been an fs pulse, the
recording on the right of the figure would represent the cross-correlation between
the field of the stretched-out pulse Ẽ2(t) with the original (shorter) pulse Ẽ1(t)
(of which the autocorrelation is shown on the left of the figure). Such a mea-
surement can be used to determine the shape of the field Ẽ2(t). The limiting case
of a cross-correlation between a δ function and an unknown function yields the
function directly. Indeed, the unbalanced Michelson is a powerful tool that can
be used for a complete determination of the shape of fs signals, in amplitude and
phase, as will be seen in Chapter 9.
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In the case of the incoherent radiation used for the recording of Fig. 2.3, the
broadened signal on the right merely reflects the “stretching” of the statistical
fluctuations of the white light. This measurement however provides important
information on material properties essential in fs optics. To illustrate this point
we will show how the displacement of the zero delay point in the interferogram
of Fig. 2.3 can be used to determine the first terms of an expansion of the transfer
function of linear optical elements.

According to Eq. (2.6), the Fourier transform of the correlation function Ã+
11(τ)

measured with the balanced interferometer4 is simply the spectral field intensity
of the source. It is difficult, and not essential, to determine exactly the zero
point, and therefore the measurement generally provides Ã+

11(τ + τe) exp(iϕe),
which is the function Ã+

11(τ) with an unknown phase (ϕe) and delay (τe) error.
Similarly, the cross-correlation measured after addition of a dielectric sample of
thickness L2 in one arm of the interferometer (right hand side of Fig. 2.3) is
Ã+

12(τ + τf ) exp(iϕf ), which is the function Ã+
12(τ) with an unknown phase (ϕf )

and delay (τf ) error. The ratio of the Fourier transforms of both measurements is:

Ã+
12(�)

Ã+
11(�)

e−i(�τf −ϕf )

e−i(�τe−ϕe)
= Ẽ2(�)

Ẽ1(�)
e−i[�(τf −τe)−(ϕf −ϕe)]

= e−i[k(�)L+�(τf −τe)−(ϕf −ϕe)], (2.10)

where we have made use of Eqs. (2.6) and (2.7). Unless special instrumental
provisions have been made to make (ϕf = ϕe), and (τf = τe), this measurement
will not provide the first two terms of a Taylor expansion of the dispersion
function k(�). This is generally not a serious limitation, because physically, the
undetermined terms are only associated with a phase shift and delay of the fs
pulses. The white light interferometer is an ideal instrument to determine the
second- and higher-order dispersions of a sample. Writing the complex Fourier
transforms of the interferograms in amplitude and phase:

Ã12(�) = A12(�)eψ12(�)

Ã11(�) = A11(�)eψ11(�) (2.11)

we find that, for an order (n) larger than 1, the dispersion is simply given by:

d(n)k

d�(n)
= −

[
d(n)ψ12

d�(n)
− d(n)ψ11

d�(n)

]
. (2.12)

4Ã+
11(τ) corresponds to the third term Ã+

12(τ) in Eq. (2.4) taken for identical beams (subscript 1 =
subscript 2), not to be confused with the first term A11(0) in that same equation.
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Equation (2.12) is not limited to dielectric samples. Instead, any optical trans-
fer function H̃ which can be described by an equation similar to Eq. (1.164),
can be determined from such a procedure. For instance, the preceding discussion
remains valid for absorbing materials, in which case the wave vector is complex,
and Eq. (2.12) leads to a complete determination of the real and imaginary part
of the index of refraction of the sample versus frequency. Another example is the
response of an optical mirror, as we will see in the following subsection.

2.3. DISPERSION OF INTERFEROMETRIC
STRUCTURES

2.3.1. Mirror Dispersion

In optical experiments, mirrors are used for different purposes and are usually
characterized only in terms of their reflectivity at a certain wavelength. The
latter gives a measure about the percentage of incident light intensity that is
reflected. In dealing with femtosecond light pulses, one has, however, to consider
the dispersive properties of the mirror [4, 5]. This can be done by analyzing the
optical transfer function which, for a mirror, is given by

H̃(�) = R(�)e−i�(�). (2.13)

It relates the spectral amplitude of the reflected field Ẽr(�) to the incident
field Ẽ0(�)

Ẽr(�) = R(�)e−i�(�)Ẽ0(�). (2.14)

Here R(�)2 is the reflection coefficient and �(�) is the phase response of
the mirror. As mentioned earlier a nonzero �(�) in a certain spectral range
is unavoidable if R(�) is frequency dependent. Depending on the functional
behavior of �(�) (cf. Section 1.3.1), reflection at a mirror not only introduces
a certain intensity loss but may also lead to a change in the pulse shape and to
chirp generation or compensation. These effects are usually more critical if the
corresponding mirror is to be used in a laser. This is because its action is mul-
tiplied by the number of effective cavity round trips of the pulse. Such mirrors
are mostly fabricated as dielectric multilayers on a substrate. By changing the
number of layers and layer thickness, a desired transfer function, i.e., reflectivity
and phase response, in a certain spectral range can be realized. As an example,
Figure 2.4 shows the amplitude and phase response of a broadband high-reflection
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Figure 2.4 Amplitude and phase response for a high reflection multilayer mirror (dashed line)
and a weak output coupler (solid line) as a function of the wavelength (Adapted from Dietel
et al. [5]).

mirror and a weak output coupler. Note that, although both mirrors have similar
reflection coefficients around a center wavelength λ0, the phase response dif-
fers greatly. The physical explanation of this difference is that R(�) [or R(λ)]
far from ω0 = 2πc/λ0 (not shown) influences the behavior of �(�) [or �(λ)]
near ω0.

Before dealing with the influence of other optical components on fs pulses, let
us discuss some methods to determine experimentally the mirror characteristics.
In this respect the Michelson interferometer is not only a powerful instrument
to analyze a sample in transmission, but it can also be used to determine the
dispersion and reflection spectrum of a mirror. The interferogram from which
the reference spectrum can be obtained is shown on the left of Fig. 2.3. Such
a symmetric interference pattern can only be achieved in a well compensated
Michelson interferometer (left part of Fig. 2.2) with identical (for symmetry)
mirrors in both arms, which are also broadband (to obtain a narrow correlation
pattern). For a most accurate measurement, the mirror to be measured should be
inserted in one arm of the interferometer rather than substituted to one of the
reference mirrors. Otherwise, the dispersive properties of that reference mirror
cannot be canceled. In Fig. 2.2 (left), a sample mirror is indicated as the dotted
line, deflecting the beam (dashed lines) towards a displaced end mirror. As in
the example of the transmissive sample, insertion of the reflective sample can in
general not be done without losing the relative phase and delay references. The
cross-correlation measured after substitution of the sample mirror in one arm of
the interferometer (right-hand side of Fig. 2.3) is Ã+

12(τ + τf ) exp(iϕf ), which is
the function Ã+

12(τ) with an unknown phase (ϕf ) and delay (τf ) error. The ratio
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of the Fourier transforms of both measurements is in analogy with Eq. (2.10):

Ã+
12(�)

Ã+
11(�)

e−i(�τf −ϕf )

e−i(�τe−ϕe)
= Ẽ2(�)

Ẽ1(�)
e−i[�(τf −τe)−(ϕf −ϕe)]

= R(�)2e−i[2�(�)+�(τf −τe)−(ϕf −ϕe)]. (2.15)

This function is independent of the dispersive and absorptive properties of the
reference mirrors. The squared field reflection coefficient and the factor 2 in the
phase account for the fact that the beam is reflected twice on the sample mirror.
Both the amplitude R and phase � of the transfer function H̃(�) can be extracted
from the measurement, with the limitation that, in general, this measurement will
not provide the first two terms of a Taylor expansion of the phase function �(�).
Again, this is not a serious limitation, because physically, the undetermined
terms are only associated with a phase shift and delay of the fs pulses. Using
the notations of Eq. (2.11), the phase shift −�(�) on reflection of the mirror is
simply given by:

�(�) = −1

2
[ψ12(�) − ψ11(�) + a + b�] (2.16)

where a and b are constants that can generally not be determined from such a
measurement.

The Michelson interferometer using white light is one of the simplest and most
powerful tools to measure the dispersion of transmissive and reflective optics.
Knox et al. [6] used it to measure directly the group velocity by measuring the
delay induced by a sample, at selected wavelengths (the wavelength selection
was accomplished by filtering white light). Naganuma et al. [7] used essentially
the same method to measure group delays, and applied the technique to the
measurement of “alpha parameters” (current dependence of the index of refraction
in semiconductors) [8]. In fs lasers, the frequency dependence of the complex
reflection coefficient of the mirrors contributes to an overall cavity dispersion.
Such a dispersion can be exploited for optimal pulse compression, provided
there is a mechanism for matched frequency modulation in the cavity. Dispersion
will simply contribute to pulse broadening of initially unmodulated pulses, if no
intensity or time-dependent index is affecting the pulse phase, as will be discussed
later. It is therefore important to diagnose the fs response of dielectric mirrors
used in a laser cavity.

A direct method is to measure the change in shape of a fs pulse, after reflec-
tion on a dielectric mirror, as proposed and demonstrated by Weiner et al. [9].
It is clear in the frequency domain that the phases of the various frequency
components of the pulse are being scrambled, and therefore the pulse shape
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should be affected. What is physically happening in the time domain is that the
various dielectric layers of the coating accumulate more or less energy at different
frequencies, resulting in a delay of some parts of the pulse. Therefore, significant
pulse reshaping with broadband coatings occurs only when the coherence length
of the pulse length is comparable to the coating thickness. Pulses of less than
30 fs duration were used in Weiner et al. [9, 10]. As shown previously, deter-
mination of the dispersion in the frequency domain can be made with a simple
Michelson interferometer. The latter being a linear measurement, yields the same
result with incoherent white light illumination or femtosecond pulses of the same
bandwidth.

An alternate method, advantageous for its sensitivity, but limited to the deter-
mination of the GVD, is to compare glass and coating dispersion inside a fs
laser cavity. As will be seen in Chapter 5, an adjustable thickness of glass is
generally incorporated in the cavity of mode-locked dye and solid state lasers, to
tune the amount of GVD for minimum pulse duration. The dispersion of mirrors
can be measured by substituting mirrors with different coatings in one cavity
position, and noting the change in the amount of glass required to compensate
for the additional dispersion [5, 11]. The method is sensitive, because the effect
of the sample mirror is multiplied by the mean number of cycles of the pulse in
the laser cavity. It is most useful for selecting mirrors for a particular fs laser
cavity.

2.3.2. Fabry–Perot and Gires–Tournois Interferometer

So far we have introduced (Michelson) interferometers only as a tool to split
a pulse and to generate a certain delay between the two partial pulses. In general,
however, the action of an interferometer is more complex. This is particularly
true for multiple-beam devices such as a Fabry–Perot interferometer. Let us con-
sider for instance a symmetric Fabry–Perot, with two identical parallel dielectric
reflectors spaced by a distance d. We will use the notations t̃ij for the field
transmission, and r̃ij for the field reflection, as defined in Figure 2.5.

The complex field transmission function is:

H̃(�) = t̃12 t̃21e−ikd + t̃12 t̃21

(
e−2ikd′ · r̃21r̃21

)
e−ikd

+ t̃12 t̃21e−ikd
(

e−2ikd′
… r̃21r̃21

)2 + · · ·

= t̃12 t̃21e−ikd 1

1 − r̃2
21e−2ikd′ (2.17)

where d′ = d cos θ.
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Figure 2.5 Schematic diagram of a Fabry–Perot interferometer. t̃12 is the transmission from
outside (1) to inside (2); t̃21 the transmission from inside (2) to outside (1); r̃12 the reflection from
outside (1) to inside (2) and r̃21 the reflection from inside (2) to outside (1).

Taking into account the interface properties derived in Appendix B, t̃12 t̃21 −
r̃12r̃21 = 1 and r̃12 = −r̃∗

21, the field transmission reduces to:

H̃(�) = (1 − R)e−ikd

1 − Reiδ
(2.18)

where,

δ(�) = 2ϕr − 2k(�)d cos θ (2.19)

is the total phase shift of a roundtrip inside the Fabry–Perot, including the phase
shift ϕr on reflection on each mirror, θ is the angle of incidence on the mirrors
(inside the Fabry–Perot), and R = |r̃12|2 is the intensity reflection coefficient of
each mirror [12].

Similarly, one finds the complex reflection coefficient of the Fabry–Perot:

R̃(�) =
√

R
(
eiδ − 1

)
1 − Reiδ

. (2.20)

One can easily verify that, if—and only if—kd is real:

|R|2 + |T |2 = 1. (2.21)
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Equations (2.18) and (2.20) are the transfer functions for the field spectrum.
The dependence on the frequency argument � occurs through k = n(�)�/c and
possibly ϕr(�). With n(�) complex, the medium inside the Fabry–Perot is either
an absorbing or an amplifying medium, depending on the sign of the imaginary
part of the index. We refer to a problem at the end of this chapter for a study of
the Fabry–Perot with gain.

The functions H̃(�) and R̃(�) are complex transfer functions, which implies
that, for instance, the transmitted field is:

Ẽout(�) = T (�)Ẽin(�) (2.22)

where Ẽin is the incident field. Equation (2.22) takes into account all the dynamics
of the field and of the Fabry–Perot. In the case of a Fabry–Perot of thickness
d 	 cτp, close to resonance (δ(�) 	 1), the transmission function H̃(�) is a
Lorentzian, with a real and imaginary part connected by the Kramers Kronig
relation. We refer to a problem at the end of this chapter to show how dispersive
properties of a Fabry–Perot can be used to shape a chirped pulse.

In the case of a Fabry–Perot of thickness d � cτp, the pulse spectrum covers
a large number of Fabry–Perot modes. Hence the product (2.22) will represent a
frequency comb, of which the Fourier transform is a train of pulses. Intuitively
indeed, we expect the transmission and/or reflection of a Fabry–Perot interferom-
eter to consist of a train of pulses of decreasing intensity if the spacing d between
the two mirrors is larger than the geometrical pulse length, [Figure 2.6(a)].

M1 M2(a)

M1(b) M2

Figure 2.6 Effect of a Fabry–Perot interferometer on a light pulse if the mirror spacing is larger (a)
and shorter (b) than the geometrical length of the incident pulse.
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The latter condition prevents interference between field components of succes-
sive pulses. The free spectral range of the Fabry–Perot interferometer is much
smaller than the spectral width of the pulse. On the other hand if d is smaller than
the pulse length the output field is determined by interference, as illustrated in
Fig. 2.6(b). An example of a corresponding device was the dielectric multilayer
mirror discussed before, which can be considered as a sequence of many Fabry–
Perot interferometers. Here the free spectral range of one interferometer is much
broader than the pulse spectrum, and it is the behavior around a resonance that
determines the shape of pulse envelope and phase. The actual pulse characteris-
tics can easily be determined by multiplying the field spectrum of the incident
pulse with the corresponding transfer function Eq. (2.18). For a multilayer mirror
this function can be obtained from a straightforward multiplication of matrices
for the individual layers [13].

Among the various types of interferometers that can be used for pulse shaping,
we choose to detail here the Gires–Tournois interferometer [14]. Its striking
feature is a high and almost constant amplitude transmission while the spectral
phase can be tuned continuously. This device can be used to control the GVD
in a fs laser in a similar manner as gratings and prisms. The Gires–Tournois is
topologically identical to a ring interferometer, with all mirrors but one being
perfect reflectors. The lone transmitting mirror is used as input and output. As
with the Gires–Tournois, the output amplitude is unity, whether or not the wave
inside the ring is at resonance or not. It is left as an exercise at the end of this
chapter to transpose the formulae of the Gires–Tournois to the situation of a ring
interferometer.

A sketch of the Gires–Tournois interferometer is shown in Figure 2.7. It is a
special type of a Fabry–Perot interferometer with one mirror (mirror M2) having a

Ein

Eout

M1M2

d

	

t12˜
t21˜

r2˜ r21˜ r12˜

Figure 2.7 Schematic diagram of a Gires–Tournois interferometer.
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reflection coefficient of (almost) 1. Consequently the device is used in reflection.
In this case the transfer function is given by

R(�)e−i�(�) = −r + eiδ

1 − reiδ
, (2.23)

where δ is the phase delay5 between two successive partial waves that leave
the interferometer, and r is the (real) amplitude reflection of M1 (assumed to
be nondispersive). It can easily be shown that the reflectivity of the device is
|R| = 1, i.e., there is practically no change in the pulse energy. The phase
response determined by Eq. (2.23) can be written as

�(�) = − arctan

[
(r2 − 1) sin δ

2r − (r2 + 1) cos δ

]
(2.24)

Taking the derivative of both sides of this expression, and dividing by
[tan2 � + 1] yields:

d�

d�
= (r4 − 1) − 2r(r2 − 1) cos δ

(1 + r2)2 + 4r cos δ[r cos δ − (1 + r2)]
dδ

d�
. (2.25)

It is interesting to find the expression for the group delay at the exact resonances,
i.e., the values of � that make δ = 2Nπ:

d�

d�

∣∣∣∣
res

=
(

r + 1

r − 1

)
dδ

d�

∣∣∣∣
res

. (2.26)

The GVD of the device is calculated from the second derivative of the
expression Eq. (2.25):

d2�

d�2
= (r4 − 1) − 2r(r2 − 1) cos δ

(1 + r2)2 + 4r cos δ[r cos δ − (1 + r2)]
d2δ

d�2

+ 2r(r2 − 1) sin δ
[
4r(r2 + 1) cos δ − 4r2 cos2 δ − r2 − 3

]
{
(1 + r2)2 + 4r cos δ[r cos δ − (1 + r2)]}2

(
dδ

d�

)2

.

(2.27)

Note that, as pointed out in the problem at the end of this chapter, the same expres-
sions can be derived for the transmission of a ring resonator. At the resonances

5In the definition of the phase delay Eq. (2.19) applied to the Gires–Tournois interferometer, θ is
the internal angle.
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of the device, δ = 2Nπ, and the GVD is:

d2�

d�2

∣∣∣∣
res

=
(

r + 1

r − 1

)
d2δ

d�2

∣∣∣∣
res

. (2.28)

As is obvious from Eq. (2.19), the second derivative of δ contains the GVD (−k′′)
of the material inside the interferometer. This material dispersion is enhanced by
the factor (r + 1)/(r − 1) in condition of resonance. This factor can be large in
the case of a high finesse resonator (1 − r 	 1).

The GVD given by Eq. (2.27) can be tuned continuously by adjusting δ, which
can be either through a change of the mirror separation d or through a change of
the external angle of incidence �. Gires and Tournois [14] conceived this inter-
ferometer to adapt to optical frequencies the pulse compression technique used
in radar (sending a frequency modulated pulse through a dispersive delay line).
Duguay and Hansen [16] were the first to apply this device for the compression
of pulses from a He-Ne laser. Because typical pulse durations were in the order
of several hundred ps, the mirror spacing needed to be in the order of few mm.
To use the interferometer for the shaping of fs pulses the corresponding mirror
spacing has to be on the order of few microns. Heppner and Kuhl [17] overcame
this obvious practical difficulty by designing a Gires–Tournois interferometer on
the basis of dielectric multilayer systems, as illustrated in Figure 2.8(a). The
100% mirror M2 is a sequence of dielectric coatings with alternating refractive
index deposited on a substrate. A certain spacer of optical thickness d consisting

IF-2
Out

IF-1
	In

Substrate

M2

Spacer

M1

(a) (b)

Figure 2.8 Gires–Tournois interferometer for fs light pulses using dielectric multilayers. By rotating
two parallel interferometers the overall dispersion can be adjusted through a change of the external
angle of incidence � and the number of reflections. Note, the beam direction is not changed. The
lateral displacement can be compensated by a second pair of interferometers (Adapted from Kuhl
and Heppner [15]).
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of a series of λ/2 layers of one and the same material is placed on top of M2.
The partially reflective surface M1 is realized by one λ/4 layer of high refractive
index. The dispersion of this compact device can be tuned by changing the angle
of incidence and/or the number of passes through the interferometer. A possible
arrangement which was successfully applied for GVD adjustments in fs lasers is
shown in Fig. 2.8(b) [15].

Let us inspect in more detail the actual transfer function of the multilayer
Gires–Tournois interferometer taking into account the mirror dispersion. In
most general terms, the first reflecting face of the Gires–Tournois is a multi-
layer dielectric coating, which we will model as an infinitely thin layer with
complex reflection coefficient r̃ij = r exp(iϕr,ij) and transmission coefficient
t̃ij = t exp(iϕt,ij). The subscripts i, j = 1, 2 refer to air (1) and spacer dielec-
tric (2). As indicated in Fig. 2.7, t̃12 is the transmission coefficient from air to the
spacer, through the multilayer dielectric mirror M1; r̃12 the reflection coefficient
of M1 to a beam incident from the air, etc. . . . Let us designate by δ the phase
shift accumulated by the wave having propagated from the first reflecting layer
to the total reflector and back to the first layer:

δ(�) = −2k(�)d cos θ + ϕr2 = −2�n(�)d cos θ

c
+ ϕr2, (2.29)

where ϕr2 is the phase shift on reflection at the totally reflecting layer(s) (mirror
M2), and θ is the internal angle of incidence on the reflecting interfaces. The
complex (field) reflection coefficient of the structure is:

R(�)e−i�(�) = r̃12 + (t̃12 t̃21 − r̃12r̃21)eiδ

1 − r̃21eiδ

= r̃12 + eiδ

1 − r̃21eiδ
, (2.30)

where the last equality results from the relation between the complex ampli-
tude reflection and transmission derived in Appendix B (t̃12 t̃21 − r̃12r̃21 = 1).
The reflectivity of the device is:

|R(�)|2 = |r̃12|2 + 1 + r̃12e−iδ + r̃∗
12eiδ

|r̃21|2 + 1 − r̃∗
21e−iδ − r̃21eiδ

, (2.31)

which is only equal to unity if r̃21 = −r̃∗
12 and the media are lossless. This relation

is consistent with the phase shift upon reflection on a dielectric interface. The
expression for the complex reflection of the whole interferometer can be rewritten
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in terms of the reflection coefficient r̃21:6

R(�)e−i�(�) = −r̃∗
21 + eiδ

1 − r̃21eiδ
. (2.32)

Let us express the reflectivity r̃21 in terms of its amplitude and phase: r̃21 =
r21 exp(iϕr,21) = r exp(iϕr). The phase response of the interferometer can now
be calculated:

�(�) = − arctan
(r2 − 1) sin δ(�) − r sin ϕr(�)

2r cosϕr(�) − (1 + r2) cos δ(�)
, (2.33)

which is a generalization of Eq. (2.24) to the more complex multilayer Gires–
Tournois structure. Only when ϕr = 0 and ϕr2 (in δ) is frequency independent
in the range of interest are the dispersions described by Eqs. (2.24) and (2.33)
equal. The error may be small in some real situations, as can be seen from the
comparison of the approximation Eq. (2.24) with the exact phase �(�) shown in
Figure 2.9. The latter functional dependence can be calculated directly through
matrix algebra taking into account a certain sequence of dielectric multilayer
mirrors [13].

2.3.3. Chirped Mirrors

As mentioned in the previous section, the Gires–Tournois interferometer
exhibits a reflectivity close to one over a broad spectrum. This was accom-
plished by an end mirror of high reflectivity (M2 in Fig. 2.8). The dispersion
on the other hand can be controlled by the spacer and the front mirror. This is
expressed in the phase δ(�) and ϕr(�) in Eq. (2.33). The problem is that both
mirrors at the same time form a Fabry–Perot structure that has relatively nar-
row resonances and subsequently a rather complicated dispersion behavior. The
most desired alternative would be a process to generate a predefined reflection
and phase behavior, R(�) and �(�). Optimization programs applied to dielectric
multilayer systems offer such an intriguing and interesting possibility. A dielec-
tric multilayer system consists of a sequence of films characterized by a certain
refractive index ni and thickness di. In principle, computer algorithms can be
used to find a sequence of (di, ni) combinations representing individual films that
come closest to a predefined reflection and phase behavior in a certain spectral
range. Of course, there are certain technical constraints that need to be consid-
ered: for example the total thickness and number of layers, the manufacturing

6We recall that r̃21 is the complex field reflection coefficient from inside the Gires–Tournois, on
the multilayer dielectric coating, assumed to be infinitely thin.
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Figure 2.9 Comparison of the exact phase function ψ(λ) (diamonds) and its second derivative
d2ψ/d�2 (solid line) of a Gires–Tournois interferometer with the approximation of assuming constant
ϕr and ϕr2 in Eq. (2.33) (circles for ψ, dashed line for the second derivative). The Gires–Tournois
interferometer has been designed for a central wavelength λ0 = 620 nm. The curves are calculated
for an external angle of incidence of 20◦. For this particular example, the high reflector is made of
11 layers of TiO2 (thickness λ0/4n = 67. 4 nm) alternating with layers of SiO2 (thickness λ0/4n =
106. 9 nm) on a glass substrate (n = 1.5). The spacer consists of five half wave spacing of SiO2,
for a total thickness of 1068.9 nm. The top reflector (r = 0. 324) consists of a quarter wave layer of
TiO2 (thickness λ0/4n = 67. 4 nm). In applying Eq. (2.33), the values of phase shifts upon reflection
were ϕr = −0. 0192 (top layer) and ϕr2 = −0. 0952 (high reflector).

tolerances in ni and di, and the limited choice of available refractive indices
ni (suitable materials). This approach will gain importance in the future as the
amplitude and phase responses needed become more and more complicated.

In many cases mirrors are desired that have a constant reflectivity and certain
dispersion behavior, for example a constant amount of GVD within a predefined
spectral range. This idea was pursued by Szipöks et al., [18] leading to what
is now called chirped mirrors. The basic idea is sketched in Figure 2.10. High-
reflection mirrors typically consist of stacks of alternating high and low refractive
index quarter-wave layers. A chirped mirror is a sequence of those stacks with
changing resonance frequency. Wave packets of different center frequency are
thus reflected at different depths, making the group delay on reflection a function
of frequency.

Unfortunately this is an oversimplified picture that neglects subresonances
in particular between the layers and the first air–film interface. This leads to a
modulation of the GVD. For this reason computer optimization is necessary to
tune the film parameters for a smooth dispersion curve.
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Figure 2.10 Wave packets of different center frequencies are reflected at different depths of a
chirped mirror. The mirror consists of stacks of alternating high and low refractive index layers at
different resonance frequencies.

Improvements in the initial layer sequence used as a starting point for the final
computer optimization have been accomplished, for example, by modulating the
ratio of the thickness of the high- and low-index layer of the chirped mirror
(double-chirped mirror) [19], by superimposing a quasi-periodic modulation on
the linear modulation of the layer thickness [20], and by coating the backside
of the substrate [21,22]. As we will see in following chapters such mirrors have
made an impressive impact on femtosecond laser source development.

2.4. FOCUSING ELEMENTS

2.4.1. Singlet Lenses

One main function of fs pulses is to concentrate energy in time and space.
The ability to achieve extremely high peak power densities partly depends on
the ability to keep pulses short in time, and concentrate them in a small vol-
ume by focusing. The difference between group and phase velocity in the lens
material can reduce the peak intensity in the focal plane by delaying the time of
arrival of the pulse front propagating through the lens center relative to the pulse
front propagating along peripheral rays. The group velocity dispersion leads to
reduction of peak intensity by stretching the pulse in time. As pointed out by
Bor [23, 24], when simple focusing singlet lenses are used, the former effect can
lead to several picosecond lengthening of the time required to deposit the energy
of a fs pulse on focus.

Let us assume a plane pulse and phase front at the input of a spherical lens
as sketched in Figure 2.11. According to Fermat’s principle, the optical path
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Figure 2.11 Left: delay of the pulse front with respect to the phase front, in the case of a singlet
lens. Right: spread of the focal region due to chromatic aberration.

along rays from the input phase front to the focus is independent of the radius
coordinate r. The lens transforms the plane phase front into a spherical one
which converges in the (paraxial) focus. Assimilating air as vacuum, it is only
while propagating through the lens that the pulses experience a group velocity
νg different from the phase velocity νp = c/n. The result is a pulse front that is
delayed with respect to the (spherical) phase front, depending on the amount of
glass traversed. As we have seen in Chapter 1, the group velocity is:

νg =
(

dk

d�

)−1

= c

n − λ	
dn
dλ

, (2.34)

where λ	 is the wavelength in vacuum. The difference in propagation time
between the phase front and pulse front after the lens at radius coordinate r is:


T (r) =
(

1

νp
− 1

νg

)
L(r), (2.35)

where L(r) is the lens thickness. The group delay 
T (r) is also the difference of
the time of arrival at the focus of pulses traversing the lens at distance r from the
axis and peripheral rays touching the lens rim. Pulse parts traveling on the axis
(r = 0) will arrive delayed in the focal plane of a positive lens compared with
pulse parts traversing the lens at r > 0. For a spherical thin lens, the thickness L
is given by

L(r) = r2
0 − r2

2

(
1

R1
− 1

R2

)
(2.36)
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where R1,2 are the radii of curvature of the lens, and r0 is the radius of the lens
aperture.7 Substituting the expressions for the group velocity (2.34) and for the
lens thickness (2.36) into Eq. (2.35) yields for the difference in time of arrival
between a pulse passing through the lens at the rim and at r:


T (r) = r2
0 − r2

2c

(
1

R1
− 1

R2

)(
λ

dn

dλ

)

= r2
0 − r2

2c
λ

d

dλ

(
1

f

)
(2.37)

where the focal length f has been introduced by 1/f = (n − 1)(R−1
1 − R−1

2 ).
Equation (2.38) illustrates the connection between the radius-dependent pulse
delay and the chromaticity d/dλ(1/f ) of the lens. For an input beam of radius rb

the pulse broadening in the focus can be estimated with the difference in arrival
time 
T ′ of a pulse on an axial ray and a pulse passing through the lens at rb:


T ′(rb) = r2
b

2c
λ

d

dλ

(
1

f

)
. (2.38)

To illustrate the effects of group velocity delay and dispersion, let us assume
that we would like to focus a 50 fs pulse at the excimer laser wavelength of
248 nm (KrF) down to a spot size of 0.6 µm, using a fused silica lens (singlet)
of focal distance f = 30 mm. Let us further assume that the input beam profile
is Gaussian. Because the half divergence angle in the focused beam is θ =
λ/(πw0), the radius w of the Gaussian beam [radial dependence of the electric
field: Ẽ(r) = Ẽ(0) exp{−r2/w2}] incident on the lens should be approximately
θ f = (λ/πw0) f ≈ 4 mm. To estimate the pulse delay we evaluate 
T ′ at rb = w:


T ′(rb = w) = w2

2c
λ

d

dλ

(
1

f

)

= − w2

2cf (n − 1)

(
λ

dn

dλ

)

= − θ2f

2c(n − 1)

(
λ

dn

dλ

)
. (2.39)

7Regarding sign considerations we will use positive (negative) R1,2 for refracting surfaces which
are concave (convex) toward the incident side.
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For the particular example chosen, n ≈ 1.51, λdn/dλ ≈ −0.17, and the difference
in time of arrival (at the focus) of the rays at r = 0 and rb = w is ≈ 300 fs,
which can be used as a rough measure of the pulse broadening.

The effect of the chromaticity of the lens on the spatial distribution of the light
intensity near the focal plane is a spread of the optical energy near the focus,
because different spectral components of the pulse are focused at different points
on axis. For a bandwidth-limited Gaussian pulse of duration τp = √

2 ln 2 τG0
with spectral width 
λ = 0.441λ2/cτp, the focus spreads by the amount:


 f = −f 2 d(1/f )

dλ

λ = − f λ2

c(n − 1)

0.441

τp

dn

dλ
. (2.40)

Applying Eq. (2.40) to our example of a 30 mm fused silica lens to focus a 50 fs
pulse, we find a spread of 
 f = 60 µm, which is large compared to the Rayleigh
range of a diffraction-limited focused monochromatic beam ρ0 = w0/θ ≈ 5 µm.
We can therefore write the following approximation for the broadening of the
beam: w(
 f )/w0 = √

1 + (
 f /2ρ0)2 ≈ (
 f /2ρ0). Substituting the value for

 f from Eq. (2.40):

w(
 f )

w0
= −0.44π

τp

θ2f

2c(n − 1)

(
λ

dn

dλ

)
≈ −0.44π


T ′

τp
. (2.41)

We note that the spatial broadening of the beam because of the spectral extension
of the pulse, as given by Eq. (2.41), is (within a numerical factor) the same
expression as the group velocity delay [Eq. (2.39)] relative to the pulse duration.
In fact, neither expression is correct, in the sense that they do not give a complete
description of the spatial and temporal evolution of the pulse near the focus.
An exact calculation of the focalization of a fs pulse by a singlet is presented in
the subsection that follows.

In addition to the group delay effect, there is a direct temporal broadening of
the pulse in the lens itself because of GVD in the lens material, as discussed in
Section 1.5. Let us take again as an example the fused silica singlet of 30 mm focal
length and of 16 mm diameter used to focus a 248 nm laser beam to a 0.6 µm
spot size. The broadening will be largest for the beam on axis, for which the
propagation distance through glass is L(r = 0) = d0 = r2

0 /{2f (n−1)} = 2.1 mm.
Using for the second-order dispersion at 250 nm λd2n/dλ2 ≈ 2.1 µm−1 [23],
we find from Eq. (1.125) that a 50 fs (FWHM) unchirped Gaussian pulse on
axis will broaden to about 60 fs. If the pulse has an initial upchirp such that the
parameter a defined in Eq. (1.33) is a = −5, it will broaden on axis to 160 fs.
At a wavelength of 800 nm, where the dispersion is much smaller than in the
UV (Table 2.1) a bandwidth-limited 50 fs pulse would only broaden to 50.4 fs.
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The example illustrates the differences between peak intensity reduction
at the focal point of a lens resulting from the difference between group and
phase velocity and effects of GVD in the lens material. The latter is strongly
chirp dependent, while the former is not. The spread of pulse front arrival times
in the focal plane is independent of the pulse duration and is directly related to
the spot size that will be achieved (the effect is larger for optical arrangements
with a large F-number). The relative broadening of the focus, ∝ 
T ′/τp, is how-
ever larger for shorter pulses. The GVD effect is pulse width dependent, and, in
typical materials, becomes significant only for pulse durations well below 100 fs
in the VIS and NIR spectral range.

2.4.2. Space–Time Distribution of the Pulse
Intensity at the Focus of a Lens

The geometrical optical discussion of the focusing of ultrashort light pulses
presented previously gives a satisfactory order of magnitude estimate for the
temporal broadening effects in the focal plane of a lens. We showed this type
of broadening to be associated with chromatic aberration. Frequently the exper-
imental situation requires an optimization not only with respect to the temporal
characteristics of the focused pulse, but also with respect to the achievable
spot size. To this aim we need to analyze the space–time distribution of the
pulse intensity in the focal region of a lens in more detail. The general pro-
cedure is to solve either the wave equation (1.67), or better the corresponding
diffraction integral,8 which in Fresnel approximation was given in Eq. (1.187).
However, we cannot simply separate space and time dependence of the field
with a product ansatz (1.176) because we expect the chromaticity of the lens
to induce an interplay of both. Instead we will solve the diffraction integral for
each “monochromatic” Fourier component of the input field Ẽ0(�) which will
result in the field distribution in a plane (x, y, z) behind the lens, Ẽ(x, y, z,�).
The time-dependent field Ẽ(x, y, z, t) then is obtained through the inverse Fourier
transform of Ẽ(x, y, z,�) so that we have for the intensity distribution:

I(x, y, z, t) ∝ |F−1{Ẽ(x, y, z,�)}|2. (2.42)

The geometry of this diffraction problem is sketched in Figure 2.12. Assum-
ing plane waves of amplitude E0(�) = E0(x′, y′, z′ = 0,�) at the lens input,

8For large F-numbers the Fresnel approximation may no longer be valid, and the exact diffraction
integral including the vector properties of the field should be applied.
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Figure 2.12 Diffraction geometry for focusing.

the diffraction integral to be solved reads, apart from normalization constants:

E(x, y, z,�) ∝ �

c

∫ ∫
E0(�)TL(x′, y′)TA(x′, y′)e−i k

2z

[
(x′−x)2+(y′−y)2

]
dx′dy′

(2.43)

where TL and TA are the transmission function of the lens and the aperture
stop, respectively. The latter can be understood as the lens rim in the absence of
other beam limiting elements. The lens transmission function describes a radially
dependent phase delay which in case of a thin, spherical lens can be written:

TL(x′, y′) = exp

{
−i

�

c

[
nL(r′) + d0 − L(r′)

]}
(2.44)

with r′2 = x′2 + y′2 and

L(r′) = d0 − r′2

2

(
1

R1
− 1

R2

)
= d0 − r′2

2(n − 1) f
, (2.45)

where d0 is the thickness in the lens center. Note that because of the dispersion
of the refractive index n, the focal length f becomes frequency dependent. For a
spherical opening of radius r′

0 the aperture function TA is simply:

TA(r′) =
{

1 for x′2 + y′2 = r′2 ≤ r′2
0

0 otherwise
(2.46)
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If we insert Eq. (2.45) into Eq. (2.44) we can rewrite the lens transmission
function as:

TL(x′, y′) = exp

{
−i

[
kg(�)d0 −

(
kg(�) − �

c

)
r′2

2

(
1

R1
− 1

R2

)]}
, (2.47)

where

kg(�) = �

c
n(�) (2.48)

is the wave vector in the glass material. Substituting this transmission function
in the diffraction integral Eq. (2.43) we find for the field distribution in the focal
plane:

E(�) ∝ �

c
e−ikg(�)d0

∫∫
TAE0(�) exp

[
i

(
kg(�) − �

c

)
r′2

2

(
1

R1
− 1

R2

)]

× e−i k
2z

[
(x′−x)2+(y′−y)2

]
dx′dy′ (2.49)

The exponent of the second exponential function is radially dependent and is
responsible for the focusing, while the first one describes propagation through
a dispersive material of length d0. For a closer inspection let us assume that
the glass material is only weakly dispersive so that we may expand kg(�) and
[kg(�) − �/c] up to second order. In both exponential functions this will result
in a sum of terms proportional to (� − ω	)m (m = 0, 1, 2). According to our
discussion in the section about linear elements, optical transfer functions which
have the structure exp[−ib1(�−ω	)] give rise to a certain pulse delay. Because
b1 is a function of r′ this delay becomes radius dependent, a result which has
already been expected from our previous ray–optical discussion. The next term
of the expansion (m = 2) is responsible for pulse broadening in the lens material.

A numerical evaluation of Eq. (2.49) and subsequent inverse Fourier transform
[Eq. (2.42)] allows one to study the complex space–time distribution of the pulse
intensity behind a lens. An example is shown in Figure 2.13. In the aberration-
free case we recognize a spatial distribution corresponding to the Airy disc and no
temporal distortion. The situation becomes more complex if chromaticity plays
a part. We see spatial as well as temporal changes in the intensity distribution.
At earlier times the spatial distribution is narrower. This can easily be understood
if we remember that pulses from the lens rim (or aperture edge) arrive first in
the focal plane and are responsible for the field distribution. At later times pulses
from inner parts of the lens arrive. The produced spot becomes larger since the
effective aperture size is smaller. If we use achromatic doublets (cf. Section 2.4.3)
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Figure 2.13 Space–time distribution of the pulse intensity in the focal plane of a lens: (a) Focusing
without chromatic or spherical aberration, (b) Focusing with chromatic aberration τ/T = 20. The input

pulse was chosen to vary as e−(t/T )2 . ν is the optical coordinate defined as ν = r′
0k	
√

x2 + y2/f	 and

τ = T ′(r0) =
∣∣∣ r′2

0 λ

2fc(n−1) n′(λ)
∣∣∣ is a measure for the dispersion (from Kempe et al. [25]). (c) Focusing

with chromatic and spherical aberration. The intensity distribution in the plane of the marginal focus
is shown (Adapted from Kempe and Rudolph [26]).

the exponential proportional to (�−ω	) in the corresponding diffraction integral
does not appear. The only broadening then is because of GVD in the glass
material.

Interesting effects occur if spherical aberration is additionally taken into
account which is essential to correctly model strong focusing with singlet
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lenses [26]. As known from classical optics, spherical aberration results in dif-
ferent focal planes for beams passing through the lens at different r. Because
ultrashort pulses passing through different lens annuli experience the same delay,
almost no temporal broadening occurs for the light which is in focus, as illus-
trated in Fig. 2.13(c). The space–time distribution in the focal area can differ
substantially from that obtained with a purely chromatic lens.

To measure the interplay of chromatic and spherical aberration in focus-
ing ultrashort light pulses, one can use an experimental setup as shown in
Figure 2.14(a). The beam is expanded and sent into a Michelson interferom-
eter. One arm contains the lens to be characterized, which can be translated so
as to focus light passing through certain lens annuli onto mirror M1. Provided
the second arm has the proper length, an annular interference pattern can be
observed at the output of the interferometer. The radius of this annulus is deter-
mined by the setting of 
 f . If no spherical aberration is present, an interference
pattern is observable only for 
f ≈ 0, and a change of the time delay by trans-
lating M2 would change the radius of the interference pattern. With spherical
aberration present, at a certain 
 f , an interference pattern occurs only over a
delay corresponding to the pulse duration while the radius of the annulus remains
constant. This can be proved by measuring the cross-correlation, i.e., by measur-
ing the second harmonic signal as function of the time delay. The width of the
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Figure 2.14 (a) Correlator for measuring the effect of chromatic and spherical aberration on the
focusing of fs pulses. (b) Measured pulse delay (data points) as a function of the lens position (
f —
deviation from the paraxial focus) and the corresponding radial coordinate r of light in focus. The
solid line is obtained with ray–pulse tracing; the dashed curve shows the effect of chromatic aberration
only. Lens parameters: f0 = 12.7 mm, BK7 glass (Adapted from Kempe and Rudolph [27]).
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cross-correlation does not differ from the width of the autocorrelation which is
measured without the lens in the interferometer arm. Figure 2.14(b) shows the
position of the peak of the cross-correlation as function of 
 f and the corre-
sponding r, respectively. For comparison, the delay associated with chromatic
aberration alone is also shown (dashed curve).

2.4.3. Achromatic Doublets

The chromaticity of a lens was found to be the cause for a radial dependence
of the time of arrival of the pulse at the focal plane, as was shown by Eq. (2.38).
Therefore one should expect achromatic optics to be free of this undesired pulse
lengthening. To verify that this is indeed the case, let us consider the doublet
shown in Figure 2.15.

The thicknesses of glass traversed by the rays in the media of index n1 and
n2 are L1 and L2 and are given by:

L1 = d1 − r2

2

(
1

R1
− 1

R2

)
(2.50)

and

L2 = d2 − r2

2

(
1

R2
− 1

R3

)
(2.51)
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Figure 2.15 Ray tracing in an achromat (Adapted from Bor [23]).
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where d1,2 is the center thickness of lens 1, 2. The inverse of the focal length of
the doublet lens is:

1

f
= (n1 − 1)

(
1

R1
− 1

R2

)
+ (n2 − 1)

(
1

R2
− 1

R3

)
. (2.52)

The condition of achromaticity d
dλ (1/f ) = 0 gives an additional relation between

the radii of curvature Ri and the indices ni. The expression for the transit time in
glass in which we have inserted the chromaticity of the doublet is [23]:

T (r) = d1

c

{
n1 − λ

dn1

dλ

}
+ d2

c

{
n2 − λ

dn2

dλ

}
+ λr2

2c

d

dλ

(
1

f

)
. (2.53)

Equation (2.53) indicates that, for an achromatic doublet for which the third term
on the right-hand side vanishes, the transit time has no more radial dependence.
The phase front and wave front are thus parallel, as sketched in Fig. 2.15. In this
case, the only mechanism broadening the pulse at the focus is GVD. The latter
can be larger than with singlet lenses since achromatic doublets usually contain
more glass.

2.4.4. Focusing Mirrors

Another way to avoid the chromatic aberration and thus pulse broadening
is to use mirrors for focusing. With spherical mirrors and on-axis focusing the
first aberration to be considered is the spherical one. The analysis of spherical
aberration of mirrors serves also as a basis to the study of spherical aberration
applied to lenses.

Let us consider the situation of Figure 2.16, where a plane pulse- and wave-
front impinge upon a spherical mirror of radius of curvature R. The reflected
rays are the tangents of a caustic—the curve commonly seen as light reflects
off a coffee cup. Rays that are a distance r off-axis intersect the optical axis at
point T which differs from the paraxial focus F in the paraxial focal plane �′.
The difference in arrival time between pulses traveling along off-axis rays and
on-axis pulses in the paraxial focal plane is:


T = 1

c

[
VQ −

(
PS + R

2

)]
. (2.54)
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Figure 2.16 Focusing of light pulses by a spherical mirror.

Through simple geometrical considerations one can find an expression for 
T
in the form of an expansion in powers of (r/R). The first nonzero term of that
expansion is:


T = 3

4

R

c

( r

R

)4
. (2.55)

Likewise, one obtains for the geometrical deviation from the paraxial focus
in �′:

x = R

2

( r

R

)3
. (2.56)

For a beam diameter D = 3 mm and a focal length f = 25 mm the arrival
time difference amounts to only 0.1 fs and the deviation from the paraxial focus
x ≈ 1 µm. The numbers increase rapidly with beam size; 
T ≈ 13 fs, x ≈ 25 µm
for D = 10 mm, for example.

In experimental situations where even a small aberration should be avoided,
parabolic mirrors can advantageously be used to focus collimated input beams.
An example requiring such optics is upconversion experiments where fluores-
cence with fs rise time from a large solid angle has to be focused tightly, without
modifying its temporal behavior. Elliptical mirrors should be used to focus light
emerging from a point source. However, because parabolic mirrors are more
readily available, a combination of parabolic mirrors may be used in lieu of an
ellipsoid.
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2.5. ELEMENTS WITH ANGULAR DISPERSION

2.5.1. Introduction

Besides focusing elements there are various other optical components which
modify the temporal characteristics of ultrashort light pulses through a change
of their spatial propagation characteristics.

Even a simple prism can provide food for thought in fs experiments. Let us
consider an expanded parallel beam of short light pulses incident on a prism,
and diffracted by the angle β = β(�), as sketched in Figure 2.17. As discussed
in Chapter 1, a Gaussian beam with beam waist w0 self-diffracts by an angle
of approximately θ = λ/πw0. In the case of a short pulse (or white light), this
diffraction has to be combined with a spectral diffraction, because the light is
no longer monochromatic, and different spectral components will be deflected
by the prism with a different angle β = β(�). If the pulse is sufficiently short,
both effects are of the same order of magnitude, resulting in a complex space–
time problem that can no longer be separated. Throughout this section, whether
considering group delays or GVD, we will consider sufficiently broad beams
and sufficiently short propagation distances Lp behind the prism. This will allow
us to neglect the change in beam diameter because of propagation and spectral
diffraction after the prism. In most cases we will also approximate the beam with
a flat profile. At the end of this chapter the interplay of propagation and spectral
diffraction effects will be discussed for Gaussian beams.
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Figure 2.17 Pulse front tilt introduced by a prism. The position of the (plane) wavefronts is
indicated by the dashed lines AB and A′B′.
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As discussed by Bor [24], the prism introduces a tilt of the pulse front with
respect to the phase front. As in lenses, the physical origin of this tilt is the
difference between group and phase velocity. According to Fermat’s principle
the prism transforms a phase front AB into a phase front A′B′. The transit times
for the phase and pulse fronts along the marginal ray BOB′ are equal (νp ∼ νg

in air). In contrast the pulse is delayed with respect to the phase in any part of
the ray that travels through a certain amount of glass. This leads to an increasing
delay across the beam characterized by a certain tilt angle α. The maximum
arrival time difference in a plane perpendicular to the propagation direction is
(D′/c) tan α.

Before discussing pulse front tilt more thoroughly, let us briefly mention
another possible prism arrangement where the above condition for Lp is not nec-
essary. Let us consider for example the symmetrical arrangement of four prisms
sketched in Figure 2.18. During their path through the prism sequence, different
spectral components travel through different optical distances. At the output of
the fourth prism all these components are again equally distributed in one beam.
The net effect of the four prisms is to introduce a certain amount of GVD lead-
ing to broadening of an unchirped input pulse. We will see later in this chapter
that this particular GVD can be interpreted as a result of angular dispersion and
can have a sign opposite to that of the GVD introduced by the glass material
constituting the prisms.

2.5.2. Tilting of Pulse Fronts

In an isotropic material the direction of energy flow—usually identified as ray
direction—is always orthogonal to the surfaces of constant phase (wave fronts) of
the corresponding propagating wave. In the case of a beam consisting of ultrashort
light pulses, one has to consider in addition planes of constant intensity (pulse
fronts). For most applications it is desirable that these pulse fronts be parallel to

Figure 2.18 Pulse broadening in a four prism sequence.
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the phase fronts and thus orthogonal to the propagation direction. In the section
on focusing elements we have already seen how lenses cause a radially dependent
difference between pulse and phase fronts. This leads to a temporal broadening
of the intensity distribution in the focal plane. There are a number of other optical
components that introduce a tilt of the pulse front with respect to the phase front
and to the normal of the propagation direction, respectively. One example was
the prism discussed in the introduction of this section. As a general rule, the
pulse front tilting should be avoided whenever an optimum focalization of the
pulse energy is sought. There are situations where the pulse front tilt is desirable
to transfer a temporal delay to a transverse coordinate. Applications exploiting
this property of the pulse front tilt are pulse diagnostics (Chapter 9) and traveling
wave amplification (Chapter 7).

The general approach for tilting pulse fronts is to introduce an optical element
in the beam path, which retards the pulse fronts as a function of a coordinate
transverse to the beam direction. This is schematically shown in Figure 2.19 for
an element that changes only the propagation direction of a (plane) wave. Let us
assume that a wavefront AB is transformed into a wavefront A′B′. From Fermat’s
principle it follows that the optical pathlength POL between corresponding points
at the wavefronts AB and A′B′ must be equal:

POL(BB′) = POL(PP′) = POL(AA′). (2.57)

Because the optical pathlength corresponds to a phase change 
� = 2πPOL/λ,
the propagation time of the wavefronts can be written as

Tphase = 
�

ω	

(2.58)

B

P

A

B�

P�

A�

Figure 2.19 Delay of the pulse front with respect to the phase front.
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where we referred to the center frequency of the pulse. This phase change is
given by


� =
∫ P′

P
k(s)ds = ω	

c

∫ P′

P
n(s)ds = ω	

∫ P′

P

ds

νp(s)
(2.59)

where s is the coordinate along the beam direction. In terms of the phase velocity
the propagation time is

Tphase =
∫ P′

P

ds

νp(s)
. (2.60)

The propagation time of the pulse fronts however, Tpulse, is determined by the
group velocity

Tpulse =
∫ P′

P

ds

νg(s)
=
∫ P′

P

∣∣∣∣ dk

d�

∣∣∣∣
ω	

ds. (2.61)

From Eqs. (2.60) and (2.61) the difference in propagation time between phase
front and pulse front becomes


T (P, P′) = Tphase − Tpulse =
∫ P′

P

(
1

νp
− 1

νg

)
ds =

∫ P′

P

[
k	
ω	

− dk

d�

∣∣∣∣
ω	

]
ds,

(2.62)

which can be regarded as a generalization of Eq. (2.35).
A simple optical arrangement to produce pulse front tilting is an interface

separating two different optical materials—for instance air (vacuum) and glass
(Figure 2.20). At the interface F the initial beam direction is changed by an
angle β = γ − γ ′ where γ and γ ′ obey Snell’s law sin γ = n(ω	) sin γ ′. The
point A of an incident wavefront AB is refracted at time t = t0. It takes the time
interval Tphase to recreate the wavefront A′B′ in medium 2, which propagates
without distortion with a phase velocity νp = c/n(ω	). The time interval Tphase

is given by

Tphase = nAA′
c

= BB′
c

= PF + nFP′
c

= D tan γ

c
. (2.63)

The beam path from B to B′ is through a nondispersive material and thus pulse
front and wavefront coincide at B′. In contrast the phase front and pulse front
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Figure 2.20 Pulse front tilt through refraction at an interface.

propagate different distances during the time interval Tphase in medium 2 and
thus become separated. Because in (most) optical materials the group velocity
is smaller than the phase velocity, the pulse front is delayed with respect to the
phase front. In our case this delay increases linearly over the beam cross section.
The characteristic tilt angle α between pulse and phase fronts is given by

tan α = EA′
D′ . (2.64)

From simple geometrical considerations we find for the two distances

EA′ =
( c

n
− νg

)
Tphase =

( c

n
− νg

) D

c
tan γ (2.65)

and

D′ = D
cos γ ′

cos γ
= D

√
n2 − sin2 γ

n cos γ
. (2.66)

Inserting Eqs. (2.65) and (2.66) in Eq. (2.64) and using the expression for the
group velocity, we obtain for α

tan α = ω	n′(ω	)

ω	n′(ω	) + n(ω	)

sin γ√
n2 − sin2 γ

. (2.67)
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Following this procedure we can also analyze the pulse front at the output of a
prism, cf. Fig. 2.17. The distance EA′ is the additional pathlength over which the
phase has travelled as compared to the pulse path. Thus, we have

EA′ = νp

[
a

νg
− a

νp

]
= aω	n′(ω	) (2.68)

which results in a tilt angle

tan α = a

b
ω	n′(ω	) = −a

b
λ	

dn

dλ

∣∣∣∣
λ	

(2.69)

where b = D′ is the beam width.
As pointed out by Bor [24], there is a general relation between pulse front tilt

and the angular dispersion dβ/dλ of a dispersive device which reads

tan α = λ

∣∣∣∣dβdλ

∣∣∣∣ . (2.70)

The latter equation can be proven easily for a prism, by using the equation for
the beam deviation, dβ/dλ = (a/b)(dn/dλ), in Eq. (2.69). Similarly to prisms,
gratings produce a pulse front tilt, as can be verified easily from the sketch
of Figure 2.21. To determine the tilt angle we just need to specify the angular
dispersion in Eq. (2.70) using the grating equation.

�



Figure 2.21 Pulse front tilt produced by diffraction at a grating in Littrow configuration.
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2.5.3. GVD through Angular Dispersion—General

Angular dispersion has been advantageously used for a long time to resolve
spectra or for spectral filtering, utilizing the spatial distribution of the frequency
components behind the dispersive element (e.g., prism, grating). In connection
with fs optics, angular dispersion has the interesting property of introducing
GVD. At first glance this seems to be an undesired effect. However, optical
devices based on angular dispersion, which allow for a continuous tuning of the
GVD can be designed. This idea was first implemented in Treacy [28] for the
compression of chirped pulses with diffraction gratings. The concept was later
generalized to prisms and prism sequences [29]. Simple expressions for two
and four prism sequences are given in [30, 31]. From a general point of view,
the diffraction problem can be treated by solving the corresponding Fresnel inte-
grals [28,32,33]. We will sketch this procedure at the end of this chapter. Another
successful approach is to analyze the sequence of optical elements by ray–optical
techniques and calculate the optical beam path P as a function of �. From our
earlier discussion we expect the response of any linear element to be of the form:

R(�)e−i�(�) (2.71)

where the phase delay � is related to the optical pathlength POL through

�(�) = �

c
POL(�). (2.72)

R(�) is assumed to be constant over the spectral range of interest and thus will
be neglected.

We know that nonzero terms [(dn/d�n)� �= 0] of order n ≥ 2 are responsible
for changes in the complex pulse envelope. In particular

d2

d�2
�(�) = 1

c

(
2

dPOL

d�
+ �

d2POL

d�2

)
= λ3

2πc2

d2POL

dλ2
(2.73)

is related to the GVD parameter. We recall that, with the sign convention chosen
in Eq. (2.71), the phase factor � has the same sign as the phase factor k	L.
Consistent with the definition given in Eq. (1.117) a positive GVD corresponds

to d2�

d�2 > 0. In this chapter, we will generally express d2�

d�2 in fs2.

The relation between angular dispersion and GVD can be derived through the
following intuitive approach. Let us consider a light ray which is incident onto an
optical element at point Q, as in Figure 2.22. At this point we do not specify the
element, but just assume that it causes angular dispersion. Thus, different spectral
components originate at Q under different angles, within a cone represented by the
patterned area in the figure. Two rays corresponding to the center frequency ω	 of
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Q

S′0

S′

Figure 2.22 Angular dispersion causes GVD. The solid line in the middle of the figure represents
the angular dispersive element, providing a frequency-dependent deflection of the beam at the point
of incidence Q. The different frequency components of the pulse spread out in the patterned area.

the spectrum, �r0, and to an arbitrary frequency �, �r�, are shown in Fig. 2.22. The
respective wavefronts S are labelled with subscript “0” (for the central frequency
ω	) and “�” (for the arbitrary frequency �). The planes S�, S0 and S′

�, S′
0

are perpendicular to the ray direction and represent (plane) wave fronts of the
incident light and diffracted light, respectively. Let P0 be our point of reference
and be located on �r0 where QP0 = L. A wavefront S′

� of �r� at P� is assumed to
intersect �r0 at P0. The optical pathlength QP� is thus

QP� = POL(�) = POL(ω	) cosα = L cosα (2.74)

which gives for the phase delay

�(�) = �

c
POL(�) = �

c
L cosα (2.75)

The dispersion constant responsible for GVD is obtained by twofold derivation
with respect to �:

d2�

d�2

∣∣∣∣
ω	

= − L

c

{
sin α

[
2

dα

d�
+ �

d2α

d�2

]
+ � cosα

(
dα

d�

)2
}∣∣∣∣∣

ω	

≈ −Lω	

c

(
dα

d�

∣∣∣∣
ω	

)2

(2.76)
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where sin α = 0 and cosα = 1 if we take the derivatives at the center frequency of
the pulse, � = ω	. The quantity (dα/d�)|ω	 , responsible for angular dispersion,
is a characteristic of the actual optical device to be considered. It is interesting to
note that the dispersion parameter is always negative independently of the sign
of dα/d� and that the dispersion increases with increasing distance L from the
diffraction point. Therefore angular dispersion always results in negative GVD.
Differentiation of Eq. (2.76) results in the next higher dispersion order

d3�

d�3

∣∣∣∣
ω	

= −L

c

{
cosα

[
3

(
dα

d�

)2

+ 3�
dα

d�

d2α

d�2

]

+ sin α

[
3

d2α

d�2
+ �

d3α

d�3
− �

(
dα

d�

)3
]}∣∣∣∣∣

ω	

≈ −3L

c

[(
dα

d�

)2

+ �
dα

d�

d2α

d�2

]∣∣∣∣∣
ω	

, (2.77)

where the last expression is a result of α(ω	) = 0.
The most widely used optical devices for angular dispersion are prisms and

gratings. To determine the dispersion introduced by them we need to specify not
only the quantity α(�) in the expressions derived previously, but also the optical
surfaces between which the path is being calculated. Indeed, we have assumed
in the previous calculation that the beam started as a plane wave (plane reference
surface normal to the initial beam) and terminates in a plane normal to the ray at
a reference optical frequency ω	. The choice of that terminal plane is as arbitrary
as that of the reference frequency ω	 (cf. Section 1.1.1). After some propagation
distance, the various spectral component of the pulse will have separated, and a
finite size detector will only record a portion of the pulse spectrum.

Therefore, the “dispersion” of an element has only meaning in the context of
a particular application, which will associate reference surfaces to that element.
This is the case when an element is associated with a cavity, as will be considered
in the next section. In the following sections, we will consider combinations of
elements of which the angular dispersion is compensated. In that case, a natural
reference surface is the normal to the beam.

2.5.4. GVD of a Cavity Containing a Single Prism

Dispersion control is an important aspect in the development of fs sources.
The most elementary laser cavity as sketched in Figure 2.23 has an element
with angular dispersion. The dispersive element could be the Brewster angle
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Figure 2.23 Example of a cavity with a single right angle prism. The side of the right angle is
an end mirror of the cavity. The cavity is terminated by a curved mirror of radius of curvature R,
at a distance L from the Brewster angle exit face of the prism. Stability of the cavity requires that
L + AB/n < R. Translation of the prism allows for an adjustment of the pathlength in glass Lg. The
inset shows that this calculation applies to a symmetric cavity with a Brewster angle laser rod and
two spherical mirrors.

laser rod itself. The cavity will be typically terminated by a curved mirror.
The two reference surfaces to consider are the two end mirrors of the cavity.
We have seen that negative GVD is typically associated with angular dispersion,
and positive GVD with the propagation through a glass prism or laser rod.9 One
might therefore expect to be able to tune the GVD in the arrangement of Fig. 2.23
from a negative to a positive value. An exact calculation of the frequency depen-
dence presented shows that this is not the case, and that the GVD of this cavity
is always positive.

A combination of elements with a tunable positive dispersion can also be
desirable in a fs laser cavity. We will consider the case of the linear cavity
sketched in Fig. 2.23, whose GVD can be determined analytically.

The cavity is terminated on one end by the plane face of the prism, on the other
end by a spherical mirror of curvature R. The prism–mirror distance measured
at the central frequency ω	 is L. The beam originates from a distance h from the

9It is generally the case—but not always—that optical elements in the visible have positive GVD.
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apex of the prism (angle α), such that the pathlength in glass can be written as
Lg = h tan α. For the sake of notation simplification, we define:

a = h tan α

c

b = L

2

(
1 − L

R

)
. (2.78)

The total phase shift for one half cavity roundtrip is �(�) = �AB(�) +�BC(�).
The phase shift through the glass here is simply −k(�)Lg = −�AB(�), with
�AB(�) given by:

�AB(�) = �0 + d�

d�

∣∣∣∣
ω	


� + 1

2

d2�

d�2

∣∣∣∣
ω	

(
�)2 + · · ·

≈ �0 + a

[
�

dn

d�
+ n(�)

]
ω	


� + 1

2
a

[
2

dn

d�
+ �

d2n

d�2

]
ω	

(
�)2,

(2.79)

where 
� = � − ω	. For the path in air, we have a phase shift −kBC =
−�BC(�), with

�BC(�) = �

c

[
L + L

2

(
1 − L

R

)

θ2

]
= �

c

[
L + b
θ2

]
, (2.80)

where 
θ is the departure of dispersion angle from the diffraction angle at ω	.
Within the small angle approximation, we have for 
θ:


θ ≈ 
�
sin α

cos θ3

dn(�)

d�
= 
�

dn(�)

d�
. (2.81)

The last equality (sin α = cos θ3) applies to the case where θ3 equals the Brewster
angle. The GVD dispersion of this cavity is thus:

d2�

d�2

∣∣∣∣
ω	

= d2�AB

d�2

∣∣∣∣
ω	

+ d2�BC

d�2

∣∣∣∣
ω	

= a

(
2

dn

d�
+ �

d2

d�2

)
ω	

+ 2bω	

c

(
dn

d�

∣∣∣∣
ω	

)2

, (2.82)
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or, using the wavelength dependence of the index of refraction, and taking into
account that, for the Brewster prism, tan α = 1/n(ω	):

d2�

d�2

∣∣∣∣
ω	

= h

nc

(
λ

2πc

)(
λ2 d2n

dλ2

)∣∣∣∣
λ	

+ b
λ3

πc2

(
dn

dλ

)2
∣∣∣∣∣
λ	

. (2.83)

The stability of the cavity requires that R > L and that the coefficients a and b
be positive. In the visible range, most glasses have a positive GVD (k′′ > 0 or
d2n/dλ2 > 0). Therefore, in a cavity with a single prism as sketched in Fig. 2.23,
the GVD is adjustable through the parameter h, but always positive.

The calculation applies to a simple solid state laser cavity as sketched in the
inset of Fig. 2.23, with a Brewster angle laser rod. The contributions to the dis-
persion from each side of the dash–dotted line are additive. Even in this simple
example, we see that the total dispersion is not only because of the propagation
through the glass, but there is also another contribution because of angular dis-
persion. It is interesting to compare Eq. (2.76), which gives a general formula
associated with angular dispersion, with Eq. (2.83). Both expressions involve the
square of the angular dispersion, but with opposite sign.

Femtosecond pulses have been obtained through adjustable GVD compensa-
tion with a single prism in a dye ring laser cavity [34]. As in the case of Fig. 2.23,
the spectral narrowing that would normally take place because of the angular dis-
persion of the prism was neutralized by having the apex of the prism at a waist
of the resonator. In that particular case, the adjustable positive dispersion of the
prism provided pulse compression because of the negative chirp introduced by
saturable absorption below resonance, as detailed in Chapter 5.

2.5.5. Group Velocity Control with Pairs of Prisms

2.5.5.1. Pairs of Elements

In most applications, a second element will be associated to the first one, such
that the angular dispersion introduced by the first element is compensated, and all
frequency components of the beam are parallel again, as sketched in Figure 2.24.
The elements will generally be prisms or gratings.

As before, we start from a first reference surface A normal to the beam.
It seems then meaningful to chose the second reference surface B at the exit of
the system that is normal to the beam. There is no longer an ambiguity in the
choice of a reference surface, as in the previous section with a single dispersive
element. At any particular frequency, Fermat’s principle states that the optical
paths are equal from a point of the wavefront A to the corresponding point on the
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Reference
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2nd Element
(reversed)

Reference
plane B

Figure 2.24 Pair of elements with angular dispersion arranged for zero net angular dispersion. The
elements are most often prisms or gratings.

wavefront B. This is not to say that these distances are not frequency dependent.
The spectral components of the beam are still separated in the transverse direction.
For that reason, a pair of prisms or gratings provides a way to “manipulate” the
pulse spectrum by spatially filtering (amplitude or phase filter) the various Fourier
components.

2.5.5.2. Calculation for Matched Isosceles Prisms

One of the most commonly encountered cases of Fig. 2.24, is that where the
two angular dispersive elements are isosceles prisms. Prisms have the advantage
of smaller insertion losses, which is particularly important with the low gain solid
state lasers used for fs applications. To compensate the angular dispersion, the
two prisms are put in opposition, in such a way that, to any face of one prism
corresponds a parallel face of the other prism (Figure 2.25).

In this section, we consider only the GVD introduced by the prism sequence.
The associated pulse front tilt and the effect of beam divergence will be discussed
in Section 2.4 using wave optics. There are numerous contributions to the group
velocity dispersion that makes this problem rather complex:

(a) GVD because of propagation in glass for a distance L
(b) GVD introduced by the changes in optical path L in each prism, because

of angular dispersion
(c) GVD because of the angular dispersion after one prism, propagation of

the beam over a distance 	, and as a result propagation through different
thicknesses of glass at the next prism.
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Figure 2.25 Typical two prisms sequence as used in fs laser cavities. The relative position of the
prisms is defined by the distance t and the spacing s between the parallel faces OB and O′B′. The initial
beam enters the prism at a distance OA = a from the apex. The distance t2 between the parallel faces
OA and O′A′ is t2 = t sin α + s cosα. The solid line ABB′A′D traces the beam path at an arbitrary
frequency �. The beam at the frequency upshifted by d� is represented by the dashed line. The
dotted line indicates what the optical path would be in the second prism, if the distance BB′ were
reduced to zero (this situation is detailed in Fig. 2.26). D is a point on the phase front a distance u
from the apex O′ of the second prism. In most cases we will associate the beam path for a ray at �
with the path of a ray at the center frequency ω	.

The optical path ABB′A′D at a frequency � is represented by the solid
line in Fig. 2.25, while the path for a ray upshifted by d� is represented by
the dashed line. The successive angles of incidence–refraction are θ0 and θ1
at point A, θ2 and θ3 at point B, θ4 and θ5 at point B′, and finally θ6 and
θ7 at point A′. The two prisms are identical, with equal apex angle α and
with pairs of faces oriented parallel as shown in Fig. 2.25. At any wavelength
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or frequency �:

• θ3 = θ4
• θ2 = θ5
• θ1 = θ6
• θ0 = θ7
• θ1 + θ2 = α

• dθ1/d� = −dθ2/d�.

If the prisms are used at minimum deviation at the central wavelength, θ0 =
θ3 = θ4 = θ7. If, in addition to being used at minimum deviation, the prisms are
cut for Brewster incidence, the apex angles of both prisms are α = π − 2θ0 =
π − 2 arctan(n).

The challenge is to find the frequency dependence of the optical path ABB′A′D.
The initial (geometrical) conditions are defined by

• the distance a = OA from the point of impact of the beam to the apex O
of the first prisms. For convenience, we will use in the calculations the
distance OH = h = OA cosα = a cosα,

• the separation s between the parallel faces of the prisms,
• the distance t between the apex O and O′, measured along the exit face of

the first prism, cf. Fig. 2.25.

The changes in path length because of dispersion can be understood from a
glance at the figure, comparing the optical paths at � (solid line) and � + d�
(dashed line). The contributions that increase the path length are:

1. positive dispersion because of propagation through the prism material of
positive dispersion (AB and B′A′)

2. positive dispersion because of the increased path length BB′ in air
(increment SB′′′ in Fig. 2.27)

3. positive dispersion because of the increased path length A′D in air
(projection of A′A′′′ along the beam propagation direction).

The contributions that decrease the path length (negative dispersion) of the
frequency upshifted beam can best be understood with Figures 2.26 and 2.27.
Figure 2.26 shows the configurations of the beams if the two prisms were brought
together, i.e., BB′ = 0. Figure 2.27 shows an expanded view of the second prism.
The negative dispersion contributions emanate from:

1. The shortened path length in glass because of the angular dispersion (AA′′
versus AA′ in Fig. 2.26),
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Figure 2.26 Beam passage through the two prisms, when the distance BB′ (in Fig. 2.25) has been
reduced to zero. The distance between the apexes O and O′ has been reduced to OO′′′ = t −
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Figure 2.27 Details of the beam passage through the second prism.
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2. the shorter path length in the second prism because of the deflection of the
beam by the first one (path difference B′′T in Fig. 2.27).

Path Through Glass

The total path in glass is Lg = AB + B′A′ where AB = a sin α/ cos θ2 and
B′A′ = O′B′ sin α/ cos(α − θ2) = O′B′ sin α/ cos θ1, with:

O′B′ = t − s tan θ3 − a(cosα + sin α tan θ2). (2.84)

We thus have for the total transmitted path in glass:

Lg = AB + B′A′ = a sin α

cos θ2
+ [t − s tan θ3 − a(cosα + sin α tan θ2)]

sin α

cos θ1

= (t − s tan θ3)
sin α

cos θ1
. (2.85)

As expected, the total path through glass is independent of the starting position
defined by a. If the two prisms are brought together as in Fig. 2.26, they act
as a slab of glass with parallel faces, of thickness g = Lg cos θ1. There are
three contributions to the optical path change from Fig. 2.26: one because of the
change in index, a second because of the change in angle, and a third because
the path length Lg is frequency dependent. Taking the derivative of �nLg/c with
Lg defined by Eq. (2.85):

d(kLg)

d�
= d

d�

(
n�Lg

c

)

= Lg

c

(
n + �

dn

d�

)
+
(

n�Lg

c
tan θ1

)
dθ1

d�

−
(

n�s

c cos2 θ3

)
sin α

cos θ1

dθ3

d�
(2.86)

The first term can be attributed solely to material dispersion. The next term is
the change in length in glass because of the angular dispersion dθ1/d�, and the
last expresses the reduction in path length in the second prism because of the
propagation of the angularly dispersed beam in air. The expression above only
partly accounts for the energy tilt associated with the angular dispersion dθ3/d�.
Another contribution arises from the path through air to a reference plane.
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Path through Air between and after the Prisms

We have to account for the contributions of the pathlengths BB′ and A′D to
the group delay:

d

d�

(
�

c
BB′
)

= �

c

dBB′
d�

+ BB′
c

. (2.87)

For the path BB′ = s/cos θ3, there is only a change in length equal to SB′′′, which
can be obtained by either differentiating s/cos θ3, or simply from geometrical
considerations using Fig. 2.25 (SB′′′ = SB′′ tan θ3 = BB′ tan θ3dθ3):

dBB′
d�

= s

cos θ3
tan θ3

dθ3

d�
. (2.88)

The path in air after the second prism can be expressed as:

A′D = u − O′A′ sin θ0. (2.89)

Because u is not a function of e, the contribution to the group delay is:

1

c

d
(
�A′D

)

d�
= − sin θ0

c

d

d�
(�O′A′). (2.90)

For O′A′ we find:

O′A′ = O′H ′ + H ′A′ = O′B′ [cosα + sin α tan(α − θ2)]

= [t − s tan θ3 − a(cosα + sin α tan θ2)] [cosα + sin α tan(α − θ2)]

=
[

t − s tan θ3 − a
cos θ1

cos θ2

]
[cosα + sin α tan(α − θ2)]

= [t − s tan θ3] [cosα + sin α tan θ1] − a, (2.91)

where we have used cosα + sin α tan θ2 = cos(α − θ2)cos θ2. The contribution
of A′D to the group delay is:

− sin θ0

c

d(�O′A′)
d�

= O′A′ sin θ0

c
− �s sin θ0

c cos2 θ3
[cosα + sin α tan θ1]

dθ3

d�

+ � sin θ0

c
[t − s tan θ3]

sin α

cos2 θ1

dθ1

d�
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= − A′D
c

− n�s

c cos2 θ3

[
cosα sin θ1 + sin α

sin2 θ1

cos θ1

]
dθ3

d�

+ n�

c
[t − s tan θ3]

sin α sin θ1

cos2 θ1

dθ1

d�
. (2.92)

In the last equation we used the fact that u is an arbitrary constant, for example
zero, so that A′D = −O′A′ sin θ0.

Total Path in Glass and Air

After adding all contributions to the total phase

� = �

c

(
nLg + BB′ + A′D

)
,

we obtain for the group delay using Eqs. (2.86), (2.87), (2.88), (2.90),
and (2.92):

d�

d�
= d

d�

(
�nLg

c

)
+ d

d�

(
�BB′

c

)
+ d

d�

(
�A′D

c

)

= nLg

c
+ (BB′ + A′D)

c
+ Lg�

c

dn

d�
+ n�Lg

c
tan θ1

dθ1

d�

+
{

− n�s

c cos2 θ3

sin α

cos θ1
+ �s

c cos θ3
tan θ3 + n�s

c cos2 θ3

[
cosα sin θ1

+ sin α sin2 θ1

cos θ1

]}
dθ3

d�
− n�

c
[t − s tan θ3]

sin α sin θ1

cos2 θ1

dθ1

d�

= OPL(ABB′A′D)

c
+ Lg�

c

dn

d�

+
(

�s

c cos2 θ3

)
(−n sin α cos θ1 + cos θ3 tan θ3 + n cosα sin θ1)

dθ3

d�
,

(2.93)

where we have defined the optical path length OPL(ABB′A′D) = nLg + (BB′ +
A′D). The factor preceding dθ3/d� cancels, because:

cosα sin θ1 − sin α cos θ1 + sin θ3

n

= cos(θ1 + θ2) sin θ1 − sin(θ1 + θ2) cos θ1 + sin θ2

= 0.



Elements with Angular Dispersion 113

The complete expression for the group delay through the pair of prism
reduces to:

d�

d�
= OPL(ABB′A′D)

c
+ Lg�

c

dn

d�
. (2.94)

The first terms in the last equation represents the travel delay at the phase
velocity:

OPL(ABB′A′D)

c
= Lgn

c
+ s

c cos θ3
+ A′D

c
. (2.95)

The second part of Eq. (2.94) is the carrier to envelope delay caused by the pair
of prisms10:

τCE(�) = �

c

d

d�
OPL(ABB′A′D) = Lg�

c

dn

d�
. (2.96)

The second derivative of the phase, obtained by taking the derivative of
Eq. (2.94), is:

d2�

d�2

∣∣∣∣
ω	

= Lg

[
2

dn

d�
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ω	

+ ω	

d2n
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]

− ω	

c cos θ1

dn

d�
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ω	

s sin α

cos2 θ3

dθ3

d�
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ω	

+ ω	

c

dn

d�

∣∣∣∣
ω	

(
Lg tan θ1

dθ1

d�

∣∣∣∣
ω	

)
. (2.97)

The derivatives with respect to � are related. By differentiating Snell’s law for
the first interface:

dθ1 = − tan θ1

n
dn = −dθ2. (2.98)

10We are assuming that the prisms are in vacuum, i.e., the contribution to the dispersion from air
is neglected.
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For the second interface, taking the previous relation into account, we find:

cos θ3dθ3 = n cos θ2dθ2 + sin θ2dn = n cos θ2

(
tan θ1

n
+ sin θ2

)
dn

= (cos θ2 tan θ1 + sin θ2) dn = sin α

cos θ1
dn, (2.99)

or:

dθ3 = sin α

cos θ1 cos θ3
dn. (2.100)

Therefore, the second-order dispersion Eq. (2.97) reduces to an easily inter-
pretable form:

d2�

d�2
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= Lg
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[
2

dn

d�
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ω	

+ ω	

d2n

d�2
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(
s
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)(
dθ3

d�

∣∣∣∣
ω	

)2

− nω	

c
Lg

(
dθ1

d�

∣∣∣∣
ω	

)2

(2.101)

This equation applies to any pair of identical isosceles prisms in the parallel face
configuration represented in Fig. 2.25, for an arbitrary angle of incidence. The
GVD is simply the sum of three contributions:

1. The (positive) GVD because of the propagation of the pulse through a
thickness of glass Lg.

2. The negative GVD contribution because of the angular dispersion dθ3/d�
applied to Eq. (2.76) over a distance BB′ = s/cos θ3.

3. The negative GVD contribution because of the angular dispersion dθ1/d�
(deflection of the beam at the first interface) applied to Eq. (2.76) over a
distance Lg in the glass of index n.

In most practical situations it is desirable to write Eq. (2.101) in terms of the
input angle of incidence θ0 and the prism apex angle α. The necessary equations
can be derived from Snell’s law and Eq. (2.76):

d

d�
θ1 =

[
n2 − sin2(θ0)

]− 1
2
[

n cos θ0
dθ0

d�
− sin θ0

dn

d�

]
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d

d�
θ3 =

[
1 − n2 sin2(α − θ1)

]− 1
2
[

n cos(α − θ1)
dθ1

d�
+ sin(α − θ1)

dn

d�

]
,

(2.102)

where θ1 = arcsin(n−1 sin θ0) and dθ0/d� = 0.
For the particular case of Brewster angle prisms and minimum deviation (sym-

metric beam path through the prism for � = ω	), we can make the substitutions
dθ1/dn = −1/n2, and dθ3/dn = 2. Using θ0 = θ3 = θ4 = θ7, the various angles
are related by:

tan θ0 = n

sin θ0 = cos θ1 = n√
1 + n2

cos θ0 = sin θ1 = 1√
1 + n2

sin α = 2n

n2 + 1
. (2.103)

The total second-order dispersion in this case becomes:

d2�

d�2
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)(
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d�
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)2

,

(2.104)

where we have introduced the distance between the two prisms measured along
the central wavelength L = s/cos θ3. In terms of wavelength:

d2�

d�2

∣∣∣∣
ω	

= λ3
	

2πc2

⎡
⎣Lg

d2n

dλ2
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−
(

4L + Lg
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)(
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dλ
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λ	

)2
⎤
⎦ . (2.105)

In many practical devices, L � Lg and the second term of Eq. (2.105) reduces
to L(dn/dλ)2.

It is left as a problem at the end of this chapter to calculate the exact third-
order dispersion for a pair of prisms. If the angular dispersion in the glass
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can be neglected (L � Lg), the third-order dispersion for a Brewster angle
prism is:

�′′′
tot(ω	) ≈
λ4
	

(2πc)2c

[
12L

(
n′2 [1 − λ	n′(n−3 − 2n)

]
+ λ	n′n′′)− Lg(3n′′ + λ	n′′′)

]
.

(2.106)

To simplify the notation, we have introduced n′, n′′ and n′′′ for the derivatives
of n with respect to λ taken at λ	.

The presence of a negative contribution to the GVD because of angular dis-
persion offers the possibility of tuning the GVD by changing Lg = g/ sin θ0
(g is the thickness of the glass slab formed by bringing the two prisms together, as
shown in Fig. 2.26). A convenient method is to simply translate one of the prisms
perpendicularly to its base, which alters the glass path while keeping the beam
deflection constant. It will generally be desirable to avoid a transverse displace-
ment of spectral components at the output of the dispersive device. Two popular
prism arrangements which do not separate the spectral components of the pulse
are sketched in Figure 2.28. The beam is either sent through two prisms, and
retro-reflected by a plane mirror, or sent directly through a sequence of four
prisms. In these cases the dispersion as described by Eq. (2.101) doubles. The
values of �′′, �′′′, etc. that are best suited to a particular experimental situa-
tion can be predetermined through a selection of the optimum prism separation
s/cos θ3, the glass pathlength Lg, and the material (cf. Table 2.1). Such optimiza-
tion methods are particularly important for the generation of sub-20 fs pulses in
lasers [35, 36] that use prisms for GVD control.

In this section we have derived analytical expressions for dispersion terms
of increasing order, in the case of identical isoceles prism pairs, in exactly
antiparallel configuration. It is also possible by methods of pulse tracing through

� GVD � GVD

Figure 2.28 Setups for adjustable GVD without transverse displacement of spectral components.
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Figure 2.29 Dispersion (solid lines) and reflection losses (dash–dotted lines) of a two-prism
sequence (SQ1—fused silica) as a function of the angle of incidence on the first prism surface.
Symmetric beam path through the prism at the central wavelength is assumed. Curves for three dif-
ferent apex angles (−4◦, 0◦, 4◦) relative to α = 68. 9◦ (apex angle for a Brewster prism at 620 nm)
are shown. The tic marks on the dashed lines indicate the angle of incidence and the dispersion where
the reflection loss is 4.5%. (Adapted from Petrov et al. [31]).

the prisms to determine the phase factor at any frequency and angle of inci-
dence [30, 31, 37–39]. The more complex studies revealed that the GVD and
the transmission factor R [as defined in Eq. (2.71)] depend on the angle of inci-
dence and apex angle of the prism. In addition, any deviation from the Brewster
condition increases the reflection losses. An example is shown in Fig. 2.29.

2.5.6. GVD Introduced by Gratings

Gratings can produce larger angular dispersion than prisms. The resulting
negative GVD was first utilized by Treacy [28] to compress pulses of a Nd:glass
laser. In complete analogy with prisms, the simplest practical device consists of
two identical elements arranged as in Figure 2.30 for zero net angular dispersion.
The dispersion introduced by a pair of parallel gratings can be determined by
tracing the frequency dependent ray path. The optical path length ACP between
A and an output wavefront PPo is frequency dependent and can be determined
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A

�b

G2

P0

�� G1

P �

�l

C0

C
d��

d

Figure 2.30 Two parallel gratings produce GVD without net angular dispersion. For convenience
a reference wavefront is assumed so that the extension of PP0 intersects G1 at A.

with help of Fig. (2.30) to be:

ACP = b

cos(β′)
[
1 + cos(β′ + β)

]
(2.107)

where β is the angle of incidence, β′ is the diffraction angle for the frequency
component � and b is the normal separation between G1 and G2. If we restrict our
consideration to first-order diffraction, the angle of incidence and the diffraction
angle are related through the grating equation

sin β′ − sin β = 2πc

�d
(2.108)

where d is the grating constant. The situation with gratings is however different
than with prisms, in the sense that the optical path of two parallel rays out of
grating G1 impinging on adjacent grooves of grating G2 will see an optical path
difference CP − C0P0 of mλ, m being the diffraction order. Thus, as the angle
β′ changes with wavelength, the phase factor �ACP/c increments by 2mπ each
time the ray AC passes a period of the ruling of G2 [28]. Because only the relative
phase shift across PP0 matters, we may simply count the rulings from the (virtual)
intersection of the normal in A with G2. Thus, for first-order diffraction (m = 1),
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we find for �(�):

�(�) = �

c
ACP(�) − 2π

b

d
tan(β′). (2.109)

The group delay is given by:

d�

d�
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c

)
1 + cos(β + β′)
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c cos2 β′
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d

b

cos2 β′
dβ′

d�

=
(

b

c

)
1 + cos(β + β′)

cosβ′ . (2.110)

In deriving the last equation, we have made use of the grating equation sin β′ −
sin β = 2πc/(�d). Equation (2.110) shows a remarkable property of gratings,
namely that the group delay is simply equal to the phase delay. The carrier to
envelope delay is zero. The second-order derivative, obtained by differentiation
of Eq. (2.110), is:

d2�

d�2
= b

c

1

cos2 β′
{
sin β′ [1 + cos(β + β′)

]− cosβ′[sin(β + β′)]} dβ′

d�

= −4π2bc

�3d2 cos3 β′ , (2.111)

where we have again made use of the grating equation. Evaluating this expression
at the central frequency ω	, and using wavelengths instead of frequencies:

d2�

d�2
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ω	

= − λ	

2πc2

(
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d

)2 b

cos3 β′(λ	)
. (2.112)

In terms of the distance L = b/cosβ′ between the gratings along the ray at
� = ω	:

d2�

d�2
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ω	

= − λ	

2πc2

(
λ	

d

)2 L

cos2 β′(ω	)
. (2.113)
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where cos2 β′(ω	) = 1 − [2πc/(ω	d) + sin β]2. The third derivative can be
written as

d3�

d�3
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ω	

= − 3λ	

2πc cos2 β′(ω	)

[
cos2 β′(ω	) + λ	

d

(
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d
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)]
d2�

d�2
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ω	

.

(2.114)

To decide when the third term in the expansion [as defined in Eq. (1.167)] of the
phase response of the grating needs to be considered we evaluate the ratio

RG =
∣∣∣∣b3(� − ω	)3

b2(� − ω	)2

∣∣∣∣ =
∣∣∣∣ �

′′′(ω	)

3�′′(ω	)

∣∣∣∣ |� − ω	| ≈ 
ωp

ω	

[
1 + λ	/d(λ	/d + sin β)

1 − (λ	/d − sin β)2

]

(2.115)

where the spectral width of the pulse 
ωp was used as an average value for
|� − ω	|.

Obviously it is possible to minimize (or tune) the ratio of second- and third-
order dispersion by changing the grating constant and the angle of incidence. For
instance, with 
ωp/ω	 = 0. 05, λ	/d = 0. 5 and β = 0o we obtain RG ≈ 0. 07.

Let us next compare Eq. (2.112) with Eq. (2.76), which related GVD to angu-
lar dispersion in a general form. From Eq. (2.108) we obtain for the angular
dispersion of a grating

dβ′

d�

∣∣∣∣
ω	

= − 2πc

ω2
	d cosβ′ (2.116)

If we insert Eq. (2.116) in the general expression linking GVD to angular
dispersion, Eq. (2.76), and remember that L = b/ cosβ′, we also obtain
Eq. (2.112).

2.5.7. Grating Pairs for Pulse Compressors

For all practical purpose, a pulse propagating from grating G1 to G2 can be
considered as having traversed a linear medium of length L characterized by a
negative dispersion. We can write Eq. (2.112) in the form of:

d2�

d�2
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2πc2

(
λ	

d

)2 1
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}
L. (2.117)
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Referring to Table 1.2, a bandwidth-limited Gaussian pulse of duration τG0,
propagating through a dispersive medium characterized by the parameter k′′

	 ,
broadens to a Gaussian pulse of duration τG

τG = τG0

√
1 +

(
L

Ld

)2

, (2.118)

with a linear chirp of slope:

ϕ̈ = 2L/Ld

1 + (L/Ld)2

1

τ2
G0

(2.119)

where the parameter Ld relates both to the parameters of the grating and to the
minimum (bandwidth-limited) pulse duration:

Ld = τ2
G0

2|k′′
	 | = πc2d2r

λ3
	

τ2
G0. (2.120)

Conversely, a pulse with a positive chirp of magnitude given by Eq. (2.119) and
duration corresponding to Eq. (2.118) will be compressed by the pair of grat-
ings to a duration τG0. A pulse compressor following a pulse stretcher is used in
numerous amplifications systems and will be dealt with in Chapter 7. The “com-
pressor” is a pair of gratings with optical path L, designed for a compression
ratio τG/τG0 = L/Ld .11 The ideal compressor of length L will restore the ini-
tial (before the stretcher) unchirped pulse of duration τ0. To a departure x from
the ideal compressor length L, corresponds a departure from the ideal unchirped
pulse of duration τ0:

τG = τG0

√
1 + x2

L2
d

. (2.121)

This pulse is also given a chirp coefficient (cf. Table 1.2) ā = x/Ld .
In most compressors, the transverse displacement of the spectral components

at the output of the second grating can be compensated by using two pairs of
gratings in sequence or by sending the beam once more through the first grating
pair. As with prisms, the overall dispersion then doubles. Tunability is achieved
by changing the grating separation b. Unlike with prisms, however, the GVD is
always negative. The order of magnitude of the dispersion parameters of some
typical devices is compiled in Table 2.2.

11In all practical cases with a pair of gratings, (L/Ld )2 � 1.
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Table 2.2

Values of second-order dispersion for typical devices.

Device λ	 (nm) ω	 (fs−1) �′′ (fs2)

Fused silica (Lg = 1 cm) 620 3.04 535
800 2.36 356

Brewster prism 620 3.04 −760
pair, fused silica

L = 50 cm 800 2.36 −523

Grating pair 620 3.04 −9.3 × 104

b = 20 cm; β = 0◦
d = 1.2 µm 800 2.36 −3 × 105

The choice between gratings and prism for controllable dispersion is not
always a simple one. Prisms pairs have lower losses than gratings (the total trans-
mission through a grating pair usually does not exceed 80%), and are therefore
the preferred intracavity dispersive element. Gratings are often used in amplifier
chain where extremely high compression and stretching ratios are desired, which
implies a small Ld . It should be noted however that Ld is not only determined by
the properties of the prism or grating, but is also proportional to τ2

G0 as shown
by Eq. (2.120). Therefore, prisms stretcher-compressors are also used in medium
power amplifiers for sub-20 fs pulses. The disadvantage of prisms is that the
beam has to be transmitted through glass, which, for high power pulses, is a
nonlinear medium.

2.5.8. Combination of Focusing and Angular
Dispersive Elements

A disadvantage of prism and grating sequences is that for achieving large GVD
the length L between two diffraction elements becomes rather large, cf. Eq. (2.76).
As proposed by Martinez [40] the GVD of such devices can be considerably
increased (or decreased) by using them in connection with focusing elements
such as telescopes. Let us consider the optical arrangement of Figure 2.31, where
a telescope is placed between two gratings, so that its object focal point is at
the grating G1. According to Martinez, the effect of a telescope can then be
understood as follows. Neglecting lens aberrations, the optical beam path between
focal points F and F ′ is independent of α,α′. Therefore, the length which has to
be considered for the dispersion reduces from L to

z′ = L − FF ′ = L − 2( f + f ′). (2.122)
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Figure 2.31 Combination of a grating pair and a telescope. In the particular arrangement shown,
the object focal point F is at the grating. In general grating 1 can be a distance z away from F. Note:
z and z′ can be positive as well as negative depending on the relative positions of the gratings and
focal points.

In addition, the telescope introduces an angular magnification of M = f /f ′, which
means that the angular dispersion of G1 is magnified by M to M(dα/d�). For the
second grating to produce a parallel output beam its dispersion must be M times
larger than that of G1. With Eq. (2.76) the overall dispersion is now given by
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(2.123)

Because it is not practicable to use a second grating of higher dispersion, one
can fold the arrangement by means of a roof prism as is done in standard grating
compressors. Also, it is not necessary that the object focal point of the telescope
coincide with the diffraction point Q at the grating. A possible separation z
between Q and F has then to be added to z′M2 to obtain the overall dispersion
from Eq. (2.123):

d2�

d�2
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= −ω	

c

(
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d�
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ω	

)2 (
z′M2 + z

)
. (2.124)

Equation (2.124) suggests another interesting application of telescopic systems.
For z′M2 + z < 0 the dispersion changes sign. The largest amount of positive



124 Femtosecond Optics

d2�/d�2 is achieved for z = −f and z′ = −f ′. Because the sign of the angular
dispersion is changed by the telescope we have to tilt the second grating to
recollimate the beam. For the folded geometry we can use a mirror instead of a
roof prism.

In summary, the use of telescopes in connection with grating or prism pairs
allows us to increase or decrease the amount of GVD as well as to change the sign
of the GVD. As will be discussed later, interesting applications of such devices
include the recompression of pulses after long optical fibers and extreme pulse
broadening (>1000) before amplification [40,41]. A more detailed discussion of
this type of dispersers, including the effects of finite beam size, can be found
in Martinez [33].

2.6. WAVE-OPTICAL DESCRIPTION OF
ANGULAR DISPERSIVE ELEMENTS

Because our previous discussion of pulse propagation through prisms, grat-
ings, and other elements was based on ray–optical considerations, it failed to give
details about the influence of a finite beam size. These effects can be included by
a wave-optical description which is also expected to provide new insights into
the spectral, temporal, and spatial field distribution behind the optical elements.
We will follow the procedure developed by Martinez [33], and use the char-
acteristics of Gaussian beam propagation, i.e., remain in the frame of paraxial
optics.

First, let us analyze the effect of a single element with angular dispersion as
sketched in Figure 2.32. The electric field at the disperser can be described by
a complex amplitude Ũ(x, y, z, t) varying slowly with respect to the spatial and
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Figure 2.32 Interaction of a Gaussian beam with a disperser.
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temporal coordinate:

E(x, y, z, t) = 1

2
Ũ(x, y, z, t)ei(ω	t−k	z) + c. c. (2.125)

Using Eq. (1.185) the amplitude at the disperser can be written as

Ũ(x, y, t) = Ẽ0(t) exp

[
− ik	

2q̃(d)
(x2 + y2)

]
= Ũ(x, t) exp

[−ik	y2

2q̃(d)

]
(2.126)

where q̃ is the complex beam parameter, d is the distance between beam waist
and disperser, and Ẽ0 is the amplitude at the disperser. Our convention shall
be that x and y refer to coordinates transverse to the respective propagation
direction z. Further, we assume the disperser to act only on the field distribution
in the x direction, so that the field variation with respect to y is the same as for
free space propagation of a Gaussian beam. Hence, propagation along a distance
z changes the last term in Eq. (2.126) simply through a change of the complex
beam parameter q̃. According to Eq. (1.186) this change is given by

q̃(d + z) = q̃(d) + z. (2.127)

To discuss the variation of Ũ(x, t) it is convenient to transfer to frequencies �̄

and spatial frequencies ρ applying the corresponding Fourier transforms

Ũ(x, �̄) =
∫ ∞

−∞
Ũ(x, t)e−i�̄tdt (2.128)

and

Ũ(ρ, �̄) =
∫ ∞

−∞
Ũ(x, �̄)e−iρxdx. (2.129)

A certain spatial frequency spectrum of the incident beam means that it contains
components having different angles of incidence. Note that �̄ is the variable
describing the spectrum of the envelope (centered at �̄ = 0), while � = �̄+ω	

is the actual frequency of the field. In terms of Fig. 2.32 this is equivalent to a
certain angular distribution 
γ . The spatial frequency ρ is related to 
γ through


γ = ρ

k	
. (2.130)

For a plane wave, Ũ(ρ, �̄) exhibits only one nonzero spatial frequency component
which is at ρ = 0. The disperser not only changes the propagation direction
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(γ0 → θ0) but also introduces a new angular distribution 
θ of beam components
which is a function of the angle of incidence γ and the frequency �̄


θ = 
θ(γ ,�)

= ∂θ

∂γ

∣∣∣∣
γ0


γ + ∂θ

∂�

∣∣∣∣
ω	

�̄

= α
γ + β�̄. (2.131)

The quantities α and β are characteristics of the disperser and can easily be
determined, for example, from the prism and grating equations.12 By means
of Eq. (2.130) the change of the angular distribution 
γ → 
θ can also be
interpreted as a transformation of spatial frequencies ρ into spatial frequencies
ρ′ = 
θk	 where

ρ′ = αk	
γ + k	β�̄ = αρ + k	β�̄. (2.132)

Just behind the disperser we have an amplitude spectrum ŨT (ρ′, �̄) given by

ŨT (ρ′, �̄) = C1Ũ

(
1

α
ρ′ − k	

α
β�̄, �̄

)
(2.133)

where C1 and further constants Ci to be introduced are factors necessary for
energy conservation that shall not be specified explicitly. In spatial coordinates
the field distribution reads

ŨT (x, �̄) =
∫ ∞

−∞
ŨT (ρ′, �̄)eiρ′xdρ′

= C1

∫ ∞

−∞
Ũ

(
1

α
ρ′− k	

α
β�̄, �̄

)
eiρ′xdρ′

= C1

∫ ∞

−∞
Ũ(ρ, �̄)eiαρxeik	β�̄xd(αρ)

= C2eik	β�̄xŨ(α x, �̄). (2.134)

12For a Brewster prism adjusted for minimum deviation we find α = 1 and β = −(λ2/πc)(dn/dλ).
The corresponding relations for a grating used in diffraction order m are α = cos γ0/cos θ0 and
β = −mλ2/(2πcd cos θ0).
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The disperser introduces a phase factor exp(ik	β�̄x) and a magnification factor α.
For the overall field distribution we obtain with Eqs. (2.126), (2.127), and (2.134)

ŨT (x, y, �̄) = C3Ẽ0(�̄)eik	β�̄x exp

[
− ik	

2q̃(d)

(
α2x2 + y2

)]
. (2.135)

The field a certain distance L away from the disperser is connected to the field
distribution Eq. (2.135) through a Fresnel transformation which describes the
free space propagation. Thus, it can be written as

ŨT (x, y, L, �̄) = C4 exp

[ −ik	y2

2q̃(d + L)

] ∫
Ẽ0(�̄)eik	β�̄x′

× exp

[
−i

k	
2q̃(d)

α2x′2
]

exp

[
− iπ

Lλ
(x − x′)2

]
dx′.

(2.136)

Solving this integral yields an analytical expression for the spectral amplitude

ŨT (x, y, L, �̄) = C5Ẽ0(�̄) exp

[
−ik	

x2

2L

]

× exp

[
−ik	

y2

2q̃(d + L)

]
exp

{
ik	L

2

q̃(d)

q̃(d + α2L)

[
x2

L2
+ 2

βx

L
�̄ + β2�̄2

]}
.

(2.137)

The phase term proportional to �̄2 is responsible for GVD according to our
discussion in the section on linear elements. As expected from our ray–optical
treatment, this term increases with increasing distance L and originates from
angular dispersion β. The term linear in �̄ varies with the transverse coordinate x.
It describes a frequency variation across the beam and accounts for different prop-
agation directions of different spectral components. We know that exponentials
proportional to b1�̄ result in a pulse delay, as discussed previously following
Eq. (1.169). Because b1 ∝ x the pulse delay changes across the beam—a feature
which we have called tilt of pulse fronts. This proves the general connection
between angular dispersion and pulse front tilting introduced earlier in a more
intuitive way.

For a collimated input beam and α = 1 we can estimate

q̃(d)

q̃(d + α2L)
≈ 1 (2.138)
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and the temporal delay becomes b1 = k	βx. Looking at the beam at a certain
instant the corresponding spatial delay is k	βxc. Thus, we find for the tilt angle α

|tan α| =
∣∣∣∣ d

dx
(k	βxc)

∣∣∣∣ = ω	

∣∣∣∣ dθ

d�̄

∣∣∣∣
�̄= 0

∣∣∣∣ = λ	

∣∣∣∣ dθdλ

∣∣∣∣
λ	

∣∣∣∣∣ (2.139)

which confirms our previous results, cf. Eq. (2.70). With the same approximation
we obtain for the GVD term:

d2�

d�̄2
= 2b2 = −k	Lβ2 = −Lω	

c

(
dθ

d�

∣∣∣∣
ω	

)2

(2.140)

in agreement with Eq. (2.76).
For compensating the remaining angular dispersion we can use a properly

aligned second disperser which has the parameters α′ = 1/α and β′ = β/α.
According to our general relation for the action of a disperser (2.134) the new
field distribution after this second disperser is given by

ŨF = C2eik	
β
α
�̄xŨT (

x

α
, y, L, �̄)

=C6Ẽ0(�̄)e
i
2 k	�̄2β2L exp

{−ik	
2

[
(x + αβ�̄L)2

q̃(d + α2L)
+ y2

q̃(d + L)

]}
, (2.141)

which again exhibits the characteristics of a Gaussian beam. Hence, to account
for an additional propagation over a distance L′, we just have to add L′ in the
arguments of q̃. As discussed by Martinez [33] α �= 1 gives rise to astigmatism
(the position of the beam waist is different for the x and y directions) and only
for a well-collimated input beam does the GVD not depend on the travel distance
L′ after the second disperser. For α = 1 and q(d + L + L′) ≈ q(0) (collimated
input beam) the field distribution becomes

ŨF(x, y, L, �̄) = C6Ẽ0(�̄)e
i
2 k	β2L�̄2

exp

{
− (x + β�̄L)2 + y2

w2
0

}
. (2.142)

The first phase function is the expected GVD term. The �̄ dependence of the
second exponential indicates the action of a frequency filter. At constant posi-
tion x, its influence increases with increasing (β�̄L/w0)2, i.e., with the ratio of
the lateral displacement of a frequency component � and the original beam waist.
The physics behind is that after the second disperser, not all frequency compo-
nents can interfere over the entire beam cross-section, leading to an effective
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bandwidth reduction and thus to pulse broadening. If the experimental situation
requires even this to be compensated, the beam can be sent through an identical
second pair of dispersers (e.g., prisms). Within the approximations introduced
previously we just have to replace L by 2L in Eqs. (2.141) and (2.142). For a
well-collimated beam (β�̄L/w0 	 1) this results in

ŨF2(x, y, L, �̄) = C7Ẽ0(�̄)eik	β2L�̄2
e−(x2+y2)/w2

0 . (2.143)

In this (ideal) case the only modification introduced by the dispersive element is
the phase factor leaving the beam characteristics unchanged.

It is quite instructive to perform the preceding calculation with a temporally
chirped input pulse as in Eq. (1.33) having a Gaussian spatial as well as temporal
profile [33]:

Ẽ0(t) = E0e−(1+ia)(t/τG)2
e−(x2+y2)/w2

0 . (2.144)

The (temporal) Fourier transform yields

Ẽ0(�̄) = C8 exp

(
i
�̄2τ̃a

4

)
exp

(
− �̄2τ̃2

4

)
exp

(
−x2 + y2

w2
0

)
(2.145)

with τ̃2 = τ2
G/(1 + a2), where according to our discussion following Eq. (1.39)

τG/τ̃ is the maximum possible shortening factor after chirp compensation. This
pulse is to travel through an ideal two-prism sequence described by Eq. (2.142)
where βL has to be chosen so as to compensate exactly the quadratic phase term
of the input pulse Eq. (2.145). Under this condition the insertion of Eq. (2.145)
into Eq. (2.142) yields

ŨF(x, y, �̄, L) = C9e−�̄2 τ̃2/4 exp

[
− (x + β�̄L)2 + y2

w2
0

]
. (2.146)

The time-dependent amplitude obtained from Eq. (2.146) after inverse Fourier
transform is

Ẽ(t) = C10 exp

( −t2

τ̃2(1 + u2)

)
exp

[(
−x2

(1 + u2)w2
0

− y2

w2
0

)]
exp

[ −iu2xt

(1 + u2)βL

]
,

(2.147)

where u = 2βL/(τ̃w0). The last exponential function accounts for a frequency
sweep across the beam which prevents the different frequency components from
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interfering completely. As a result, the actual shortening factor is
√

1 + u2 times
smaller than the theoretical one, as can be seen from the first exponential function.
The influence of such a filter can be decreased by using a large beam size.
A measure of this frequency filter, i.e., the magnitude of the quantity (1 + u2),
can be derived from the second exponent. Obviously the quantity (1 + u2) is
responsible for a certain ellipticity of the output beam which can be measured.

2.7. OPTICAL MATRICES FOR DISPERSIVE
SYSTEMS

In Chapter 1 we pointed out the similarities between Gaussian beam propa-
gation and pulse propagation. Even though this fact has been known for many
years [28, 42], it was only recently that optical matrices have been introduced
to describe pulse propagation through dispersive systems [43–47] in analogy to
optical ray matrices. The advantage of such an approach is that the propagation
through a sequence of optical elements can be described using matrix algebra.
Dijaili [46] defined a 2 × 2 matrix for dispersive elements which relates the
complex pulse parameters (cf. Table 1.2) of input and output pulse, p̃ and p̃′, to
each other. Döpel [43] and Martinez [45] used 3 × 3 matrices to describe the
interplay between spatial (diffraction) and temporal (dispersion) mechanisms in
a variety of optical elements, such as prisms, gratings and lenses, and in com-
binations of them. The advantage of this method is the possibility to analyze
complicated optical systems such as femtosecond laser cavities with respect to
their dispersion—a task of increasing importance, as attempts are being made
to propagate ultrashort pulses near the bandwidth limit through complex optical
systems. The analysis is difficult since the matrix elements contain information
pertaining to both the optical system and of pulse.

One of the most comprehensive approaches to describe ray and pulse charac-
teristics in optical elements by means of matrices is that of Kostenbauder [47].
He defined 4 × 4 matrices which connect the input and output ray and pulse
coordinates to each other. As in ray optics, all information about the optical
system is carried in the matrix while the spatial and temporal characteristics of
the pulse are represented in a ray–pulse vector (x,�,
t,
v). Its components
are defined by position x, slope �, time t, and frequency v. These coordinates
have to be understood as difference quantities with respect to the coordinates of
a reference pulse. The spatial coordinates are similar to those known from the

ordinary

(
A B
C D

)
ray matrices. However, the origin of the coordinate system

is defined now by the path of a diffraction limited reference beam at the aver-
age pulse frequency. This reference pulse has a well-defined arrival time at any
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reference plane; the coordinate 
t, for example, is the difference in arrival time
of the pulse under investigation. In terms of such coordinates and using a 4 × 4
matrix, the action of an optical element can be written as

⎛
⎜⎜⎝

x
�


t

v

⎞
⎟⎟⎠

out

=

⎛
⎜⎜⎝

A B 0 E
C D 0 F
G H 1 I
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
�


t

v

⎞
⎟⎟⎠

in

(2.148)

where A, B, C, D are the components of the ray matrix and the additional
elements are

E = ∂xout

∂
vin
, F = ∂�out

∂
vin
, G = ∂
tout

∂xin
, H = ∂
tout

∂�in
, I = ∂
tout

∂
vin
.

(2.149)

The physical meaning of these matrix elements is illustrated by a few examples
of elementary elements in Figure 2.33. The occurrence of the zero elements
can easily be explained using simple physical arguments, namely (a) the center
frequency must not change in a linear (time invariant) element and (b) the ray
properties must not depend on tin. It can be shown that only six elements are
independent of each other and therefore three additional relations between the
nine nonzero matrix elements exists [47]. They can be written as

AD − BC = 1

BF − ED = λ	H (2.150)

AF − EC = λ	G.

Using the known ray matrices [48] and Eq. (2.149), the ray–pulse matrices for
a variety of optical systems can be calculated. Some example are shown in
Table 2.3.

A system matrix can be constructed as the ordered product of matrices corre-
sponding to the elementary operations (as in the example of the prism constructed
from the product of two interfaces and a propagation in glass). An important fea-
ture of a system of dispersive elements is the frequency dependent optical beam
path P, and the corresponding phase delay �. This information is sufficient
for geometries that do not introduce a change in the beam parameters. Exam-
ples which have been discussed in this respect are four-prism and four-grating
sequences illuminated by a well-collimated beam.
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Position dispersion

Angular dispersion

Tilt of pulse front

Delay due to angular disp.

Delay due to spectrum

E

F

G

H

I

Matrix
Element

Function Example

xout

xin

c   tout

c   tout

c   tout

   out

    in

∆νin

∆νin

∆νin

Figure 2.33 Illustration of the function performed by the matric elements E, F, G, H, and I . The
path of the reference beam at the central wavelength is represented by the solid line, while the
dotted line indicates the displaced path caused by �in, xin, or 
vin. A dispersive prism introduces a
transverse wavelength dependent displacement of the beam, xout . To a change in optical frequency

vin from the central frequency v	 corresponds an angular deviation �out at a dispersive interface.
At the same dispersive interface, to a transverse displacement xin left of the interface corresponds an
energy front tilt 
tout = Gxin right of the interface. There is also a contribution to the energy front
tilt associated with the angular dispersion, which is 
tout = H�in. Finally, on axis of a lens which
has chromatic aberration, the displaced wavelength suffers a delay 
tout = I
vin.

As shown in Kostenbauder, [47], � can be expressed in terms of the
coordinates of the system matrix as

� = π
v2

B
(EH − BI) − π

Bλ	

Q(
v) (2.151)
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Table 2.3

Examples of ray–pulse matrices.

Lens or mirror (ML) Brewster prism (MBP)

⎛
⎜⎜⎝

1 0 0 0
−1/f 1 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 Lg/n3 0 − SLg

n3

0 1 0 −2S

− 2S
λ	

− LgS

n3λ	
1

LgS2

n3λ	
+ 2πLgk′′

	

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

f , focal length S = 2π ∂n
∂�

∣∣∣
ω	

, Lg, mean glass path

Dispersive slab (MDS) Grating (MG)

⎛
⎜⎜⎝

1 L/n 0 0
0 1 0 0
0 0 1 2πLk′′

	
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

− cosβ′
cosβ 0 0 0

0 − cosβ
cosβ′ 0 c(sin β′−sin β)

λ	 sin β′
sin β−sin β′

c sin β
0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

k′′
	 = d2k

d�2

∣∣∣
ω	

, Lg, thickness of slab β, angle of incidence; β′, diffraction angle

where

Q(
v) = ( xin xout
) ( A −1

−1 D

)(
xin

xout

)
+ 2

(
E λ0H

) ( xin

xout

)
(2.152)

and xin, xout are the position coordinates of the input and output vectors, respec-
tively. The argument 
v of Q and � is the cyclic frequency coordinate relative
to the pulse central frequency 
v = (� − ω	)/2π. The calculations according to
Eq. (2.151) have to be repeated for a set of frequencies to obtain �(v). From �(v)
we can then determine chirp and temporal behavior of the output pulses using
the relation [Eq. (1.165)] for linear elements without losses. For pulses incident
on-axis (xin = 0), Eq. (2.152) yields for the phase response

�M (
v) = 1

4πB

[(
EH − BI − 1

λ	

DE2
)

v2 − 4πEH
v

]
, (2.153)

where the index M is to express the derivation of the phase response from the
ray–pulse matrix. Information about the temporal broadening can also be gained
directly from the matrix element I because 
tout = 
tin + 
vI . Wave packets



134 Femtosecond Optics

centered at different frequencies need different times to travel from the input to
the exit plane which gives an approximate broadening of I
v for a bandwidth-
limited input pulse with a spectral width 
ω	 = 2π
v	. For on-axis propagation
(xin = xout = 0) we find Q(
v) = 0 and the dispersion is given by the first term
in Eq. (2.151). For a dispersive slab, for example, we find from Table 2.3:

�M = 1

2
Lgk′′

	 (� − ω	)2 (2.154)

which agrees with Eq. (1.172) and the accompanying discussion.
As another example let us discuss the action of a Brewster prism at minimum

deviation and analyze the ray–pulse at a distance La behind it. The system matrix
is the product of (MBP) and (MDS) for free space, which is given by

⎛
⎜⎜⎝

1 B + La 0 E + FLa

0 1 0 F
G H 1 I
0 0 0 1

⎞
⎟⎟⎠. (2.155)

For the sake of simplicity the elements of the prism matrix have been noted
A, B, …, H. For the new position and time coordinate we obtain

xout = xin + (B + La)�in + (E + FLa)
v (2.156)

and


tout = Gxin + H�in + 
tin + I
v. (2.157)

Let us next verify the tilt of the pulse fronts derived earlier. The pulse front
tilt can be understood as an arrival time difference 
tout which depends on the
transverse beam coordinate xout . The corresponding tilt angle α′ is then

tan α′ = ∂(c
tout)

∂xout
= c

∂
tout

∂xin

∂xin

∂xout
= cG. (2.158)

After we insert G for the Brewster prism, the tilt angle becomes (cf. Table 2.3):

tan α′ = −2ω	

∂n

∂�

∣∣∣∣
ω	

= 2λ	

∂n

∂λ

∣∣∣∣
λ	

. (2.159)

This result is equivalent to Eq. (2.69) if we use a/b = 2, which is valid for
Brewster prisms. The different signs result from the direction of the x-axis
chosen here.
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As a final example we want to apply the matrix formalism to discuss the field
distribution behind a two-prism sequence used for pulse compression, such as
the one sketched in Fig. 2.25. We assume that one prism is traversed at the apex
while the second is responsible for a mean glass path Lg. The corresponding
system matrix is obtained by multiplying matrix (2.155) from the left with the
transposed13 matrix of a Brewster prism. The result is

⎛
⎜⎜⎜⎜⎝

1 Lg

n3 + La 0 −S
[

Lg

n3 + 2La

]
0 1 0 0

0 S
λ	

[
Lg

n3 + 2La

]
1 − S2

λ	

[
Lg

n3 + 4Lg

]
− 2πk′′

	 Lg

0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (2.160)

To get a simplified expression, we make the assumption that Lg 	 La, which
allows us to neglect terms linear in Lg in favor of those linear in La, whenever they
appear in a summation. For the second derivative of the phase response (2.153)
we find

�′′(ω	) = Lgk′′
	 − 8π

λ	

La

(
dn

d�

∣∣∣∣
ω	

)2

. (2.161)

which is consistent with the exact solution Eq. (2.101), within the approximation
of Lg 	 La, implying negligible angular dispersion inside the prisms.

It is well-known that ray matrices can be used to describe Gaussian beam
propagation, e.g., [48]. The beam parameter of the output beam is connected to
the input parameter by

q̃out = Aq̃in + B

Cq̃in + D
. (2.162)

Kostenbauder [47] showed that, in a similar manner, the ray–pulse matrices
contain all information which is necessary to trace a generalized Gaussian beam
through the optical system. Using a 2 × 2 complex “beam” matrix (Q̃in), the
amplitude of a generalized Gaussian beam is of the form

exp

[
− iπ

λ	

(
xin xout

) (
Q̃in
)−1

(
xin

tin

)]
(2.163)

13Note that the second prism has an orientation opposite to the first one.
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which explicitly varies as

exp

[
− iπ

λ	

(
Q̃r

xxx2
in + 2Q̃r

xtxintin − Q̃r
tt t

2
in

)]

× exp

[
π

λ	

(
Q̃i

xxx2
in + 2Q̃i

xtxintin − Q̃i
tt t

2
in

)]
, (2.164)

where Q̃r
ij, Q̃i

ij are the real and imaginary coordinates of the matrix (Q̃in)−1 and

Q̃xt = −Q̃tx . The first factor in Eq. (2.164) expresses the phase behavior and
accounts for the wave front curvature and chirp. The second term describes the
spatial and temporal beam (pulse) profile. Note that unless Q̃r,i

xt = 0 the diagonal
elements of (Q̃in) do not give directly such quantities as pulse duration, beam
width, chirp parameter, and wave front curvature. One can show that the field at
the output of an optical system is again a generalized Gaussian beam where in
analogy to (2.162) the generalized beam parameter (Q̃out) can be written as

(
Q̃out

) =

(
A 0
G 1

) (
Q̃in
)+

(
B E/λ	

H I/λ	

)
(

C 0
0 0

) (
Q̃in
)+

(
D F/λ	

0 1

) . (2.165)

The evaluation of such matrix equations is quite complex since it generally
gives rather large expressions. However, the use of advanced algebraic formula
manipulation computer codes makes this approach practicable.

2.8. NUMERICAL APPROACHES

The analytical and quasi-analytical methods to trace pulses give much phys-
ical insight but fail if the optical systems become too demanding and/or many
dispersion orders have to be considered.

There are commercial wave and ray tracing programs available that allow
one to calculate not only the geometrical path through the system but also the
associated phase. Thus complete information on the complex field distribution
(amplitude and phase) in any desired plane is retrievable.

2.9. PROBLEMS

1. Dispersion affects the bandwidth of wave plates. Calculate the maximum
pulse duration for which a 10th order quarter wave plate can be made of
crystalline quartz, at 266 nm, using the parameters given with Eq. (2.2).
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We require that the quarter-wave condition still be met with 5% accu-
racy at ± (1/τp) of the central frequency. What is the thickness of the
wave plate?

2. We consider here a Fabry–Perot cavity containing a gain medium. To sim-
plify, we assume the gain to be linear and uniform in the frequency range
around a Fabry–Perot resonance of interest. Consider this system to be
irradiated by a tunable probe laser of frequency vp.

(a) Find an expression for the transmission and reflection of this Fabry–
Perot with gain as a function of the frequency of the probe laser.

(b) Find the gain for which the expression for the transmission tends to
infinity. What does it mean?

(c) Describe how the gain modifies the transmission function of the
Fabry–Perot (linewidth, peak transmission, peak reflection). Sketch
the transmission versus frequency for low and high gain.

(d) With the probe optical frequency tuned to the frequency for which
the empty (no gain) Fabry–Perot has a transmission of 50%, find its
transmission factor for the value of the gain corresponding to lasing
threshold.

3. Calculate the transmission of pulse propagating through a Fabry–Perot
interferometer. The electric field of the pulse is given by E(t) = E(t)eiω	t ,
where E(t) = exp(−|t|/τ) and τ = 10 ns. The Fabry–Perot cavity is 1 mm
long, filled with a material of index n0 = 1. 5, and both mirrors have a
reflectance of 99.9%. The wavelength is 1 µm. What is the transmission
linewidth (FWHM) of this Fabry–Perot? Find analytically the shape (and
duration) of the pulse transmitted by this Fabry–Perot, assuming exact
resonance.

4. Consider the same Fabry–Perot as in the previous problem, on which a
Gaussian pulse (plane wave) is incident. The frequency of the Gaussian
pulse is 0.1 ns−1 below resonance. Calculate (numerically) the shape of
the pulse transmitted by this Fabry–Perot, for various values of the pulse
chirp a. The pulse envelope is:

Ẽ(t) = e
−(1 + ia)( t

τG
)2

.

Is there a value of a for which the pulse transmitted has a minimum
duration?

5. Consider the Gires–Tournois interferometer. (a) As explained in the text,
the reflectivity is R = constant = 1, while the phase shows a strong
variation with frequency. Does this violate the Kramers–Kronig relation?
Explain your answer. (b) Derive the transfer function [Eq. (2.30)].
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6. Derive an expression for the space–time intensity distribution of a pulse
in the focal plane of a chromatic lens of focal length f (λ). To obtain
an analytical formula make the following assumptions. The input pulse
is bandwidth-limited and exhibits a Gaussian temporal and transverse
spatial profile. The lens has an infinitely large aperture, and the GVD
can be neglected. [Hint: You can apply Gaussian beam analysis for each
spectral component to obtain the corresponding field in the focal plane.
Summation over spectral contributions (Fourier back-transform) gives
then the space–time field distribution.]

7. Calculate the third-order dispersion for a pair of isosceles prisms, not
necessarily used at the minimum deviation angle, using the procedure
that led to Eq. (2.101). Compare with Eq. (2.106).

8. Calculate the optimum pair of prisms to be inserted into the cavity of a
femtosecond pulse laser at 620 nm. The criterium is that the prism pair
should provide a 20% GVD tunability around—800 fs2, and the next
higher-order dispersion should be as small as possible. With the help
of Table 2.1 choose a suitable prism material, calculate the apex angle
of the prisms for the Brewster condition at symmetric beam path, and
determine the prism separation. If needed, assume a beam diameter of
2 mm to estimate a minimum possible glass path through the prisms.

9. Derive the ray–pulse matrix (2.160) for a pair of Brewster prisms. Verify
the second-order dispersion given in relation [Eq. (2.101)], without the
assumption of Lg 	 La.

10. Derive the delay and aberration parameter of a spherical mirror as given
in Eqs. (2.54) and (2.55). Explain physically what happens if a parallel
input beam impinges on the mirror with a certain angle α.

11. A parallel beam with plane pulse fronts impinges on a circular aperture
with radius R centered on the optic axis. The pulse is unchirped and
Gaussian. Estimate the frequency shift that the diffracted pulse experi-
ences if measured with a detector placed on the optic axis. Give a physical
explanation of this shift. Make a numerical estimate for a 100 fs and a
10 fs pulse. Can this effect be used to obtain ultrashort pulses in new
spectral regions by placing diffracting apertures in series? [Hint: You can
start with Eq. (2.49) and take out the lens terms. For mathematical ease
you can let R → ∞.] Note that a frequency shift (of the same origin)
occurs when the on-axis pulse spectrum of a Gaussian beam is monitored
along its propagation path.

12. Consider the three-mirror ring resonator sketched in Figure 2.34. Two of
the mirrors are flat and 100% reflecting, while one mirror of field reflec-
tivity r = 0. 9999% and 60 cm curvature, serves as input and output of
this resonator. We are operating at a wavelength of 800 nm. The perimeter
of the ring is 60 cm. A beam with a train of pulses, of average incident
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L=20 cm

P

E0

R=60 cm

Figure 2.34 Ring resonator. Consider the electro-optic switch (EO, Pockel’s cell) and the polarizing
beam splitter only for part (d). The polarization of the beam circulating in the cavity gets rotated from
the plane of the ring into the orthogonal direction when an electrical pulse is applied to the Pockel’s
cell, and extracted from the cavity by a polarizing beam splitter. The rise time of the electrical pulse
is short compared to the cavity roundtrip time.

power of P0 = 1 mW is sent, properly aligned, into the input path of this
resonator.

(a) Calculate the size and location of the beam waist w0 of the funda-
mental mode of this resonator, and the size of the beam (w) at the
output mirror. Explain why the output power P2 does not depend on
the wavelength.

(b) Derive an expression for the field inside the resonator Ei as a function
of the input field E0.

(c) Consider this passive cavity being irradiated from the outside by a
train of femtosecond pulses, for its use as a photon storage ring.
Show that two conditions need to be fulfilled for this cavity to be
exactly resonant, which may not always be simultaneously met.

(d) Let us assume next that the train of pulses, with a wavelength near
800 nm, corresponds to exactly a “resonance” of this resonator, both
in frequency and repetition rate. A fast electro-optic switch is included
in the ring, such that it directs the electromagnetic wave out of the
resonator for a roundtrip time of the cavity, every N roundtrip times
(cavity dumping). The switch opens in a short time compared to
the roundtrip time. Explain how this device can be used to create
short output pulses with a larger single-pulse energy than the incident
pulses. What energy could be obtained in the case of (i) N = 100
and (ii) N = 5000.
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3
Light–Matter Interaction

The generation and application of fs light pulses revolve around light–matter
interaction. In the preceding chapter we considered situations in which the prop-
agating field does not change the material response. The result was a linear
dependence of the output field on the input field, a feature attributed to linear
optical elements. The medium could be described by a transfer function H̃(�),
which for a material, is completely determined by a complex dielectric constant
ε̃(�). The real part of ε̃(�) is responsible for dispersion, determining phase and
group velocity, for example. The imaginary part describes (frequency-dependent)
loss or gain. In many cases these linear optical media can be considered as host
materials for sources of nonlinear polarization. It is the latter which will be
discussed in this section.

Let us consider a pulse propagating through a (linear) optical material, for
instance, glass. In addition to the processes described above, we will have to
consider nonlinear optical interaction if the electric field strength is high. This
can result from high pulse power and/or tight focusing. The decomposition of the
polarization according to Eq. (1.68), P = PL + PNL , accounts then for different
optical properties of one and the same material. Another possible situation is
that the host material affects the pulse through the linear optical response only,
but contains additional substances interacting nonlinearly with the pulse. This,
for example, can occur if the light pulse is at resonance with a dopand material,
which considerably increases the interaction strength. Examples of such compos-
ite materials are glass doped with ions, dye molecules dissolved in a (transparent)
solvent, and resonant gas molecules surrounded by a (nonresonant) buffer gas.

143
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In these cases the contributions, PL and PNL , belong to different materials.1

Finally, there can be situations where the nonresonant (host) material as well as
a resonant (second) material produce a nonlinear polarization. Here PNL may be
decomposed into a nonresonant PN ,NL and resonant part PR,NL:

PNL = PN ,NL + PR,NL . (3.1)

3.1. DENSITY MATRIX EQUATIONS

The semiclassical treatment has been most widely applied to discuss the inter-
action of short light pulses with matter. The electromagnetic field is used as
a classical quantity, whereas the matter is described in the frame of quantum
mechanics. This both allows a simple interpretation of the results in terms
of measurable quantities and accounts for the quantum properties of matter.
We will restrict ourselves to atomic particles (atoms, molecules, etc.) with a
transition at resonance with the incident light pulse and will idealize the resonant
medium as an ensemble of two-level systems. By “resonant” we mean that there
is sufficient overlap of the pulse spectrum with the transition profile, for the pulse
to experience absorption or gain. If not specified differently, we will refer to a
volume element at a certain space coordinate z. This allows us to consider only
the time dependence of the sample response.

In addition we have to take into account the interaction of the resonant particles
with each other and/or with surrounding nonresonant particles. The physical
nature of such interactions can be manifold; for instance, collisions or changing
local fields because of particle motion may contribute. Generalizing, one says that
the resonant system is coupled to a dissipative system which in turn is regarded
as a reservoir with a large number of degrees of freedom. The result is a time
dependence of certain physical properties of the resonant particle, which implies
a time dependence of the strength of interaction with an incident electric field.

We should keep in mind that, typically, the light pulse interacts with a large
number of particles (≈105–1023 cm−3). We can therefore exclude the possibility
of calculating the dynamic behavior of each individual ensemble member and
summing up for the macroscopic sample response. But do we really need to
consider individual particles? The answer to this question depends on the time
scale on which we look at the medium and, fortunately, in many cases is no.
The physical reason is the random character of the forces acting on the resonant
atoms, as illustrated in Figure 3.1, which is quite understandable if we think of
the Brownian molecular motion. Mathematically, this force can be represented

1Of course, resonant matter also may interact purely linearly with the light pulse if the field
strength is sufficiently small (linear loss and gain).
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Figure 3.1 Resonant atomic particle under the influence of a dissipative system exerting a stochastic
force with correlation time τc.

by a stochastic function FD(t) characterized by a certain correlation time τc.
The latter means that the correlation of first order

AF(τ) =
∫ +∞

−∞
FD(t′)FD(t′ − τ) dt′ (3.2)

has appreciable values only for |τ|<τc. In other words, there is no net force
on the particle under investigation on a time scale t >τc; a situation we will
refer to as stationary state. If we assume homogeneity of the medium, all res-
onant particles will experience similar distortions by the dissipative system. To
decide whether the particles have identical properties, we have to perform a
measurement, for example, to determine the absorptivity or reflectivity. Because
each measurement requires a certain time TM , the result is a sample property,
X̄ , averaged over TM :

X̄(t) = 1

TM

∫ t+TM /2

t−TM /2
X(t′) dt′. (3.3)

This averaging makes evident the difficulties of defining identical properties. For
measuring times (e.g., given by the interaction time with a light pulse) TM >τc,
we expect to see identical behavior for all ensemble members. For TM <τc the
stochastic influence of the dissipative system does not average to zero and the
atomic particles show “individuality.” The magnitude of τc depends on the actual
medium. In condensed matter, at room temperature, it is mostly shorter than
10−14 s.

In general, it is impossible to calculate the behavior of the resonant particle
under the influence of the dissipative system exactly, no matter what time scale
is of interest. The reasons are the complexity of the dissipative system and its
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large number of degrees of freedom. In terms of quantum mechanics we have to
deal with a weakly prepared system [1] which can be described favorably by its
density operator ρ̂ and the corresponding density matrix equations, respectively.
If the action of the dissipative system can be regarded as a perturbation for the
two-level system, the elements of the density matrix obey the following equations
of motion, see e.g., [2]:

d

dt
ρ10(t) = −iω10ρ10(t) − 1

T2
ρ10(t) (3.4)

d

dt
ρ11(t) = − 1

T1
[ρ11(t) − ρ

(e)
11 ] (3.5)

ρ01(t) = ρ∗
10(t) (3.6)

ρ00(t) = 1 − ρ11(t) (3.7)

where T1, T2 are the energy (longitudinal) and phase (transverse) relaxation
time, respectively. This system of equations describes the evolution of the
two-level system toward a stationary state (e.g., thermal equilibrium) denoted
by the superscript (e). The elements of the density matrix, ρkl, can be calculated
by means of the eigenstates of the (unperturbed) two-level system |0〉 and |1〉
and read

ρkl = 〈k|ρ̂|l〉 k, l = 0, 1. (3.8)

With the density operator ρ̂ given any measurable quantity X can be determined
as an expectation value of the corresponding observable X̂

X = Tr(ρ̂X̂). (3.9)

Assuming a homogeneous distribution of two-level systems of number density N̄ ,
the occupation number density of level k is

Nk = N̄Tr(ρ̂N̂k) = N̄ρkk k = 0, 1 (3.10)

and the polarization can be written as

P = N̄Tr(ρ̂p̂) = N̄(p10ρ01 + p01ρ10). (3.11)

Here N̂0,1 is the occupation number operator and p̂ is the atomic dipole operator
with the matrix elements p10 and p01. The diagonal elements of the density matrix
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ρ00 and ρ11 determine the probability of finding the system in state |0〉 and |1〉,
respectively.

Let us assume that at t = 0 the system can be described by the initial conditions
N0,1(0) and P(0). For t > 0 the evolution of the polarization and the occupation
numbers according to Eqs. (3.4)–(3.7) is then given by

P(t) ∝ P(0)e−2t/T2 cos(ω′t) (3.12)

and

N0,1(t) = N (e)
0,1 +

[
N0,1(0) − N (e)

0,1

]
e−t/T1 . (3.13)

As can be seen the polarization behaves like a damped harmonic oscillator where

T−1
2 plays the role of a damping constant and ω′ =

√
ω2

10 + T−2
2 ≈ ω10 is the

oscillation frequency.
The relaxation of the polarization is not necessarily associated with a relax-

ation of the energy of the two-level system. Instead, T2 can be regarded as the
phase memory time of the two-level system, i.e., as the time interval in which
the two-level system remembers the phase of the oscillation at t = 0 (excitation
event). It is T1 which describes the recovery of the occupation numbers toward
their equilibrium values N (e)

0,1 and thus determines an energy relaxation. The con-
venience of the density matrix Eqs. (3.4)–(3.7) is obvious; the dissipative system
enters through two characteristic relaxation constants only. However, to derive
Eqs. (3.4)–(3.7), it is necessary to perform an averaging over time intervals τc

which limits the range of validity. Therefore, with the view on ultrashort pulse
interaction, we have to be aware that the temporal resolution with which we can
trace the dynamics of the two-level system with Eqs. (3.4)–(3.7) is always worse
than τc.

What determines these relaxation rates and what are typical values? For the
reasons mentioned above, an exact calculation of T1, T2 is rather difficult if
not impossible for many systems of practical relevance. These parameters have a
complex dependence on particle density, type of interaction, particle velocity etc.
As will be discussed later, measurements with ultrashort light pulses can yield the
desired information directly. A limiting case occurs for isolated two-level systems
which are not influenced by surrounding particles. The only dissipative system
acting on the atomic particle is the vacuum field, causing natural line broaden-
ing which implies T2 = 2T1. Generally speaking, whenever the interaction with
the dissipative system is such that each event leads to an occupation change,
T2 = 2T1 holds. Here the dephasing time is determined by the energy relaxation
time. However, there are many other interaction processes which do not change
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Table 3.1

Typical energy and phase relaxation times and interaction cross sections of some
materials.

Medium T1 (s) T2 (s) σ
(0)
01 (cm2)

Solids doped with resonant atomic systems 10−3–10−6 10−11–10−14 10−19–10−21

Dye molecules solved in an organic solvent 10−8–10−12 10−13–10−14 10−16

Semiconductors 10−4–10−12 10−12–10−14 –

the occupation numbers, but which may affect the phase of the oscillations. These
additional relaxation channels for the phase are responsible for the fact that most
often (particularly in condensed matter) T2 < (	)T1. Table 3.1 offers some exam-
ples. It should also be noted that the transition profile resulting from the steady
state solution of Eqs. (3.4)–(3.7) implies a Lorentzian line shape with a FWHM
given by 2T−1

2 (which is consistent with the Fourier transform of the exponential
decay law), Eq. (3.12).

So far we have considered an ensemble of identical atoms, which enabled us
to calculate the macroscopic quantities by multiplying the contribution of one
particle by the particle number (density), as shown in Eqs. (3.10) and (3.11). The
result is a transition profile which has exactly the same shape and width as those
of a single atom. Such a medium is referred to as homogeneously broadened.
However, in many real situations, different particles from an ensemble of identical
atoms have (slightly) different resonance frequencies ω′

10. Among the various
causes for such a distribution of frequencies, the most common are Doppler shift
in gases, and different local surroundings in solids (e.g., defects, impurities).
The total response of the medium is now given by the sum of the responses of
all subensembles with polarization P′(ω′

10) and occupation numbers N ′
0,1(ω′

10).
A sub-ensemble characterized by a certain transition frequency ω′

10 is to contain
particles with resonance frequencies which fall within a homogeneous linewidth.
Thus, for the total polarization we obtain

P(t) =
∑
ω′

10

P′(t,ω′
10), (3.14)

and likewise the total number density of particles in state |0〉 or |1〉 is

N0,1(t) =
∑
ω′

10

N ′
0,1(t,ω′

01). (3.15)

Frequently the distribution of atomic species with a certain transition frequency
can be described by a distribution function ginh(ω′

10–ωih) centered at ωih and
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having a FWHM of 
ωinh. This line shape is referred to as inhomogeneous
(as opposed to the homogeneous broadening cited previously). The polarization
and occupation number densities which result from particles having resonance
frequencies in the interval (ω′

10,ω′
10 + dω′

10) can be written as

P′(t,ω′
10) = N̄ginh(ω′

10 − ωih)[p01ρ10(t,ω′
10) + p10ρ01(t,ω′

10)]dω′
10 (3.16)

and

N ′
0,1(t,ω′

10) = N̄ginh(ω′
10 − ωih)ρ00,11(t,ω′

10)dω′
10 (3.17)

where ginh must satisfy the normalization condition

∫ ∞

0
ginh(ω′

10 − ωih)dω′
10 = 1. (3.18)

The density matrix elements can be determined from the set of density matrix
Eqs. (3.4)–(3.7) for each frequency ω′

10. In terms of ginh the total polarization
and occupation numbers are

P(t) =
∫ ∞

0
P′(t,ω′

10)dω′
10

=
∫ ∞

0
N̄ginh(ω′

10 − ωih)[p01ρ10(t,ω′
10) + p10ρ01(t,ω′

10)]dω′
10 (3.19)

and

N0,1(t) =
∫ ∞

0
N ′(t,ω′

10)dω′
10

=
∫ ∞

0
N̄ginh(ω′

10 − ωih)ρ00,11(t,ω′
10)dω′

10. (3.20)

The use of Eqs. (3.20) and (3.19) in connection with Eqs. (3.4)–(3.7), and (3.9)
for the determination of P(t) and N0,1(t) requires that the composition of the
subensembles remains unchanged during the time range of interest. In other
words, each atom possesses a certain (constant) transition frequency ω′

10. Surely
this concept of “static” inhomogeneous broadening is justified where the inho-
mogeneity is caused by a time-independent crystal disorder etc.; it becomes
questionable when the resonance frequency ω′

10 is a function of time. The latter,
for example, is true if ω′

10 is influenced by particle motion as is the case with
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Doppler broadening associated with velocity changing collisions. A similar situ-
ation arises in liquid dye solutions, where the absorbing molecules move through
changing local fields, which (through Stark shifts) also causes random drifts of
the resonance frequency. Such statistical changes of phase because of drifts in
resonance frequency are generally represented by a “cross relaxation time” T3.
The equation of motion for the occupation numbers of an ensemble of particles
with resonance frequency ω̄′

10 then becomes:

d

dt
N ′

0,1(t, ω̄′
10) = − 1

T1
[N ′

0,1(t, ω̄′
10) − N (e)

0,1(ω̄′
10)] − 1

T3
[N ′

0,1(t, ω̄′
10) − N0,1]

(3.21)

where

N0,1 = ginh(ω̄′
10 − ωih)dω′

10

∫ ∞

0
N̄ginh(ω′

10 − ωih)ρ00,11(t,ω′
10)dω′

10. (3.22)

Note that the integral in the last equation represents the total number of particles
in state |0〉 and |1〉, respectively, at a certain instant t. Therefore the second
term in the right-hand side of Eq. (3.21) is responsible for the relaxation of a
disturbed particle distribution toward an equilibrium distribution given by the
inhomogeneous line shape.

For illustration, let us assume that at t = t0 an initial Gaussian distribution
[Figure 3.2(a)] of particles in state |0〉 having a certain resonance frequency is
distorted into (b) by excitation (|0〉 to |1〉) of a subensemble with resonance fre-
quency ω̄′

10. If 
ωinh is much larger than the homogeneous linewidth 
ωh = 2/T2
a hole of width 
ωh will be burnt in the distribution N ′

0(ω′
10) around the excita-

tion frequency ω̄′
10 [Fig. 3.2(b)]. On a time scale 
t >T3, these excited particles

change their resonance frequency under the influence of the linewidth determin-
ing processes, and the Gaussian distribution is re-established (c). For T3 	 T1

t=t0

Excitation
Cross-

relaxation

�0 t=t0 � 
t t<t0

�10 �10 �10 �10�10 �10�10


t>T3

�

� � � �

(a) (b) (c)

Figure 3.2 Cross-relaxation of an inhomogeneously broadened medium (notation: ωih = ω10
and γ ′

0 = N ′
0).
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the hatched areas in Fig. 3.2, representing the number of excited particles, are
equal. The initial distribution is then reached after relaxation of the two-level
systems into the ground state. The question arises as to what happens if the mea-
suring time TM is much larger than the cross-relaxation time T3? We expect then
to measure a distribution similar to curve (c) in Fig. 3.2. The sample behaves
as if it were homogeneously broadened. This shows that the classification of
homogeneous and inhomogeneous line broadening depends on the time scale of
interest.

Let us next turn to the interaction of an electric field (light pulse) with the
two-level system. For the model described by Eqs. (3.4)–(3.7) to be valid, the
pulse duration τp should be (much) larger than the correlation time of the dissi-
pative system τc. Consistently with this requirement, we can simply “add” the
field interaction terms to Eqs. (3.4)–(3.7). In the case of dipole interaction, the
Hamiltonian is given by p̂E, and the density matrix equations read [2]

d

dt
ρ10(t) + iω10ρ10(t) + 1

T2
ρ10(t) = i

p

�
[ρ00(t) − ρ11(t)]E(t) (3.23)

ρ01(t) = ρ∗
10(t) (3.24)

d

dt
ρ11(t) + 1

T1
[ρ11(t) − ρ

(e)
11 ] = i

p

�
[ρ10(t) − ρ01(t)]E(t) (3.25)

d

dt
ρ00(t) + 1

T1
[ρ00(t) − ρ

(e)
00 (t)] = i

p

�
[ρ01(t) − ρ10(t)]E(t). (3.26)

For simplicity, we have introduced p01 = p10 = p. The total population is
conserved:

ρ00(t) + ρ11(t) = 1. (3.27)

For calculating the change of the pulse (electric field) as it propagates through the
medium we have to evaluate the wave equation (1.67). Assuming that the resonant
atomic particles are embedded in a (transparent) host material with dielectric con-
stant ε and applying the SVEA [Eq. (1.92)], the pulse envelope obeys Eq. (1.88)
complemented by the resonant polarization. As we have treated the electric field
in Eq. (1.83), the polarization of the two-level system is also decomposed into a
slowly varying envelope P̃ and a rapidly oscillating contribution

P(t, z) = 1

2
P̃(t, z)ei(ω	t−k	z) + c. c. (3.28)
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With this ansatz the propagation equation becomes

∂

∂z
Ẽ − i

2
k′′
	

∂2

∂t2
Ẽ + D = i

µ0

2k	

(
∂2

∂t2
P̃ + 2iω	

∂

∂t
P̃ − ω2

	P̃
)

, (3.29)

where we have transferred to local coordinates. In the frame of the SVEA, the
right-hand side of this equation can be approximated by the last term. We will
see in Section 3.3.3 that propagation of short pulses requires to include also the
next before last term. Because in this section we shall concentrate on the effects
of nonlinear light–matter interaction, we assume the host material to be weakly
dispersive and neglect GVD and higher-order dispersion (k′′

	 = D = 0). In later
chapters we will study the interplay of dispersion with various nonlinearities.
Hence, we obtain the following propagation equation

∂

∂z
Ẽ(t, z) = −i

µ0ω
2
	

2k	
P̃(t, z) = −i

µ0ω	c

2n
P̃(t, z). (3.30)

The polarization needed to solve this equation must be derived from the density
matrix equations according to Eq. (3.11) or Eq. (3.19), depending on the kind of
line broadening.

Propagation problems which are governed by Eq. (3.30) are associated with
pulse shaping and play a decisive role in the pulse generation in lasers and in
pulse amplification and shaping. We therefore give this equation a close scrutiny.

First, however, let us discuss briefly some of the important features of the
resonant light–matter interaction, under the assumption that the pulse duration
is much longer than all relaxation constants, which allows us to use a stationary
solution for Eq. (3.23). In addition we will consider propagation only over a
small distance 
z. A formal solution of Eq. (3.30) yields for the change of the
complex pulse envelope


Ẽ(t, z) = −i
µ0ω

2
	

2k	
P̃(t, z)
z. (3.31)

As will be discussed in the next subsection in detail, using Eq. (3.11) and the
stationary solution of Eqs. (3.23) and (3.26), we obtain for the polarization

P̃(t, z) = i
p2T2/�

iT2(ω	 − ω10) + 1
[ρ11(t) − ρ00(t)]N̄ Ẽ(t, z). (3.32)
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This relation inserted into Eq. (3.31) gives


Ẽ(t, z) = µ0ω
2
	p2

2�k	

T2

1 + iT2(ω	 − ω10)
[ρ11(t) − ρ00(t)] N̄ Ẽ(t, z)
z, (3.33)

which has the formal solution

Ẽ(t, z + 
z) = Ẽ(t, z)eA(t)+iB(t), (3.34)

where

A = µ0ω
2
	p2T2/(2�k	)

T2
2 (ω10 − ω	)2 + 1

[ρ11(t) − ρ00(t)]N̄
z (3.35)

and

B = A(ω10 − ω	)T2. (3.36)

The real part A of the exponential factor in Eq. (3.34) represents absorption
or amplification. The imaginary part B has the structure of a phase modu-
lation term. According to our discussion in Chapter 1 [Eq. (1.175)] we can
interpret B as resulting from a time-dependent optical path length (difference)
(2π/λ)
z[n(t)−1], where the time dependence of B and n, respectively, is deter-
mined by the inversion density 
ρ = ρ11(t) − ρ00(t). Equating both relations
yields an expression for the refractive index

n(t) = 1 + Ac

ω	
z
(ω	 − ω10)T2 (3.37)

in the vicinity of the resonance frequency ω10. In addition to the explicit fre-
quency dependence (ω	) in Eq. (3.37), the index depends on the laser frequency
(ω	) through A in Eq. (3.35). These dependencies are shown in Figure 3.3 for an
absorbing sample for two different (negative) values of 
ρ. A smaller |
ρ| results
in a smaller absorption coefficient regardless of ω	 while for n we find a decrease
for ω	 <ω10 and an increase for ω	 >ω10. At exact resonance (ω	 = ω10) the
refractive index does not change at all if 
ρ is varied.
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Absorption Refractive index

��10

��10

Figure 3.3 Absorption coefficient and refractive index in the vicinity of an optical resonance for
two values of the population inversion 
ρ = ρ11 − ρ00.

3.2. PULSE SHAPING WITH RESONANT
PARTICLES

3.2.1. General

Let us consider a pulse traveling through a medium of certain length consisting
of particles with number density N̄ at resonance with the light. How is the
pulse being modified by the medium? In answering this question we assume
that only the resonant particles influence the pulse, i.e., we neglect GVD of the
host material and nonresonant nonlinear contributions. Depending on how the
medium is prepared we expect light to be absorbed or amplified. Absorption
can occur when 
ρ = (ρ11–ρ00)< 0, i.e., if the majority of resonant particles
interacting with the pulse are in the ground state. Amplification is expected in
the opposite case where 
ρ = (ρ11–ρ00)> 0. To reach this situation the particles
have to be excited by an appropriate pump mechanism.2

At first glance absorption (amplification) seems only to decrease (increase)
the pulse energy by a certain factor while leaving the other pulse characteristics
unchanged. We will see this to be true only under specific conditions. In the
general case the pulse at the output exhibits a different envelope (shape) as well
as a different time-dependent phase, as compared to its input characteristics. The
leading part of the pulse changes the properties of the medium, which will then act
in a different manner on the trailing part. In terms of amplification and absorption
one can say that these quantities become time dependent because of the change
of the inversion density 
ρ(t). We expect the pulse to be more heavily absorbed
(amplified) at its leading part which, of course, modifies the envelope shape.
According to our discussion previously, a time-dependent occupation number
means that different pulse parts “see” different optical path lengths, resulting in

2Other energy levels have to be taken into account to describe the pumping.
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a time-dependent phase change (chirp). To discuss the actual pulse distortion we
need to determine the temporal behavior of the occupation numbers by means
of Eqs. (3.23)–(3.26). In general, numerical methods are required to analyze this
problem. An analytical description can only be made for some limiting cases. The
physics of the pulse–matter interaction depends strongly on the ratio of the pulse
duration and the characteristic response time of the medium, as well as on the
pulse intensity and energy. We will start with the approximation that the phase
relaxation time is much shorter than the pulse duration, generally referred to as
rate equation approximation. Femtosecond pulses do challenge this often used
approximation. Because the duration of fs pulses can be comparable or shorter
than the phase memory of the medium, the polarization oscillations excited by
the leading part of the pulse can interfere coherently with subsequent pulse parts.
We will discuss first this situation approximately as a perturbation of the rate
equation approximation (REA). Phenomena related to the dominant influence of
coherent light–matter interaction will be dealt with in the following chapter.

To illustrate the action of the phase memory, let us inspect the equation of
motion for the polarization. Within the SVEA, and assuming |ω	 − ω10| 	 ω10,
ω	 as well as ω10T2,ω	T2 � 1, Eqs. (3.11), (3.23), (3.24), and (3.28) yield a
first-order differential equation for the slowly varying envelope component P̃:

d

dt
P̃ +

[
1

T2
+ i(ω	 − ω10)

]
P̃ = i

N̄p2

�
(ρ11 − ρ00)Ẽ . (3.38)

The solution of Eq. (3.38) can be written formally in the form

P̃(t) = i
N̄p2

�

∫ t

−∞
Ẽ(t′)
ρ(t′)e[i(ω	−ω10)+1/T2](t′−t)dt′ (3.39)

where 
ρ = ρ11 − ρ00 is the population inversion. Obviously the polarization at
time t depends on values of the electric field (modulus and phase) and population
numbers for all t′ ≤ t, a dependence weighted by the function e−(t−t′)/T2 . The
latter implies that the memory time is T2. For later reference we will derive two
other representations of the solution of Eq. (3.38). Continuous application of
partial integration of Eq. (3.39) leads to

P̃(t) = i
N̄p2T2

�
L̃(ω	 − ω10)

{
Ẽ(t)
ρ(t)

+
∞∑

n=1

L̃n(ω	 − ω10)

(
T2

d

dt

)n

[Ẽ(t)
ρ(t)]
}

, (3.40)
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where

L̃(ω	 − ω10) = 1

i(ω	 − ω10)T2 + 1
(3.41)

is the complex line shape factor. Fourier transforming Eq. (3.40) yields

P̃(�) = i
N̄p2T2

�
L̃(ω	 − ω10)

[
F{Ẽ(t)
ρ(t)}

+
∞∑

n=1

L̃n(ω	 − ω10)(i�T2)nF{Ẽ(t)
ρ(t)}
]

. (3.42)

Note that in Eq. (3.40) and in Eq. (3.42) the first summand corresponds to the
zero-order term.

3.2.2. Pulses Much Longer Than the Phase
Relaxation Time (τp � T2)

If the pulse duration is much longer than the phase relaxation time of the
medium there is no coherent superposition of polarization and electric field oscil-
lations. The memory of the medium is only through the change of the occupation
numbers. Assuming that the fastest component of the dynamics of the occupa-
tion inversion is determined by the pulse under discussion, τp � T2 implies that
|T2(d/dt)| 	 1 in Eq. (3.40). In this case we may neglect all terms with n ≥ 1,
a procedure called rate equation approximation, and the polarization reduces to

P̃(t) = i
p2T2

�
L̃(ω	 − ω10)Ẽ(t)
N(t) (3.43)

where we have introduced the population inversion density


N = N̄(ρ11 − ρ00) = N̄
ρ = N1 − N0. (3.44)

Note that P̃ given by Eq. (3.43) corresponds to the stationary solution of
Eqs. (3.38) and (3.23), respectively. In terms of Eq. (3.42) the rate equation
approximation requires |(i�T2)nF{Ẽ(t)
ρ(t)}| 	 1, which means that the spec-
tral width of the pulse is much smaller than 1/T2, hence much smaller than the
spectral width of the transition. Strictly speaking, this approximation requires
a monochromatic wave interacting with an extended transition profile. It does,
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however, yield satisfactory results in numerous practical cases, even when the
above condition is only marginally satisfied.

To study the behavior of modulus and phase of a pulse in propagating through
the resonant medium we have to solve the propagation equation (3.30) with the
polarization given by Eq. (3.43). Thus, we have

∂

∂z
Ẽ = p2T2µ0ω

2
	

2k	�
L̃(ω	 − ω10)
N Ẽ . (3.45)

The equation of motion for the population inversion density at location z, 
N ,
can be obtained from Eqs. (3.23)–(3.26) and reads

∂

∂t

N + 1

T1
(
N − 
N (e)) = −p2T2

�2
|L̃(ω	 − ω10)|2
N |Ẽ |2, (3.46)

where 
N (e) is the equilibrium value of 
N before the pulse arrives. This equa-
tion is often referred to as the rate equation for the population inversion. Using
the amplitude and phase representation Ẽ = E exp(iϕ) for the complex pulse
envelope, Eq. (3.45) yields for the modulus

∂

∂z
E = 1

2
σ

(0)
01 |L̃(ω	 − ω10)|2
NE (3.47)

and for the phase

∂

∂z
ϕ = −1

2
σ

(0)
01 |L̃(ω	 − ω10)|2(ω	 − ω10)T2
N . (3.48)

The quantity

σ
(0)
01 = p2T2ω10

ε0cn�
(3.49)

is the interaction cross-section at the center of the transition (ω	 = ω10). The
interaction cross-section at frequency ω	 is given by

σ01 = σ01(ω	 − ω10) = σ
(0)
01 |L̃(ω	 − ω10)|2 = σ

(0)
01

1 + T2
2 (ω	 − ω10)2

(3.50)

and can be considered as a measure of the interaction strength or of the prob-
ability that an absorption (emission) process takes place. Typical values for the
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interaction cross sections were listed in Table 3.1. The temporal change of the
population inversion, cf. Eq. (3.46), does not depend on the phase of the pulse
but on |Ẽ |2. This suggests the convenience of rewriting this equation in terms of
the photon flux density F defined in Eq. (1.23). We find

∂

∂t

N + 1

T1
(
N − 
N (e)) = −2σ01
NF (3.51)

and by means of Eq. (3.47) the photon flux density is found to obey

∂

∂z
F = σ01
NF. (3.52)

From Eq. (3.48) we see that a phase change can only occur if


N(ω	 − ω10)T2 �= 0,

which states that the laser frequency does not coincide with the center
frequency of the transition. A phase modulation (dϕ/dt) requires in addition that
(d/dt)
N �= 0, i.e., the population difference must change during the interaction
with the pulse.

For a quantitative discussion we may proceed as follows. We solve Eqs. (3.51)
and (3.52) to obtain the pulse envelope change and 
N(t, z), which then allows
us to determine the phase modulation with Eq. (3.48). In general this requires
numerical means. Here we will deal with the two limiting cases where the pulse
duration is much shorter and much longer than the energy relaxation time T1.
Combining Eqs. (3.51) and (3.52) to eliminate 
N leads to:

∂2

∂t∂z
ln F + 2σ01

∂

∂z
F + 1

T1

(
∂

∂z
ln F − σ01
N (e)

)
= 0 (3.53)

with the boundary condition F(z = 0, t) = F0(t) and the initial condition
(∂/∂z) ln F(t → −∞, z) = σ01
N (e)(z).

For τp 	 T1 the third term in Eq. (3.53) can be neglected and the remaining
differential equation can be integrated with respect to z, which yields

∂

∂t
ln

F(z, t)

F0(t)
+ 2σ01[F(z, t) − F0(t)] = 0. (3.54)

This equation has a solution of the form [3]:

F(z, t) = F0(t)
e2σ01W̄0(t)

e−a − 1 + e2σ01W̄0(t)
(3.55)
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where W̄0(t) = ∫ t
−∞ F0(t′)dt′ = 1/(�ω	)

∫ t
−∞ I0(t′)dt′ (I0 intensity of the incident

pulse), cf. Eqs. (1.21), (1.22), and

a = σ01
N (e)z (3.56)

is the absorption (
N (e) < 0) or amplification (
N (e) > 0) coefficient correspond-
ing to a sample of length z. W̄0(t) is a measure of the incident pulse energy
(area) density until time t in units of (photons)/cm2. The total incident energy
density is �ω	W̄0(t = ∞) = �ω	W̄0,∞ = W0. The transmitted energy density
W (z, t) = �ω	W̄ (z, t) is obtained by integrating Eq. (3.55) with respect to time
and can be written as

W (z, t) = �ω	

∫ t

−∞
F(z, t′)dt′ = Ws ln

[
1 − ea

(
1 − eW0(t)/Ws

)]
, (3.57)

where Ws = �ω	/(2σ01) is the saturation energy density of the medium. With
Eq. (3.51), in the limit τp 	 T1, we can express the population inversion as


N(z, t) = 
N (e)e−2σ01W̄ (z,t) = 
N (e)

1 − ea[1 − eW0(t)/Ws ] . (3.58)

It is obvious from Eqs. (3.55) and (3.58) that a modification of the pulse shape
is related to a change in the population inversion. The latter is controlled by
the magnitude of 2σ01W̄0. A characteristic quantity is the ratio s of pulse energy
density to saturation energy density of the transition:

s = 2σ01W̄0,∞ = W0

Ws
. (3.59)

Changes of the occupation numbers and the pulse shape become significant
with increasing saturation parameter s. For large s, the population inversion
approaches zero during the pulse (saturation), cf. Eq. (3.58), and the pulse dis-
tortion at the trailing part becomes small. The result is that a saturable absorber
attenuates the leading edge more than the trailing edge, leading to pulse steep-
ening which is associated with a pulse shortening. In an amplifier the leading
part of the pulse experiences higher gain than the trailing part. This can result
in pulse shortening as well as broadening, depending on the steepness of the
incident pulse. Our qualitative discussion can easily be proven quantitatively by
evaluating Eq. (3.55). Figure 3.4 shows some examples. Possible applications of
this kind of pulse shaping in lasers and in pulse amplifiers will be discussed later.
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Figure 3.4 Pulse shaping through saturable absorption and amplification. (a) absorber: a = −10,
s varies from 2 to 8 (increment 1) in the order of increasing intensities. (b) amplifier: a = 2, s varies
from 0.5 to 8 (increment 0.5) in the order of decreasing intensities, For the input pulse we assumed
F0(t) = cosh−2(1. 76t/τp).

It should be mentioned that the steepening, which can be achieved by a saturable
absorber is limited, although this limitation is not included in the model used
here. The reason is that for Eq. (3.55) to remain valid (as the pulse shortens) the
rise time of the shaped pulse must still be (much) longer than T2, which, in this
manner, sets a lower limit.

Let us turn next to the second case where τp � T1. It should be noted that
dealing with fs light pulses this situation is less probable than the previous one.
We can now neglect the term with the temporal derivation with respect to the
term containing 1/T1 in Eq. (3.53). The resulting differential equation is:

2σ01T1
∂

∂z
F + ∂

∂z
ln F = σ01
N (e) = α. (3.60)

It can be rewritten as

d

dz
F = αF

1 + F/Fs
(3.61)

or in terms of intensities as

d

dz
I = αI

1 + I/Is
, (3.62)

where we have defined a saturation flux density Fs = (2σ01T1)−1 and a saturation
intensity Is = �ω	/(2σ01T1)−1. Equations (3.61) and (3.62) represent Beer’s law
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for a saturable medium. Their integration yields

ln
F(z, t)

F0(t)
+ F(z, t) − F0(t)

Fs
= a (3.63)

and

ln
I(z, t)

I0(t)
+ I(z, t) − I0(t)

Is
= a, (3.64)

where a = αz, positive for amplifying media. Equation (3.63) contains the
unknown F(z, t) and I(z, t) implicitly. To get an insight into the pulse distortion
we will assume |a| 	 1, from which we expect F = F0+
F with |
F/F0| 	 1.
Inserting this into Eq. (3.63) and expanding the logarithmic function gives the
following relation for the flux at the output of the medium of length z:

F(z, t) = F0(t)

[
1 + a

1 + F0(t)/Fs

]
. (3.65)

The absorption (or amplification) term becomes time dependent, where its value
is now controlled by the instantaneous photon flux density rather than by the
energy density. A characteristic quantity of the medium is now Fs or Is. The
result of this kind of saturation is that the pulse peak where the intensity takes
on a maximum is less absorbed (amplified) than the wings, as illustrated in
Figure 3.5.

3.2.3. Phase Modulation by Quasi-Resonant
Interactions

According to our previous discussion, the change of the occupation numbers
(saturation) results in a change of the refractive index and we expect a phase
modulation to occur. Using Eqs. (3.48) and (3.52) the time-dependent frequency
change

δω(t) = ∂ϕ

∂t

can be written as

δω(t) = − (ω	 − ω10)T2

2
σ

(0)
01 |L̃|2

∫ z

0

∂

∂t

Ndz = − (ω	 − ω10)T2

2

∂

∂t
ln

F(z, t)

F0(t)
.

(3.66)
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Figure 3.5 Pulse shaping in a saturable absorber (1) and depletable amplifier (2) for τp � T1,
a = ∓3 and F0/Fs = 1. 5 according to Eq. (3.63). For the input pulse (3) we assumed F0(t) =
cosh−2(1. 76t/τp).

The sign of δω depends on the sign of (ω	−ω10)T2, i.e., on whether the interaction
takes place above or below resonance, and on the sign of ln(F/F0). The latter is
positive (negative) for F > (<) F0 which is true for an amplifier (absorber).

For τp 	 T1 the pulse energy controls the dynamics of 
N , and by means of
Eq. (3.55), δω(t) becomes

δω(t) = −(ω	 − ω10)T2σ01
e−a − 1

e−a − 1 + e2σ01W̄0(t)
F0(t), (3.67)

or equivalently, in terms of the intensity and saturation energy density Ws:

δω(t) = − (ω	 − ω10)T2

2

(
e−a − 1

e−a − 1 + eW (t)/Ws

)
I(t)

Ws
. (3.68)

The optically thin medium approximation (|a| 	 1) of Eq. (3.67) is:

δω(t) � (ω	 − ω10)T2ae−2σ01W̄0(t)σ01F0(t). (3.69)

The other limiting case (τp � T1) is associated with a δω(t) given by

δω(t) = (ω	 − ω10)T2σ01T1
∂

∂t
[F(t, z) − F0(t)] , (3.70)
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which for small |a| results in

δω(t) = (ω	 − ω10)T2a

2

1

(1 + F0(t)/Fs)2

∂

∂t

(
F0(t)

Fs

)
, (3.71)

as can easily be verified by inserting Eq. (3.65) into Eq. (3.70). Figure 3.6 shows
the time-dependent frequency change described by Eq. (3.67) for an amplifier.
Equation (3.71) indicates a frequency change toward the leading part of the pulse
with increasing saturation. A similar behavior occurs if the pulse passes through
an absorber. As a result the frequency change across the FWHM of the pulses
becomes maximum at a certain level of saturation.

To get an idea about the order of magnitude of the frequency change let us
estimate δω̄ = δω(t = −τp/2) − δω(t = τp/2) for a sech2 pulse using Eq. (3.69)
for an absorber. For W̄0,∞/W̄s = W0/Ws = 1 we find

τpδω̄ � (ω	 − ω10)T2a (3.72)

which for a = −0. 1 and (ω	 − ω10)T2 = 1 yields τpδω̃ ≈ −0. 1. If we compare
this with the pulse duration–bandwidth product, cf. Table 1.1, τp
ω = 2. 8,
we hardly expect that the induced frequency change is of importance. This is
usually true for a single passage; however, it can play a significant role in lasers
where the pulse passes through the media many times before it is coupled out [4].
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Figure 3.6 Normalized chirp τpδω versus time after passage through an amplifier according to

Eq. (3.67) for a sech2 input pulse, e|a| = 100, s = 0. 5, …, 4 (
s = 0. 5, from right to left),
(ω	 − ω10)T2 = −1.
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Figure 3.7 Normalized chirp and pulse shapes at the output of a saturable absorber and a
depletable amplifier for τp/T1 � 1 [Eqs. (3.63) and (3.71)] and a sech2(t/T ) input pulse. e|a| = 100,
s = 1, (ω	 − ω10)T2 = 1.

Chirp introduced by a fast (T1 	 τp) absorber and amplifier is shown in Figure 3.7
for comparison. It should be noted that our discussion can easily be expanded
to include effects of multilevel systems [5]. This, for example, is necessary to
model dye molecules more accurately.

For completeness let us now briefly discuss an inhomogeneously broadened
sample, i.e., a distribution of particles having different resonance frequencies
ω′

10. We assume that the preconditions for applying the rate equation approxi-
mations are fulfilled. The source terms in the propagation equations for the field
components E ,ϕ, cf. Eqs. (3.47), and (3.48), have to be integrated over the
inhomogeneous distribution function ginh. This yields

∂

∂z
E = 1

2
E
∫ ∞

0
σ

(0)
01 |L̃(ω	 − ω0)|2
N ′(t,ω′

10)dω′
10

= 1

2
E
∫ ∞

0
σ01(ω	 − ω′

10)ginh(ω′
10)N̄[ρ11(ω′

10) − ρ00(ω′
10)]dω′

10 (3.73)

and
∂

∂z
ϕ = − 1

2

∫ ∞

0
(ω	 − ω′

10)T ′
2σ01(ω	 − ω′

10)ginh(ω′
10)N̄

× [ρ11(t,ω′
10) − ρ00(t,ω′

10)]dω′
10. (3.74)
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The matrix elements ρkk can be obtained from the density matrix equations.
A detailed discussion of chirp generation in such samples can be found in [6].

3.2.4. Pulse Durations Comparable with or Longer
Than the Phase Relaxation Time (τp ≥ T2)

If the incident intensity varies on a time scale which is comparable with the
phase relaxation time of the medium, we cannot apply the rate equation approx-
imation as was done before but have to solve the complete set of density matrix
equations (3.4)–(3.7) and the wave equation (3.30). The physics behind this case
is that the pulse “feels” the spectral properties of the resonant medium, that is, dif-
ferent spectral components of the pulse experience different modification during
the interaction. This becomes obvious and simple if the interaction is weak,
and we may neglect saturation and a change in the occupation numbers, respec-
tively. For 
ρ = constant, we find for the polarization after Fourier transforming
Eq. (3.38)

P̃(�) = i
N̄p2T2
ρ

�

T2

1 + iT2(� + ω	 − ω10)
Ẽ(�). (3.75)

Substituting the polarization in the Fourier transformed propagation equa-
tion (3.30), the transmitted amplitude spectrum can be found after integration
with respect to z

Ẽ(�, z) = Ẽ(�, 0)e
1
2 a(�)e− i

2 a(�)(�+ω	−ω10)T2 (3.76)

where a(�) is the frequency dependent coefficient of the small signal gain
(absorption) which is given by

a(�) = σ
(0)
01 N̄
ρz

1

1 + T2
2 (� + ω	 − ω10)2

. (3.77)

The corresponding relation for the power spectrum reads

S(�, z) = S(�, 0)ea(�). (3.78)

As can be seen from Eq. (3.78), different spectral components experience differ-
ent absorption–gain. Thus the sample acts as filter. For off-resonant interaction
(ω	 �= ω10), the filter also introduces a spectral phase represented by the last term
in Eq. (3.76). Therefore, in addition to a change in pulse shape the output pulse
can be chirped.
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Generally, numerical integration of the density matrix and wave equations is
required to deal with pulse–matter interaction in the presence of varying popu-
lation number changes. For the limiting case of small saturation [s < (< ) 1],
a small absorption–gain coefficient [|a|< (<) 1], and pulse durations being still
longer than T2, we may utilize a perturbation approach [7]. This gives for the
pulse amplitude at the output of such an absorber–amplifier

Ẽ(t, z) =
{

1 + 1

2
a(0)L̃

[
1 − 2σ01W̄0(t) + 1

2

(
2σ01W̄0(t)

)2 + T2L̃(2σ01)F0(t)

]

− 1

2
a(0)L̃2 [1 − 2σ01W̄0(t)

]
T2

d

dt
+ 1

2
a(0)L̃3T2

2
d2

dt2

}
Ẽ0(t) (3.79)

where a(0) = σ
(0)
01 
N (e)z is the absorption–gain coefficient at the resonance

frequency of the transition. For T2 → 0, we obtain a relation which corresponds
to Eq. (3.55) if we expand it up to terms linear in a and quadratic in (2σ01W̄ (t)).
The additional terms in Eq. (3.79) come into play if T2(d/dt)Ẽ0(t) is not van-
ishingly small, that is if the pulse duration is of the same order of magnitude
as T2. Then the medium not only remembers the number of absorbed–amplified
photons but also the phase of the electric field over a time period T2.

3.3. NONLINEAR, NONRESONANT OPTICAL
PROCESSES

3.3.1. General

Nonresonant optical processes are particularly useful in femtosecond pheno-
mena because they can lead to conversion of optical frequencies with minimum
losses. Nonlinear nonresonant phenomena are currently exploited to make use of
the most efficient laser sources, which are only available at few wavelengths, to
produce shorter pulses at different wavelengths (nonlinear frequency conversion
and compression) and amplify them (parametric amplification). In contrast to
the previous section where the interaction was dominated by a resonance, we
will be dealing with situations where the light frequency is far away from opti-
cal resonances. Nonlinear crystals lend themselves nearly ideally to frequency
conversion with ultrashort pulses because their nonlinearity is electronic and typ-
ically nonresonant from the near UV through the visible to the near IR spectral
region. Therefore, the processes involved respond (nearly) instantaneously on the
time scale of even the shortest optical pulse. There appears to be no limit in the
palette of frequencies that can be generated through nonlinear optics, from dc
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(optical rectification) to infrared (difference frequency generation and optical
parametric generation and amplification), to visible and UV (sum frequency gen-
eration). The shorter the pulse, the higher the peak intensity for a given pulse
energy (and thus the more efficient the nonlinear process).

For cw light of low intensity, a medium with a nonresonant nonlinearity
appears completely transparent and merely introduces a phase shift. For pulses,
as discussed in Chapter 1, dispersion has to be taken into account, which can lead
to pulse broadening and shortening depending on the input chirp, and to phase
modulation effects. The light–matter interaction is linear, i.e., there is a linear
relationship between input and output field, which results in a constant spectral
intensity. A typical example is the pulse propagation through a piece of glass.
The situation becomes much more complex if the pulse intensity is large, which
can be achieved by focusing or/and using amplified pulses. The high electric field
associated with the propagating pulse is no longer negligibly small as compared
to typical local fields inside the material such as inner atomic (inner molecular)
fields and crystal fields. The result is that the material properties are changed
by the incident field and thus depend on the pulse. The induced polarization
which is needed as source term in the wave equation is formally described by
the relationship

P = ε0χ(E)E = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + · · · + ε0χ

(n)En + …

= P(1) + P(2) + · · · + P(n) + …. (3.80)

The quantities χ(n) are known as the nonlinear optical susceptibilities of nth order
where χ(1) is the linear susceptibility introduced in Eq. (1.70). The ratio of two
successive terms is roughly given by

∣∣∣∣∣
P(n+1)

P(n)

∣∣∣∣∣ =
∣∣∣∣∣
χ(n+1)E

χ(n)

∣∣∣∣∣ ≈
∣∣∣∣ E

Emat

∣∣∣∣ (3.81)

where Emat is a typical value for the inherent electrical field in the material.
For simplicity we have taken both E and P as scalar quantities. Generally,
χ(n) is a tensor of order (n + 1) which relates an n-fold product of vector com-
ponents Ej to a certain component of the polarization of nth order,3 P(n); see,
for example, [2, 8, 9].

3Note that this product can couple up to n different input fields depending on the conditions of
illumination.
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3.3.2. Noninstantaneous Response

For Eq. (3.80) to be valid in the time domain, we must assume that the sample
responds instantaneously to the electric field; in other words, it does not exhibit
a memory. The polarization at an instant t = t0 must depend solely on field
values at t = t0. As discussed in the previous section for resonant interaction,
a noninstantaneous response and memory effects, respectively, are a result of
phase and energy relaxation processes. They become noticeable if they proceed
on a time scale of the pulse duration or longer. Fortunately, in nonresonant
light–matter interaction many processes are well described by an instantaneous
response even when excited by pulses with durations of the order of 10−14 s.
This is generally true for nonlinear effects of electronic origin. Often however,
the motion of the much heavier atomic nuclei and molecules contribute to the
material response. In such a case, memory effects are likely to occur on a fs time
scale, and the nth-order polarization depends on the history of the field:

P(n)(t) = ε0

∫ ∫
· · ·
∫

χ(n)(t1, t2, …, tn)E(t − t1)E(t − t1 − t2)…

× E(t − t1 − · · · − tn)dt1dt2 · · · dtn, (3.82)

which illustrates the influence of the electric field components at earlier times.
Let us discuss the meaning of a memory of the nonlinear polarization for the

case of n = 2. The nonlinear polarization of second order is responsible for
second harmonic generation or frequency mixing or parametric amplification:

PNL(t) = P(2)(t) = ε0

∫ ∫
χ(2)(t1, t2)E1(t − t1)E2(t − t1 − t2)dt1dt2, (3.83)

where E1 and E2 are optical fields, which can be identical and χ(2) is the suscep-
tibility of second order. Note that, even though the expression (3.83) is a time
convolution, its Fourier transform is not a simple product, but also a convolution
in the frequency domain. This convolution takes a simple form in the case of an
instantaneous nonlinearity:

χ(2)(t1, t2) = χ
(2)
0 δ(t − t1)δ(t − t2). (3.84)

In the time domain, the corresponding nonlinear polarization is:

PNL(t) = ε0χ
(2)
0 E1(t)E2(t), (3.85)
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By taking directly the Fourier transform of this expression, we find that the
nonlinear polarization in the frequency domain is a convolution:

PNL(�) =
∫

PNL(t)e−i�tdt = ε0χ
(2)
0

∫
E1(� − �′)E2(�′)d�′. (3.86)

For monochromatic waves and long pulses, where the fields can be approximated
by δ-functions in the frequency domain, Eq. (3.86) reduces to a product.

Equation (3.86) fails as soon as the nonlinear response can no longer be
considered to be instantaneous. We will now show how one can find the general
expression for a nonlinear polarization of second order, cf. Eq. (3.83), in the
frequency domain. Fourier-transforming Eq. (3.83) yields:

PNL(�) = ε0

∫ ∫
χ(2)(t1, t2)

[∫
E1(t − t1)E2(t − t1 − t2)e−i�tdt

]
dt1dt2

(3.87)

where we have changed the order of integration. The expression in brackets,
C(t1, t2,�), is the Fourier transform of a product, which can be written as the
convolution of the FT’s of the factors, e−i�t1 E1(�) and e−i�(t1+t2)E2(�):

C(t1, t2,�) =
∫

e−i�′(t1+t2)E2(�′)e−i(�−�′)t1 E1(� − �′)d�′. (3.88)

After inserting Eq. (3.88) into Eq. (3.87) the polarization in the frequency domain
reads

PNL(�) = ε0

∫ ∫
χ(2)(t1, t2) [C(t1, t2,�)] dt1dt2. (3.89)

Inserting Eq. (3.88) into Eq. (3.89) and changing the order of integration, we find

PNL(�) = ε0

∫
E2(�′)E1(� − �′)χ(2)(�,�′)d�′, (3.90)

where

χ(2)(�,�′) =
∫ ∫

χ(2)(t1, t2)e−i�′t2 e−i�t1 dt1dt2. (3.91)

The result of Eq.(3.90) is easily generalized to higher-order susceptibilities. If the
susceptibility is not frequency dependent we reproduce the result of Eq. (3.86).
This is again a manifestation of the fact that an instantaneous response (no
memory) is characterized by nondispersive material properties.
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3.3.3. Pulse Propagation

To study pulse propagation in a nonlinear optical medium we can proceed as
in the previous section. To the linear wave equation for the electric field, which
contains the χ(1) contribution, we add the nonresonant nonlinear polarization.
As a result we obtain Eq. (3.29) again, but with the nonlinear polarization as
source term:

(
∂

∂z
Ẽ − i

2
k′′
	

∂2

∂t2
Ẽ + D

)
ei(ω	t−k	z) + c. c. = i

µ0

k	

∂2

∂t2
PNL . (3.92)

The polarization appearing on the right-hand side can be instantaneous, or be
the solution of a differential equation as in the case of most interactions with
resonant atomic or molecular systems, see previous section and Chapter 4. If we
represent the polarization as a product of a slowly varying envelope P̃ and a term
oscillating with an optical frequency ωp, eiωpt , the right-hand side of Eq. (3.92)
can be written as

∂2

∂t2

(
P̃eiωpt + c. c.

)
=
(

∂2

∂t2
P̃ + 2iωp

∂

∂t
P̃ − ω2

pP̃
)

eiωpt + c. c. (3.93)

To compare the magnitude of the individual terms we approximate (∂/∂t)P̃ with
P̃/τp which yields for the ratio of two successive members of the sum in
the brackets ωpτp. Therefore, if the pulse duration is (much) longer than an
optical period, that is ωpτp = 2πτp/Tp � 1, we may neglect the first two
terms in favor of ω2

pP̃ . This will simplify the further evaluation of Eq. (3.92)
significantly.

As pointed out previously the SVEA becomes questionable if the pulses
contain only few optical cycles. Brabec and Krausz [10] derived a propagation
equation under less stringent conditions. If

|(∂/∂z)Ẽ | 	 k	|Ẽ | (3.94)

and

|(∂/∂t)Ẽ | 	 ω	|Ẽ | (3.95)

or

∣∣∣∣1 − νp

νg

∣∣∣∣	 1 (3.96)
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are satisfied pulse propagation in the presence of a nonlinear polarization of
slowly varying amplitude P (NL) and dispersion can be described by

[
∂

∂z
+ i

2k	

(
1 − i

ω	

∂

∂t

)−1

∇2⊥ − α0

2
+ iD̂

]
Ẽ = −i

ω	cµ0

2n0

(
1 − i

ω0

∂

∂t

)
P̃ (NL),

(3.97)

where

D̂ = α1

2

∂

∂t
+

∞∑
m=2

1

m!
(

km + i
αm

2

)(
−i

∂

∂t

)m

with

αm = ∂m

∂�m
[Im k(�)]ω	

and km = ∂m

∂�m
[Re k(�)]ω	

,

see Appendix C. The coordinates z, t refer to a frame moving with the group
velocity of the pulse. The additional time derivatives of the nonlinear polarization
and the diffraction term (∇2⊥) become important for extremely short pulses. This
propagation equation was termed “slowly evolving envelope equation.” In many
materials phase and group velocity are not much different and condition (3.96) is
satisfied. Conditions (3.94) and (3.96) can be combined to the “slowly evolving
wave approximation” [10]

∣∣∣∣ ∂∂z
E

∣∣∣∣	 k	|E|, (3.98)

which states that the amplitude and phase of the electric field must not change
significantly over a propagation distance of the order of a wavelength.

In general, when a nonlinear polarization is involved, there will not be just
one propagation equation of the form of Eq. (3.93), but as many as the number
of waves that participate in the nonlinear optical process. For instance, a third-
order polarization excited by a field at frequency ω	 will create a polarization at
3ω	 = ω	 +ω	 +ω	, and a polarization at ω	 = ω	 −ω	 +ω	. The first process
is generation of a third harmonic field, and the second is either two-photon
absorption or a nonlinear index of refraction, depending on the phase of the
nonlinear susceptibility. The generated field at 3ω	 will propagate, and interfere
with the field at 3ω	 produced at a different location by the fundamental. The third
harmonic field may also lead to the generation of other frequencies, through the
third-order process. For instance, there will be regeneration of the fundamental
frequency through the third-order process ω	 = 3ω	 − ω	 − ω	, and the latter
field will also interfere with the propagated fundamental. The third harmonic may
also create a ninth harmonic through the nonlinear susceptibility. At a minimum,



172 Light–Matter Interaction

there will be at least two differential equations of the form Eq. (3.93), with a
third-order susceptibility, corresponding to the fundamental and third harmonic
fields. More equations have to be added if more frequencies are generated.

It is beyond the scope of the book to give a detailed description of the
various possible nonlinear effects and excitation schemes. The reader is referred
to the standard texts on nonlinear optics, for example Schubert and Wilhelmi [2],
Boyd [8], Bloembergen [9], and Shen [11]. Here we shall restrict ourselves to
a nonlinearity of second order that is responsible for second harmonic genera-
tion, optical parametric amplification (OPA), and to a nonlinearity of third order
describing (self-) phase modulation [(S)PM].

The tensor character of the nonlinear susceptibility describes the symmetry
properties of the material. For all substances with inversion symmetry, χ(2n) = 0
(n = 1, 2 . . .) holds, and therefore no second harmonic processes can be observed
in isotropic materials and centrosymmetric crystals for example. In contrast,
third-order effects are always symmetry allowed. However, even in isotropic
materials, the tensor character of the nonlinear susceptibility should not be
ignored. The electric field of the light itself can break the symmetry, leading
to interesting polarization rotation effects.

In the following sections we will discuss various examples of nonlinear optical
processes with short light pulses. The propagation of the corresponding wave
packets at carrier frequency ωi is described by a group velocity νi for which

1

νi
= n(ωi)

c
+ ωi

c

dn

d�

∣∣∣∣
ωi

(3.99)

holds. Sometimes it will also be necessary to specify the polarization direction,
êj, of the waves participating in the nonlinear process.

Unless stated otherwise we will assume that the nonlinear susceptibility is
much faster than the time scale of interest (pulse duration). This will allow us
to simplify the derivations by applying the concept of an instantaneous material
response. Also, to simplify the discussion on effects typical for the conversion
of short light pulses, we will usually neglect any change in intensity because of
focusing effects; an approximation, which generally holds for nonlinear materials
shorter than the Rayleigh range. An exception is when self-focusing occurs, a
nonlinear effect discussed in Section 3.8.

3.4. SECOND HARMONIC GENERATION (SHG)

Second harmonic generation has gained particular importance in ultrashort
pulse physics as a means for frequency conversion and nonlinear optical
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correlation. Owing to the characteristics of ultrashort pulses, a number of new
features unknown in the conversion of cw light have to be considered [12–16].
We will examine first the relatively simple case of type I SHG, in which the
fundamental wave propagates as an ordinary (o) or extraordinary (e) wave, pro-
ducing an extraordinary or ordinary second harmonic (SH) wave, respectively.
We will briefly discuss at the end of this section the more complex case of type
II SHG, in which the nonlinear polarization, responsible for the generation of a
second harmonic propagating as an e wave, is proportional to the product of the e
and o components of the fundamental. We will see that group velocity mismatch
between the fundamental and the SH leads generally to a reduced conversion effi-
ciency and pulse broadening. Under certain circumstances, however, it is possible
to have simultaneously high conversion efficiency and efficient compression of
the second harmonic in presence of group velocity mismatch. Second harmonic
is only a particular case of sum frequency generation. Therefore, in some of the
subsections to follow, we will treat in parallel SHG and the more general case of
sum frequency generation.

3.4.1. Type I Second Harmonic Generation

Let us assume a light pulse incident on a second harmonic generating crystal.
The electric field propagating inside the material consists of the original (funda-
mental) field (subscript i = 1) and the second harmonic field (subscript i = 2).
The total field obeys a wave equation similar to Eq. (3.92) with a nonlinear
polarization of second order as source term:

[(
∂

∂z
+ 1

ν1

∂

∂t
− ik′′

1

2

∂2

∂t2

)
Ẽ1 + D1

]
ei(ω1t−k1z)

+ k2

k1

[(
∂

∂z
+ 1

ν2

∂

∂t
− ik′′

2

2

∂2

∂t2

)
Ẽ2 + D2

]
ei(ω2t−k2z) + c. c. = i

µ0

k1

∂2

∂t2
P(2)

(3.100)

where the second-order polarization can be written as

P(2) = ε0χ
(2) 1

4

[
Ẽ1ei(ω1t−k1z) + Ẽ2ei(ω2t−k2z) + c. c.

]2
. (3.101)

Because the group velocities ν1 and ν2 are not necessarily equal there is no
coordinate frame in which both the fundamental and SH pulses are at rest.
Therefore z and t are the (normal) coordinates in the laboratory frame. With
the simplifications introduced above for the polarization, we obtain two coupled
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differential equations for the amplitude of the fundamental wave

(
∂

∂z
+ 1

ν1

∂

∂t
− ik′′

1

2

∂2

∂t2

)
Ẽ1 + D1 = −iχ(2) ω2

1

4c2k1
Ẽ∗

1 Ẽ2ei
kz (3.102)

and for the SH wave

(
∂

∂z
+ 1

ν2

∂

∂t
− ik′′

2

2

∂2

∂t2

)
Ẽ2 + D2 = −iχ(2) ω2

2

4c2k2
Ẽ2

1 e−i
kz, (3.103)

where 
k = 2k1(ω1) − k2(ω2) is the wave vector mismatch calculated with
the wave vector values at the carrier frequency of the fundamental and second
harmonic. Because k1, k2 are functions of the orientation of the wave vector
with respect to the crystallographic axis, it is often possible to find crystals,
beam geometry and beam polarizations, for which 
k = 0 (phase matching) is
achieved [2,8,9]. Note that in the case of ultrashort pulses the wave vectors vary
over the bandwidth of the pulse. This variation caused by the linear polarization
has already been taken into account by the time derivatives on the left-hand sides
of Eqs. (3.102) and (3.103), cf. Eq. (1.89).

Type I—Small Conversion Efficiencies

Small conversion efficiencies occur at low input intensities and/or small length
of the nonlinear medium and nonlinear susceptibility. Under these circumstances
we may assume that the fundamental pulse does not suffer losses. If we assume in
addition that k′′

1 = k′′
2 = D1 = D2 ≈ 0 we find for the fundamental pulse, using

Eq. (3.102), Ẽ1(t, z) = Ẽ1 (t − z/ν1). The fundamental pulse travels distortionless
in a frame moving with the group velocity ν1. This expression can be inserted
into the generating equation for the SH, Eq. (3.103). Integration with respect to
the propagation coordinate yields for the SH at z = L:

Ẽ2

(
t − L

ν2
, L

)
= −i

χ(2)ω2
2

4c2k2

∫ L

0
Ẽ2

1

[
t − z

ν2
+
(

1

ν2
− 1

ν1

)
z

]
e−i
kzdz.

(3.104)

Using the correlation theorem, Eq. (3.104) can be transformed into the frequency
domain:

Ẽ2(�, L) = −i
χ(2)ω2

2

4c2k2

∫
Ẽ1(�′)Ẽ1(� − �′)d�′

∫ L

0
e

i
[
(ν−1

2 −ν−1
1 )�−
k

]
z
dz.

(3.105)
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After integration with respect to the propagation coordinate we obtain for the
SH field

Ẽ2(�, L) = − i
χ(2)ω2

2L

4c2k2
sinc

{[(
1

ν2
− 1

ν1

)
� − 
k

]
L

2

}

×
∫

Ẽ1(�′)Ẽ1(� − �′)d�′ (3.106)

and for the spectral intensity of the SH (apart from the conversion factor from
field squared to intensity):

|Ẽ2(�, L)|2 =
(
χ(2)ω2

2L

4c2k2

)2

sinc2
{[(

1

ν2
− 1

ν1

)
� − 
k

]
L

2

}

×
∣∣∣∣
∫

Ẽ1(�′)Ẽ1(� − �′)d�′
∣∣∣∣
2

. (3.107)

Maximum conversion is achieved for zero group velocity mismatch (ν1 = ν2)
and zero phase mismatch (
k = 0).

The term (ν−1
2 − ν−1

1 )z in the argument of Ẽ1 in Eq. (3.104) describes the
walk-off between the second harmonic pulse and the pulse at the fundamental
wavelength owing to the different group velocities. The result is a broadening
of the second harmonic pulse, as can be seen from Figure 3.8. Only for crystal
lengths

L 	 LSHG
D = τp1

|ν−1
2 − ν−1

1 | (3.108)

can the influence of the group velocity mismatch on the shape of the SH pulse be
neglected. In this case the SHG intensity varies with the square of the product of
crystal length and intensity of the fundamental, cf. Eq. (3.104). Because of this
quadratic dependence, the second harmonic pulse is shorter than the fundamental
pulse (by a factor

√
2 for Gaussian pulses). For L � LSHG

D the pulse duration is
determined by the walk-off and approaches a value of L × |ν−1

2 − ν−1
1 |, the peak

power remains constant, and the energy increases linearly with L. Of course,
one needs to avoid this regime if short second harmonic pulses are required.
The group velocity mismatch between the fundamental and SH pulse is listed
in Table 3.2 for some typical crystals used for SHG. Similar conclusions can be
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Figure 3.8 SH pulse at different, normalized crystal lengths, L/LSHG
D according to Eq. (3.104).

(− − − input sech - pulse; the intensity is not to scale.)

Table 3.2

Phase matching angle θ and group velocity mismatch
(ν−1

2 − ν−1
1 ) for type I phase matching (oo-e) in some

negative uni-axial crystals. The data were obtained from
Sellmeier equations, see Zernicke [17], Choy and Byer [18],

and Kato [19].

Crystal λ (nm) θ (o) (ν−1
2 − ν−1

1 ) (fs/mm)

KDP 550 71 266
620 58 187
800 45 77
1000 41 9

LiIO3 620 61 920
800 42 513
1000 32 312

BBO 500 52 680
620 40 365
800 30 187
1000 24 100
1500 20 5
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drawn from the frequency domain solution for the SH pulse. The group velocity
mismatch causes the SHG process to act as a frequency filter, cf. Eq. (3.107).
The bandwidth becomes narrower with increasing crystal length. In addition, the
sinc2 term in Eq. (3.107) introduces a modulation of the spectrum of the second
harmonic. The period of that modulation can serve to estimate the group velocity
mismatch (ν−1

2 − ν−1
1 ) of the particular crystal used.

It is interesting to note what happens when the phase matching condition
is not satisfied (
k �= 0). The introduction of exp(−i
kz) in the integrand of
Eq. (3.104) produces a second harmonic output that varies periodically with the
propagation distance. The periodicity length is given by

LSHG
P = 2π


k
(3.109)

if group velocity mismatch can be neglected. In such cases it is recommended to
work with crystal lengths L < LSHG

P .

Type I—Large Conversion Efficiencies

The simple approach of the previous section does no longer apply to con-
version efficiencies larger than a few tens of percent. We have to consider the
depletion of the fundamental pulse as the SH pulse grows according to the com-
plete system of differential equations (3.102), (3.103). In the phase and group
velocity matching regime, the SH energy approaches its maximum value asymp-
totically. Because of their lower intensities, the pulse wings reach this “saturation”
regime later and the SH pulse duration τp2 broadens until it reaches a value that
is approximately given by the duration of the fundamental pulse τp1. Therefore,
even a moderate energy conversion requires very high conversion efficiencies for
the peak intensities. Figure 3.9 shows schematically the conversion efficiencies
in various regimes for zero group velocity mismatch (long pulses).

With the inclusion of group velocity and phase mismatch, the processes
involved in SHG become complex. Numerical studies of Eqs. (3.102) and (3.103)
in Karamzin and Sukhorukov [20], Eckardt and Reintjes [21], and Kothari and
Carlotti [22] reveal pulse splitting and a periodical behavior of the conversion
efficiency with propagation length under certain circumstances. The complexity
results partly from the fact that the phase of the fundamental wave becomes
dependent on the conversion process. For cw light, the phase of the fundamental
wave can easily be obtained from Eqs. (3.102) and (3.103) and reads [21]

ϕ1(z) = 1

2
arccos

[
c2k1Ẽ2(z)

χ(2)ω2
1Ẽ2

1 (z)

k

]
− π − 
kz

4
. (3.110)
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Figure 3.9 Conversion efficiencies neglecting (· · · ) and taking into account (− − −) depletion
of the fundamental wave. The inset illustrates the shaping of the SH and fundamental pulse in the
crystal.

This phase is responsible for a new phase mismatch 
keff z = ϕ2(z) − 2ϕ1(z)
which, as opposed to the 
k introduced earlier, is a function of the field ampli-
tudes. The result is that the conversion efficiency drops more rapidly for spectral
components for which 
k �= 0. Thus, the SH process acts like an intensity depen-
dent spectral filter for short pulses, reducing the conversion efficiency and leading
to distortions of the temporal profile. As shown experimentally by Kuehlke and
Herpers, [23] an optimum input intensity can exist for maximum energy conver-
sion of fs pulses. Usually these conversion efficiencies do not exceed a few tens
of percent.

There is another interesting consequence of the nonlinear phase. In most
cases, for both the SH and the fundamental fields, we have to consider a
certain dependence of the field amplitudes on the transverse spatial coordi-
nate (beam profile). According to Eq. (3.110) this leads to a phase φ1(x, y, z),
which can result in focusing or defocusing of the fundamental wave [24].
This lensing effect is similar to self-focusing based on the Kerr effect that
will be discussed in Section 3.8. There, the self-lensing will be introduced as
the result of a nonlinear polarization of third order, P(3), as opposed to the
former case of Eq. (3.110), which is derived from a second-order nonlinear
polarization.
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Type I—Compensation of the Group Velocity Mismatch

A nonzero group velocity mismatch limits the frequency doubling efficiency
of femtosecond light pulses to a few tens of percents. It is interesting to
note that the group velocity mismatch is equivalent to the fact that the phase
matching condition does not hold over the entire pulse spectrum. We want to
leave the actual workout of this fact to one of the problems at the end of this
chapter. Generally, it is not possible to match the group velocities by choosing
suitable materials while keeping the phase matching condition for the center fre-
quencies, 
k = 0, as indicated in Table 3.2. However, because phase matching
is achieved most often by angular tuning, simultaneous phase matching of an
extended spectrum is feasible by realizing different angle of incidence for differ-
ent spectral components. Corresponding practical arrangements for fs light pulses
were suggested in Szabo and Bor [25] and Martinez [26], and implemented for
sum frequency generation to 193 nm [27]. In Figure 3.10, two gratings, G1 and
G2, are used to disperse and recollimate the beam, respectively. Two achromatic
lenses (or telescopes [26]) image A onto the crystal and onto B to ensure zero
group velocity dispersion. The combination of L1 and G1 enables different angles
of incidence for different spectral components. The desired magnification of lens
L1 is determined by the angular dispersion of the first grating a1 = dβ/d� and
the derivative of the phase matching angle a2 = dθ/d�

M1 = dθ/d�

dβ/d�
. (3.111)

The magnification of the second lens has to be chosen likewise, taking into
account the doubled frequency at the output of the crystal.

L1

A

Crystal

2�

L2

�

�1

1

�1–
�

G1
G2

B
2

Figure 3.10 Frequency doubler for ultrashort (broadband) light pulses. (Adapted from Szabo and
Bor [25].)
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3.4.2. Second Harmonic Type II: Equations for
Arbitrary Phase Mismatch and
Conversion Efficiencies

Treatment in the Time Domain

As pointed out before there is no analytical solution to the general problem of
SH generation. Numerical procedures have to be used to describe the propagation
of the fundamental and the SH pulses under the combined action of (linear)
dispersion and nonlinear effects. The possible effects are particularly complex
and interesting in type II SH generation.

Type II SH generation involves the interaction of three waves, the SH, and an
ordinary (o) and extraordinary (e) fundamental. Group velocity mismatch of these
three waves does not always lead to pulse broadening. In the case of SHG type II,
it is possible to achieve significant pulse compression at either the fundamental
or the up-converted frequency.

To describe type II frequency conversion we extend the system of
equations (3.102) and (3.103). We choose a retarded time frame of reference trav-
eling with the second harmonic signal at its group velocity ν2. The fundamental
pulse has a component Ẽo(t) exp[i(ω1t − koz)] propagating as an ordinary wave
(subscript o) at the group velocity νo, and a component Ẽe(t) exp[i(ω1t − kez)]
propagating as an extraordinary wave (subscript e) at the group velocity νe.
The system of equations describing the evolution of the fundamental pulses
Ẽo and Ẽe, and the generation of the SH wave Ẽ2 is:

[
∂

∂z
+
(

1

νo
− 1

ν2

)
∂

∂t

]
Ẽo + Do = −iχ(2) ω2

1

4c2ko
Ẽ∗

e Ẽ2ei
kz (3.112)

[
∂

∂z
+
(

1

νe
− 1

ν2

)
∂

∂t

]
Ẽe + De = −iχ(2) ω2

1

4c2ke
Ẽ∗

o Ẽ2ei
kz (3.113)

∂

∂z
Ẽ2 + D2 = −iχ(2) ω2

1

c2k2
ẼeẼ0e−i
kz, (3.114)

where 
k = ko + ke − k2 is the wave vector mismatch calculated at the pulse
carrier frequency. The phase matching condition 
k0 = ko(ω1) + ke(ω1) −
k2(2ω1) = 0 implies that the phase velocities are matched. The fact that the
waves at ω1 and ω2 remain in phase does not necessarily imply that pulses reach
simultaneously the end of the crystal. The three wave packets propagate at group
velocities νo, νe, and ν2 that, in general, are different. The expression Eq. (3.106)
found for type-I SH generation without pump depletion can be regarded a special
solution of Eqs. (3.112–3.114).
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SHG for Short Pulses—Treatment in the Frequency Domain

When dealing with the conversion of short pulses, it is not sufficient to include
dispersion only up to first order, that is D = 0. For D �= 0, however, the system of
equations (3.112)–(3.114) contains higher-order time derivatives whose treatment
is numerically difficult. The problem can be stated more clearly in the frequency
domain, using the complete functional dependence of the k vectors (or the indices
of refraction), rather than power series. We start from the wave equation for the
electric field

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
Ẽ(t, z) = µ0

∂2

∂t2

[
P̃L(t, z) + P̃NL(t, z)

]
(3.115)

where the electric field is the sum of the three participating waves

Ẽ(t, z) = êoẼo(t, z) + êeẼe(t, z) + êeẼ2(t, z) (3.116)

and the nonlinear polarization

P̃NL(t, z) = ε0χ
(2) [Ẽo(t, z)Ẽe(t, z)êe + Ẽ2(t, z)Ẽ∗

o (t, z)êe + Ẽ2(t, z)Ẽ∗
e (t, z)êo

]
.

(3.117)

Without loss of generality, we have assumed that the SH field Ẽ2 propagates
as an extraordinary wave with polarization vector êe. The nonlinear polarization
terms are responsible for the evolution of the SH, the fundamental e-wave and
the fundamental o-wave, respectively.

Following the same procedure as in Section 1.2, we take the Fourier transform
of Eq. (3.115):

[
∂2

∂z2
+ µ0�

2ε(�)

]
Ẽ(�, z) = −µ0�

2P̃NL(�, z) (3.118)

where we used the expressions (1.70) for the linear polarization and Eq. (1.73)
for the dielectric constant. The nonlinear polarization in the frequency domain is
a sum of three convolution integrals; the first member of the sum, for example,
is ε0χ

(2)êe
∫

Eo(�′, z)Ee(� − �′, z)d�′.
For the electric field components we make the ansatz

Ẽq(�, z) = 1

2
ãq(�, z)e−ikq(�)z. (3.119)

where the subscript q stands for o, e, or 2. The amplitudes ãq(�, z) peak at the
central frequencies of the corresponding pulse. The ansatz is a solution of the
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linear wave equation [P̃NL(�, z) = 0 in Eq. (3.118)]. Hence kq(�) = �nq(�)/c =
�
√
µ0ε(�). Inserting the ansatz into Eq. (3.118) and separating out the three field

components according to polarization and frequency yields

∂

∂z
ã2(�, z) = −i�2χ(2)

4c2k2(�)

∫
ão(�′, z)ãe(� − �′, z)ei[−ko(�′)−ke(�−�′)+k2(�′)]zd�′

+ i

2k2(�)

∂2

∂z2
ã2(�, z) (3.120)

∂

∂z
ão(�, z) = −i�2χ(2)

4c2ko(�)

∫
ã2(�′, z)ã∗

e (� − �′, z)ei[ko(�′)+ke(�−�′)−k2(�′)]zd�′

+ i

2ko(�)

∂2

∂z2
ão(�, z) (3.121)

∂

∂z
ãe(�, z) = −i�2χ(2)

4c2ke(�)

∫
ã2(�′, z)ã∗

o(� − �′, z)ei[ke(�′)+ko(�−�′)−k2(�′)]zd�′

+ i

2ke(�)

∂2

∂z2
ãe(�, z). (3.122)

The sum of the three equations (3.120) is equivalent to the second-order wave
equation (3.118) or (3.115). There is however an approximation involved in
splitting the single wave equation in a system of three equations, namely that the
spectral range of the pulses Eo and Ee centered at ω	 and 2ω	 do not overlap. For
numerical calculations, it is more convenient to consider field amplitudes shifted
to zero frequency:

Ẽ2(
� = � − 2ω	) = ã2(�, z)

Ẽo(
� = � − ω	) = ão(�, z)

Ẽe(
� = � − ω	) = ãe(�, z), (3.123)

where we have dropped for simplicity of notation the variable z in the argument
of the field amplitudes on the left of Eq. (3.123). These fields are the Fourier
transforms of the envelopes defined in Chapter 1, Eq. (1.10). The envelope was
defined in Eq. (1.10) with a similar ansatz as Eq. (3.119), hence not involving
any SVEA. In situations where the SVEA applies, these shifted amplitudes
[Eq. (3.123)] become identical to the spectral amplitudes defined in Eq. (1.10).
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The set of equations (3.120) can easily be written for the spectral field envelopes
defined in Eq. (3.123).

The set of coupled equations (3.120) with (3.123) is convenient for a numerical
treatment. No other assumption or approximation has been made, except that the
spectra of the fundamental and second harmonic do not overlap, to be able to
split a single Maxwell’s second-order propagation equation into three coupled
differential equations. The dispersion of the material is contained in the frequency
dependence of the wave vectors k2

q(�) = �2n2(�)/c2. The second derivative of
the envelope with respect to z can generally be neglected, unless the spectral
envelope of the field changes on length scales of the wavelength.

It should be noted that no moving frame of reference has been adopted in this
section. Hence, the fields are propagating at their respective group velocities.
A more convenient representation of the solution uses a frame of reference prop-
agating at one of the group velocities, for instance that of the second harmonic
(see also Section 3.4.1). The temporal (complex) envelopes in this frame of refer-
ence moving at the velocity ν2 are obtained from the solutions Ẽi(
�, z) through
the transformation:

Ẽ2(t, z) =
∫ ∞

−∞
Ẽ2(
�, z)e

−i[k2(
�)−
�
ν2

]z
e−i
�td
� (3.124)

Ẽo(t, z) =
∫ ∞

−∞
Ẽo(
�, z)e

−i[ko(
�)−
�
ν2

]z
e−i
�td
� (3.125)

Ẽe(t, z) =
∫ ∞

−∞
Ẽe(
�, z)e

−i[ke(
�)−
�
ν2

]z
e−i
�td
�. (3.126)

3.4.3. Pulse Shaping in Second Harmonic
Generation (Type II)

In this section we will describe the situation where group velocity mismatch
can be utilized to shape (shorten) ultrashort light pulses as a result of nonlinear
frequency conversion.

Akhmanov et al. [28] analyzed the situation where an SH pulse and a
fundamental pulse are simultaneously incident on a nonlinear crystal with
ν2 > ν1. If a short SH pulse is launched in the trailing edge of a long fundamen-
tal pulse the SH will extract energy from various parts of the fundamental while
moving through the fundamental pulse because of the group velocity mismatch.
High peak powers of the second harmonic and considerable pulse shortening
were predicted.
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Similar effects can be expected in type II phase matching. Here another degree
of freedom, the group velocity mismatch (νo − νe) of the ordinary and extraordi-
nary fundamental, can be adjusted. Consider a phase matched situation (
k = 0)
where again a short SH pulse, of sufficient intensity to deplete the fundamental,
is seeded at the trailing edge of a longer fundamental pulse at the input of
the nonlinear crystal. This situation leading to pulse compression, [16, 29] was
implemented with subpicosecond pulses in Wang and Davies [30] and Heinz
et al. [31]. Subsequently, pulse compression through second harmonic genera-
tion in very long (5–6 cm) KDP (KH2PO4) and KD∗P (KD2PO4) crystals was
predicted [29] and demonstrated [32]. We will describe in a subsequent section
a similar compression mechanism in synchronously pumped optical parametric
oscillators [33–36].

Let us now discuss the situation where the group velocity of the second
harmonic is intermediate between the two fundamental waves, νo < ν2 < νe

and assume that the e-wave pulse enters the crystal delayed with respect to the
o-wave pulse. A second harmonic will be generated at the temporal overlap
between the two pulses, as sketched in Figure 3.11(a). In a frame of refer-
ence moving at the group velocity of the second harmonic, the two fundamental
pulses will travel toward each other. After some propagation distance, the over-
lap of the fundamentals increases, and so does the second harmonic intensity
(Fig. 3.11(b)). However, if the fundamental pulses are sufficiently intense as
sketched in Figs. 3.11(c) and (d), the intensity of the second harmonic may be
large enough to deplete the fundamentals. As a result, the spatial overlap of
the two (depleted) fundamentals remains small, as they move into each other
(Fig. 3.11(d)).

An interesting situation arises when the walk-off lengths for the two funda-
mental pulses, Le = τp/(ν−1

e − ν−1
2 ) and Lo = τp/(ν−1

o − ν−1
2 ), are equal and

opposite in sign, and only three or four times longer than the crystal length. This
case was analyzed in detail by Wang and Dragila [16] and Stabinis et al. [29].
The crystal angle θ; the walk-off lengths for a 12 ps pulse at 1.06 µm, and
their ratio m are listed in Table 3.3 for SHG type II in KDP and DKDP. To
generate compressed SH pulses, the faster e wave is sent delayed with respect
to the o wave into the crystal. An SH seed originates from the short overlap
region between the two e and o fundamental pulses. As this SH propagates
through the crystal it is amplified, while the overlap between all three pulses
increases. Because of its faster group velocity, the second harmonic always sees
an undepleted o wave at its leading edge. Compression of the second harmonic
results from the differential amplification of the leading edge with respect to the
trailing edge. Implementation of this compression requires an accurate control
of the pulse intensity, hence a well defined temporal profile, and a square or
super Gaussian beam profile. Compression factors in excess of 30 have been
observed [32, 37].
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Figure 3.11 Pulse shaping in type II SHG. The three interacting pulses—fundamental ordinary,
fundamental extraordinary, and second harmonic—are represented in a temporal frame of reference
moving with the group velocity of the second harmonic.

Table 3.3

Relevant constants for SHG type II in KDP and DKDP at
1.06 µm. m is the ratio of the walk-off lengths.

Crystal θ Lo (cm) Le (cm) |m|
KDP 59. 2o 20.9 −15.8 1.32
DKDP 53. 5o 28.1 −20.0 1.40

3.4.4. Group Velocity Control in SHG through Pulse
Front Tilt

The condition of SH group velocity intermediate between the ordinary and
extraordinary fundamentals cannot in general be met at any wavelength, for
any crystal. It is however possible to adjust the group velocity through a tilt of
the energy front with respect to the phase front. Figure 3.12 illustrates the basic
principle in the case of a degenerate type I process. As shown in the lower part of
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Fundamental
pulse front

Crystal

�

�

Figure 3.12 SHG using tilted pulse fronts. The wave vector of the (o-wave) SH is perpendicular
to the entrance face of the crystal. Top—the pulse front of the fundamental (dark bar) is tilted by
an amount compensating the group velocity mismatch of fundamental and second harmonic (grey
bar) pulse exactly. Bottom—the input pulse front is not tilted. The different group velocities of
fundamental and SH pulse lead to walk-off.

the figure, the temporal overlap of the interacting pulses decreases because of the
lower velocity of the SH pulse relative to the fundamental pulse. Furthermore,
the spatial overlap decreases because of the walk-off (ρ in the figure) of the
fundamental wave from the SH wave. These two negative effects can however be
used in conjunction with pulse front tilt to match the relative velocities of the two
pulses, as illustrated in the upper part of Fig. 3.12. Loosely speaking: seen in the
frame of reference of the SH wave, the lateral walk-off of the fundamental beam
decrease the component of the pulse velocity along the direction of propagation
of the SH just to match its (group) velocity.

Unfortunately, for femtosecond pulses, it is not practical to generate a large
pulse front tilt. For instance, a pulse front tilt of the order of 40◦ would be required
for SHG type II and compression in BBO of an 800 nm pulse of a Ti:Sapphire
laser in collinear interaction [38]. A dispersive element like a prism with a ratio
of beam diameter to base length of 20 (in the case of SF10 glass) would be
needed to achieve the required energy front tilt of 40◦. Dispersion in the glass
would lead to large pulse broadening and phase modulation.

A better approach for group velocity matching in SHG as well as in parametric
three-wave interactions of fs pulses is to use a noncollinear geometry [39, 40].
Table 3.4 shows how the group velocities of the participating waves can be
changed from the collinear to the noncollinear case (here for an internal angle
of 2◦) leading to conditions for compression. The sketch of the interaction
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Table 3.4

Group velocities for the o, e and SH e waves. Values are calculated for
type II SHG of 800 nm radiation for collinear and noncollinear

(internal angle is 2◦) interaction in BBO.

Fundamental (o) Second harmonic (e) Fundamental (e)
Geometry νo (108 m/s) ν2 (108 m/s) νe (108 m/s)

Collinear 1.780 1.755 1.843
Noncollinear 1.798 1.905 1.934

geometry in Figure 3.13 shows that it is possible to obtain the respective group
velocities through manipulation of the angles of incidence in the crystal and the
energy tilt produced by a prism. Figure 3.13 pertains to the case of noncollinear
interacting plane waves inside a 250 µm long BBO crystal, cut for type II SHG
of laser pulses at 800 nm.

The situation sketched in Fig. 3.13 was simulated with the system of equations
Eq. (3.120), (3.121), and (3.122), with the substitution of Eqs. (3.123) for the

Crystal

�

Air

Prism

b a

�
	
2

k�

k2�

k�

Figure 3.13 Geometry for precompensation the pulse front tilt resulting from propagation through
an interface (the pulse fronts are depicted as dotted lines) using prisms. For the chosen type II SHG
of 800 nm pulses: θ = 2◦, which is the internal angle of the fundamental beams for noncollinear
interaction. To match the energy fronts of both fundamentals, an external pulse front tilt of γ = 0. 6◦
for β = 1. 6◦ is required. Also sketched in the figure are thin SF10 prisms (a/b = 0.2) to realize the
desired γ .
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Figure 3.14 Calculated fundamental (a) and SH waves (b) as they propagate and interact inside
a 250 µm long BBO crystal (note the different scales for (a) and (b)). Group velocity mismatch
leads to a compressed SH pulse with an FWHM of 2.5 fs (b), for 10 fs fundamental input pulses.
Furthermore, considerable pulse reshaping can be seen for the extraordinary fundamental in (a),
leading to a shortened FWHM from 10 fs to 2.5 fs with a shoulder. Pulse energies were 400 µJ for
each fundamental pulse, at an FWHM of 10 fs with a predelay of 20 fs of the e-fundamental with
respect to the o-fundamental. (Adapted from Biegert and Diels [38].)

case of a 10 fs fundamental pulse with a 20 fs predelay of the fundamental e
with respect of the fundamental o. Successive intensity profiles are plotted in
Figure 3.14. The 10 fs fundamental pulse gives rise to a 2.5 fs second harmonic.
Even in this extreme case of pulse compression, the maximum value for ∂2Ẽ /∂z2

is 200 times smaller than 2k ∂Ẽ /∂z, and the second-order partial derivatives can
therefore be neglected in Eqs. (3.120), (3.121), and (3.122). Figure 3.14(b) shows
a peak intensity of 9 GW/cm2 for the 2.5 fs second-harmonic for initial peak
intensities for the fundamental pulses of roughly 13 GW/cm2. This indicates
70% conversion in intensity.

3.5. OPTICAL PARAMETRIC INTERACTION

3.5.1. Coupled Field Equations

Similar considerations as in the previous section can be made for a number of
other nonlinear processes of second order used for generating pulses at new fre-
quencies. Figure 3.15 shows schematically three possible situations. In parametric
up conversion two pulses of frequencies ω1 and ω2, respectively, are sent through
a nonlinear medium (crystal) and produce a pulse of frequency ω3 = ω1 + ω2.
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Figure 3.15 Nonlinear optical processes of second order for generating pulses of new frequencies.
(a) Parametric up conversion, (b) parametric down conversion, (c) parametric oscillation.

In parametric down conversion a pulse with the difference frequency is generated.
In parametric oscillation, a single pulse of frequency ω3 generates two pulses of
frequency ω1 and ω2 such that ω1 + ω2 = ω3. Which process occurs depends
on the realization of the phase matching condition. In principle, to obtain a fs
output pulse through up or down conversion, it is sufficient to have only one fs
input pulse. The second input can be a longer pulse or even cw light. Mokhtari
et al., [41] for example, mixed 60 fs pulses at 620 nm from a dye laser with
85 ps pulses from an Nd:YAG laser (1064 nm) to obtain up converted fs pulses
at 390 nm. Parametric frequency mixing of two fs input pulses were reported,
for example, in Elsaesser and Nuss [42] and Jedju and Rothberg [43]. If the
input pulse (pump pulse) is sufficiently strong, two pulses of frequencies ω1 and
ω2, for which the phase matching condition is satisfied, can arise. In this case,
noise photons which are always present in a broad spectral range can serve as
seed light. This process is known as optical parametric oscillation; the generated
pulses are called idler and signal pulses—the usual convention being that the
signal is the generated radiation with the shorter wavelength.

With similar assumptions that allowed us to derive the equations for SHG, we
obtain three coupled differential equations for the interaction of the three optical
fields as shown in Fig. 3.15:

(
∂

∂z
+ 1

ν1

∂

∂t

)
Ẽ1 − i

2
k′′

1
∂2

∂t2
Ẽ1 + D1 = −iχ(2) ω2

1

4c2k1
Ẽ∗

2 Ẽ3ei
kz (3.127)

(
∂

∂z
+ 1

ν2

∂

∂t

)
Ẽ2 − i

2
k′′

2
∂2

∂t2
Ẽ2 + D2 = −iχ(2) ω2

2

4c2k2
Ẽ∗

1 Ẽ3ei
kz (3.128)

(
∂

∂z
+ 1

ν3

∂

∂t

)
Ẽ3 − i

2
k′′

3
∂2

∂t2
Ẽ3 + D3 = −iχ(2) ω2

3

4c2k3
Ẽ1Ẽ2e−i
kz (3.129)

where 
k = k1(ω1) + k2(ω2) − k3(ω3), and the higher-order dispersion terms
defined in Eqs. (1.88), and (1.89) have been included. The conversion effi-
ciencies are maximum if the phase matching condition, 
k = 0, is satisfied.
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The description of the various processes in Fig. 3.15 by Eqs. (3.127)–(3.129) dif-
fers only in the initial conditions, that is the field amplitudes at the crystal input.
This system of equations is analogous to the ones encountered for SHG. For
relatively weak pulses, conversion efficiencies are low, and the group velocity
dispersion contributes to a broadening of the generated radiation.

As in the case of SHG, there is a particularly interesting regime which
combines the complexities of short pulses, high intensity, and long interaction
lengths. The pulses have to be sufficiently short that simultaneous phase match-
ing cannot be achieved over the pulse bandwidth. The crystal length and pulse
intensities are sufficiently high for regeneration of the pump to occur. These
conditions are also referred to as “giant pulse regime,” or sometimes “nonlinear
parametric generation.”

3.5.2. Synchronous Pumping

Higher efficiencies can be obtained by placing the nonlinear crystal in an
optical resonator for the signal pulse. The crystal is then pumped by a sequence
of pulses whose temporal separation exactly matches the resonator round trip
time. In this manner, the signal pulse passes through the amplifying crystal many
times before it is coupled out. Laenen et al. [44] pumped the crystal with a train
of 800 fs pulses from a frequency doubled Nd:glass laser and produced 65–260 fs
signal pulses which were tunable over a range from 700 to 1800 nm.

Intracavity pumping of an optical parametric oscillator (OPO) is also possible
to take advantage of the high intracavity pulse power for the pumping. This
technique was demonstrated by Edelstein et al., [45] by placing the OPO crystal
in the resonator of a fs dye laser and building a second resonator around the crystal
for the signal pulse. At repetition frequencies of about 80 MHz, the mean output
power of the parametric oscillator was on the order of several milliwatts. A high
gain, short lifetime laser such as a dye or semiconductor laser is desirable, because
the mode-locking of such a laser is less sensitive to feedback from the faces of
the crystal. Intracavity pumping of an optical parametric oscillator has however
also been demonstrated in a Ti:sapphire laser [46] which has a long gain lifetime.

3.5.3. Chirp Amplification

So far we have been concerned with amplitude modulation effects in nonlinear
mixing. Phase modulation introduces an element of complexity that one generally
tries to avoid, in particular in the conditions of giant pulse compression discussed
previously. It has been recognized however that second-order interactions can be
used to generate or amplify a phase modulation. We will consider here as an
example chirp amplification that can take place in parametric processes.
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The frequencies of the three interacting pulses obey the relation

ω3(t) = ω1(t) + ω2(t). (3.130)

If we substitute for the time dependent frequencies ωi(t) = ωi + ϕ̇i(t) (i = 1, 2, 3),
we obtain for the phases

ϕ̇3(t) = ϕ̇2(t) + ϕ̇1(t). (3.131)

In addition, for efficient parametric oscillation, the phase matching condition
must be satisfied, which now implies

k3[ω3(t)] = k2[ω2(t)] + k1[ω1(t)]. (3.132)

For |ϕ̇i| 	 ωi and linearly chirped pump pulses a Taylor expansion of Eq. (3.132)
yields

dk3

d�

∣∣∣∣
ω3

ϕ̇3(t) = dk2

d�

∣∣∣∣
ω2

ϕ̇2(t) + dk1

d�

∣∣∣∣
ω1

ϕ̇1(t). (3.133)

The chirps at the three frequencies are thus related by the group velocities νi.
From Eqs. (3.131) and (3.133), a relation between the chirp of idler and signal
pulses and pump pulse can be found:

ϕ̇1 = pϕ̇3 (3.134)

ϕ̇2 = (1 − p)ϕ̇3, (3.135)

where p is the chirp enhancement coefficient:

p =
(

ν−1
3 − ν−1

2

ν−1
1 − ν−1

2

)
, (3.136)

and νi are the group velocities at the respective frequencies ωi.
Equation (3.136) indicates that chirp amplification is most pronounced in a

condition of degeneracy where ω1 ≈ ω2. The mechanism of chirp amplification
can also be understood by means of the tuning curves. For instance, Fig. 3.16
shows the tuning curves for phase matching (type I) in KDP. A small change
in pump wavelength λ3 results in a strong change of signal wavelength. As a
result, a slightly chirped pump pulse generates signal and idler with enhanced
(and opposite) chirp [47]. The signal pulses with enhanced chirp can be com-
pressed in a grating pair compressor. Using the natural chirp of frequency doubled
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Figure 3.16 Tuning curves of a KDP optical parametric oscillator, pumped at a wavelength of
λ3 = 0. 53 µm. (Adapted from Jankauskas et al. [47].)

pulses from an Nd:glass laser, pulses of 50 fs at 920 nm were obtained by this
technique [47].

3.6. THIRD-ORDER SUSCEPTIBILITY

3.6.1. Fundamentals

The third-order contribution to the nonlinear polarization in an isotropic
medium is 4:

P̃(3)
x = ε0χ

(3)
∑
j=x,y

[
ẼxẼjẼ

∗
j + ẼjẼxẼ∗

j + ẼjẼjẼ
∗
x

]

= ε0χ
(3)
{

2
[
|Ẽx|2 + |Ẽy|2

]
Ẽx + Ẽx|Ẽx|2 + ẼyẼyẼ∗

x

}

= 3ε0χ
(3)
{[

|Ẽx|2 + 2

3
|Ẽy|2

]
Ẽx + 1

3
(Ẽ∗

x Ẽy)Ẽy

}
, (3.137)

4We consider here only the terms in the polarization oscillating at the same optical frequency as
the driving field.
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where we consider the x̂ component of the polarization, under the influence of a
light pulse propagating along z, with field components along x̂ and ŷ. If there is
only a component of the field along x:

P̃(3)
x = 3ε0χ

(3)|Ẽx|2Ẽx . (3.138)

In the transparent region of many materials, χ(3) can be approximated by a real
quantity, and the nonlinear polarization results in an index of refraction that
depends nonlinearly on the propagating field. Usually the lowest order of this
dependence is expressed by one of the following equivalent relations

n = n0 + n2|Ẽ(t)|2

= n0 + 2n2〈E2(t)〉
= n0 + n̄2I(t), (3.139)

where n̄2 = 2n2/(ε0cn0). The quantity n2 is called nonlinear index coefficient and
describes the strength of the coupling between the electric field and the refractive
index. The most often quoted quantities are n2 in esu units, and n̄2 in cm2/W.
The conversion factor between the two quantities is:

n̄2 (cm2/W) = 2

(300)2n0

√
µ0

ε0
n2 (esu) ≈ 8. 378

n0
· 10−3n2 (esu) (3.140)

Many different physical processes can account for an intensity-dependent
change in index of refraction because of a third-order nonlinearity. Table 3.5
gives some examples. As a rule of thumb, the larger the nonlinearity, the longer
the corresponding response time. For fs pulse excitation, it is only a (nonresonant)
nonlinearity of electronic origin that can be considered to be without inertia. The
corresponding nonlinear refractive index can be described by relations (3.139),
and is a result of an optical nonlinearity of third order. If only one pulse is incident

Table 3.5

Examples of nonlinear refractive index parameters.

Origin Example n̄2 (cm2/W) Response time (s)

Electronic
Nonresonant Glass 10−16–10−15 10−15–10−14

Air 10−18–10−19 10−14–10−13

Resonant Semiconductor doped glass 10−10 10−11

Molecular motion CS2 10−12 10−12
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on the sample the complete (including terms not oscillating at ω	) polarization
reads

P̃(3) = ε0χ
(3)E3 = ε0χ

(3)
(

3

8
|Ẽ |2Ẽeiω	t + 1

8
Ẽ3e3iω	t

)
+ c. c. (3.141)

assuming an instantaneous response. The terms with 3ω	 in the argument of
the exponential function describe third harmonic generation. In the cases where
this latter process is sufficiently weak not to impact the propagation of the wave
at ω	, one can show from Eq. (3.141) that

n2 = 3χ(3)

8n0
, (3.142)

(see Problem 3 at the end of this chapter). The intensity dependence of n implies
a refractive index varying in time and space. The temporal variation, as dis-
cussed in Chapter 1 [Eq. (1.175)], leads to a pulse chirp. The (transverse) spatial
refractive index dependence leads to lensing effects. These processes are called
self-phase modulation (SPM) and self-focusing (SF), respectively. In most cases
self-focusing is undesirable and is avoided by minimizing the sample length
and/or working with uniform beam profiles whenever possible.

To describe SPM we can substitute Eq. (3.141) into the wave equation (3.92).
Let us first recall the approximations needed to derive the simple expression for
the second derivative of the polarization used in the previous subsection. These
approximations lead to an estimate of the first correction terms. If the nonlinearity
is not perfectly inertialess (i.e., does not respond instantaneously to the electric
field), we have to compute the polarization using the integral expression (3.82).
For response times smaller than the pulse duration, the Fourier transform of
Eq. (3.82) can be expanded into a Taylor series about ω	. Termination of the
series after the second term and back transformation into the time domain yields
for the polarization, in terms of the field envelope:

P̃(3)(t) = 3

8
ε0

[
χ(3)|Ẽ |2Ẽ + i

∂χ(3)

∂�

∣∣∣∣∣
ω	

∂

∂t

(
|Ẽ |2Ẽ

)]
ei(ω	t−k	z) + c. c. (3.143)

The expression (3.143) restates once more that a nonzero response time τr leads
to a frequency dependence of the susceptibility. The critical parameter is the
spectral variation of this susceptibility over the frequency range covered by the
pulse spectrum. To study nonlinear propagation problems, the SVEA is generally
applied to the polarization, as expressed in Eq. (3.93). Inserting the expan-
sion (3.143) into the second derivative of the polarization (3.93) and keeping
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terms up to the first temporal derivative lead to:

i
µ0

k	

d2

dt2
P(3) =

[
−i

n2k	
n0

|Ẽ |2Ẽ − β
∂

∂t

(
|Ẽ |2Ẽ

)
+. . .

]
ei(ω	t−k	z) + c. c. (3.144)

where

β = n2

c

(
2 − ω	

χ(3)

∂χ(3)

∂�

∣∣∣∣∣
ω	

)
. (3.145)

It should be remembered that the temporal derivative in Eq. (3.144) becomes
important if the light period is not negligibly short compared to the pulse duration.
Equations (3.144) and (3.145) indicate that the first-order correction to the SVEA
and the finite response time of the nonlinear susceptibility (the two summands
forming β) have the same action on pulse propagation. Corrections to the SVEA
may also be important in the spatial (transverse) propagation of the beam as
indicated in Eq. (3.97).

Pulse propagation through transparent media which is affected by SPM and
dispersion has played a crucial role in fiber optics. For a review we refer to the
monograph by Agrawal [48]. In this chapter we will discuss the physics behind
SPM and neglect GVD. In Chapter 8 we will describe effects associated with the
interplay of SPM and GVD.

3.6.2. Short Samples with Instantaneous Response

For interaction lengths much shorter than the dispersion length LD, and for an
instantaneous nonlinearity, the wave equation (3.92) with the source term (3.144)
simplifies to

∂

∂z
Ẽ(z, t) = −i

3ω2
	χ

(3)

8c2k	
|Ẽ2|Ẽ = −i

n2k	
n0

|Ẽ |2Ẽ (3.146)

after applying the SVEA to the polarization term. For real χ(3), substituting
Ẽ = E exp(iϕ) into Eq. (3.146) and separating the real and imaginary parts result
in an equation for the pulse envelope

∂

∂z
E = 0 (3.147)
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and for the pulse phase

∂ϕ

∂z
= −n2k	

n0
|E |2. (3.148)

Obviously the pulse amplitude E is constant in the coordinate system travel-
ing with the group velocity, that is, the pulse envelope remains unchanged,
E(t, z) = E(t, 0) = E0(t). Taking this into account, we can integrate Eq. (3.148)
to obtain for the phase

ϕ(t, z) = ϕ0(t) − k	n2

n0
zE2

0 (t) (3.149)

which results in a phase modulation given by

∂ϕ

∂t
= dϕ0

dt
− n2k	

n0
z

d

dt
E2

0 (t). (3.150)

This result can be interpreted as follows. The refractive index change follows the
pulse intensity instantaneously. Thus, different parts of the pulse “feel” different
refractive indices, leading to a phase change across the pulse. Unlike the phase
modulation associated with GVD, this SPM produces new frequency components
and broadens the pulse spectrum. To characterize the SPM it is convenient to
introduce a nonlinear interaction length

LNL = n0

n2k	E2
0m

(3.151)

where E0m is the peak amplitude of the pulse. The quantity z/LNL represents
the maximum phase shift which occurs at the pulse peak, as can be seen from
Eq. (3.150). Figure 3.17 shows some examples of the chirp and spectrum of self-
phase modulated pulses. Because n2 is mostly positive far from resonances (see
Problem 4 at the end of this chapter), upchirp occurs in the pulse center. We also
see that SPM can introduce a considerable spectral broadening. This process as
well as some nonlinear processes of higher order can be used to generate a white
light continuum, as discussed later in this chapter.

For an order of magnitude estimate let us determine the frequency change δω

over the FWHM of a Gaussian pulse. Substituting E0me−2 ln 2(t/τp)2
for E0(t) in

Eq. (3.150) yields

δωτp = 8 ln 2√
2

z

LNL
. (3.152)
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Figure 3.17 Frequency modulation and spectrum of self-phase modulated Gaussian pulses for
different propagation lengths z/LNL .

For z = LNL the normalized frequency sweep is δωτp ≈ 4. Note that the
original pulse duration–bandwidth product of the unchirped Gaussian input pulse
was 
ωτp ≈ 3.

A pulse can also be phase modulated in the field of a second pulse if both
pulses interact in the medium. The phase of pulse 1 is then determined by

∂ϕ1

∂z
= −n2k	

n0

(
|Ẽ1|2 + 2|Ẽ2|2

)
Ẽ1. (3.153)

This offers the possibility of phase modulating weak pulses by means of a strong
pulse. Both pulses can differ in their wavelength, duration, polarization state,
etc. This process is known as cross-phase modulation and has found several
interesting applications [49]. For example, it is possible to transfer information
from one pulse train to another by induced spectral changes [50].

3.6.3. Short Samples and Noninstantaneous Response

For short pulses and/or a noninstantaneous sample response, the source term
given by Eq. (3.144) with β �= 0 must be incorporated in the wave equation.
The pulse propagation is now governed by

∂

∂z
Ẽ + i

n2k	
n0

|Ẽ |2Ẽ + β
∂

∂t

(
|Ẽ |2Ẽ

)
= 0. (3.154)

Comparison with Eqs. (1.87) and (1.88) suggests that the term with a time deriva-
tive can be interpreted as an intensity dependent group velocity. For β > (<) 0 the
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pulse center is expected to travel slower (faster) than the trailing edge. This
causes a steepening of the trailing (leading) edge of the pulse, known as self-
steepening. It is similar to the formation of shock waves in acoustics. It is not
necessarily associated with a slow response of the polarization, because β = 2
for ∂χ(3)/∂ω

∣∣
ω	

= 0, from the definition of Eq. (3.145). This shock term can also
be identified with the second term of the right-hand side in Eq. (3.97). One notes
that this first-order correction to the SVEA is a loss term, rather than a dispersive
term. It can be interpreted as the energy required to drive the nonlinear index.

To solve Eq. (3.154) we again substitute the complex pulse amplitude by a
product of an envelope and a phase function to obtain

∂

∂z
E + 3βE2 ∂

∂t
E = 0 (3.155)

and
∂

∂z
ϕ + βE2 ∂

∂t
ϕ = −n2k	

n0
E2. (3.156)

The equation for the envelope can be solved independently of the phase equation.
Its solution can formally be written as [51]

E(z, t) = E
(

z = 0, t − 3βzE2(t, z)
)

. (3.157)

For a Gaussian input pulse, E0me−(t/τG)2
, we find

E(z, t) = E0m exp

{
−
[

t − 3βzE2(z, t)

τG

]2}
, (3.158)

which contains the envelope implicitly. Figure 3.18 shows the pulse envelope for
different values of 3βz/τG. To observe the shock pulse with |dE /dt| → ∞, the
shock term in the propagation should dominate other terms such as dispersion
(neglected here for the sake of simplicity). This, for example, is the case for
filamentation (self-focusing) in air and is responsible for the associated white
light or “conical emission” (Sections 3.7 and 13.2.2).

The envelope function can be inserted in Eq. (3.156) to obtain an implicit
(analytical) solution for the phase, [51] which, however, is rather complex. A
numerical evaluation of the pulse spectrum |F{Ẽ(t, z)}|2 reveals an asymmetric
behavior, which is expected, because we are now dealing with SPM of asymmet-
ric pulses. Such spectra were reported by Knox et al., [52] for example, as result
of SPM of 40 fs pulses in glass. Rothenberg and Grischkowsky [53] directly
measured the steepening of pulses in propagating through optical glass fibers.
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Figure 3.18 Pulse envelope according to Eq. (3.158) for different values of 3βz/τG.

It should also be noted that SPM in connection with saturation, which
was discussed previously, is a particular example of a time-dependent sample
response. In the case of saturation, there is a memory effect associated with
the change of occupation numbers, with a characteristic time determined by the
corresponding (energy) relaxation time.

3.6.4. Counter-Propagating Pulses and Third-Order
Susceptibility

In a laser cavity, we may encounter the situation where counter-propagating
pulses meet in a nonlinear medium. The standing wave formed at the intersection
of the colliding pulses creates a phase (real third-order susceptibility) or an ampli-
tude grating (purely imaginary third-order susceptibility, resulting in two photon
absorption). The grating formed by the nonlinear interaction will diffract each
beam into the direction of the other. As illustrated in Figure 3.19, the transmitted
forward propagating field (affected by the nonlinear susceptibility) is combined
with the part of the counter-propagating field that is diffracted to the right. Exper-
imentally, these two contributions being undistinguishable, we observe only the
total forward propagating pulse at the right of the sample as a “transmitted”
beam. When the incident counter-propagating intensities are different, it appears
as if the medium had a different transfer function for the forward and backward
propagating beams, as will be explained. In what follows we will assume that
the medium is much thinner than the pulse length, d 	 τpc.
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Figure 3.19 Geometry of the interaction of counter-propagating pulses in a medium with a third-
order nonlinear susceptibility. The standing wave field produces a grating that diffracts (reflects) the
waves. What is observed exiting the sample is the sum of the transmitted and reflected fields.

Let us assume two counter-propagating beams Ẽ1 = (1/2)Ẽ1 exp[i(ω	t − kz)]
and Ẽ2 = (1/2)Ẽ2 exp[i(ω	t + kz)]. From Eq. (3.138), we find for the third-order
polarization responsible for phase modulation and two photon absorption:

P(3) = 3ε0χ
(3)(Ẽ1 + Ẽ2)(Ẽ1 + Ẽ2)∗(Ẽ1 + Ẽ2) + c. c.

= 3ε0χ
(3)
{
|Ẽ1|2 + |Ẽ2|2 + Ẽ1Ẽ∗

2 + Ẽ∗
1 Ẽ2

} {
Ẽ1 + Ẽ2

}+ c. c.

= 3

8
ε0χ

(3)
{(

|Ẽ1|2 + 2|Ẽ2|2 + Ẽ1Ẽ∗
2 e−2ik	z

)
Ẽ1ei(ω	t−k	z)

+
(

2|Ẽ1|2 + |Ẽ2|2 + Ẽ∗
1 Ẽ2e2ik	z

)
Ẽ2ei(ω	t+k	z)

}
+ c. c. (3.159)

We recognize in Eq. (3.159) a forward and a backward propagating field, and
two terms involving higher-order spatial Fourier components. Even in the case
of a homogeneous medium, the terms in exp(±2ikz) lead to a coupling through a
higher-order (fifth-order) process, which we will neglect. We will see in the exer-
cise at the end of the chapter that these terms become important if the nonlinear
susceptibility has a periodic structure on the scale of the wavelength. The forward
propagating nonlinear polarization is:

P̃(3)
forward = 1

2
P̃ (3)

1 ei(ω	t−k	z) = 3

8
ε0χ

(3)
(
|Ẽ1|2 + 2|Ẽ2|2

)
Ẽ1ei(ω	t−k	z). (3.160)
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In the retarded frame of reference, and in the SVEA, the field amplitude varies
as, cf. Eq. (3.30):

∂Ẽ1

∂z
= −i

µ0ω	c

2n0
P̃ (3)

1 . (3.161)

Up to this point, no assumption has been made for the complex third-order
susceptibility, which we will assume to be of the form:

χ(3) = χ(3)
r − iχ(3)

i . (3.162)

The real part of the third-order susceptibility leads to the nonlinear index n2 as
was expressed in Eq. (3.142):

n2 = 3χ(3)
i

8n0

For the case of real χ(3), inserting Eq. (3.160) into Eq. (3.161) results in the
following propagation equation for Ẽ1

∂Ẽ1

∂z
= −i

ω	

c

3

8

χ
(3)
r

n0

(
|Ẽ1|2 + 2|Ẽ2|2

)
Ẽ1

= −i
ω	

c
n2

(
|Ẽ1|2 + 2|Ẽ2|2

)
Ẽ1 = −ikNLẼ1, (3.163)

where kNL represents a nonlinear propagation constant. This equation describes
self- and cross-phase modulation. The factor of 2 in front of |Ẽ2|2 leads to the
asymmetry in the induced phase mentioned in the introduction if the two counter-
propagating beams have different amplitudes. There is no energy exchange
between the two beams in case of a real susceptibility χ(3).

Case of Two Photon Absorption

The imaginary part of the third-order susceptibility is responsible for two-
photon absorption. For purely imaginary χ(3) the propagation equation for the
pulse amplitude becomes

∂Ẽ1

∂z
= −ω	

c

3

8

χ
(3)
i

n0

(
|Ẽ1|2 + 2|Ẽ2|2

)
Ẽ1 = −β2

2

(
|Ẽ1|2 + 2|Ẽ2|2

)
Ẽ1, (3.164)
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which leads to the definition of the two photon absorption coefficient β2:

β2 = 3

4

ω	

cn0
χ

(3)
i . (3.165)

In terms of intensities, the expression for the attenuation of beam 1 in presence
of beam 2 is:

dI1

dz
= −β2 (I1 + 2I2) I1. (3.166)

Again, it is only when the two counter-propagating beams have equal intensity
that the relative attenuation of both beams is equal.

3.7. CONTINUUM GENERATION

One of the most impressive (and simplest) experiments with ultrashort light
pulses is the generation of a white light continuum. At the same time contin-
uum generation with laser pulses is one of the most complex and difficult to
analyze processes as it combines spatial and temporal effects and their interplay.
This is one reason while the spectral supercontinuum has remained an area of
active theoretical and experimental research for a long time. For reviews on this
subject see Alfano, [54] and the special issue Zheltikov, [55] for a summary of
research.

Provided the pulse is powerful enough, focusing into a transparent material
results in a substantial spectral broadening. The output pulse appears on a sheet
of paper as a white light flash, even if the exciting pulse is in the near IR
or near UV spectral range. This is often accompanied by colors distributed in
rings. Continuum generation was first discovered with ps pulses by Alfano and
Shapiro [56] and has since been applied to numerous experiments. One of the
most attractive fields of application is time-resolved spectroscopy, where the
continuum pulse is used as an ultrafast spectral probe.

Spectral super broadening was observed in many different (preferably trans-
parent) materials including liquids, solids, and gases. Essential processes
contributing to the continuum generation are common to all. Figure 3.20 shows
as an example a white light continuum generated in a solid with near IR fs
pulses [57] and in gas with UV fs pulses [58]. As can be seen, the continuum
does not have a “flat” uniform spectrum. A broad palette of fs laser sources
is still desirable to create a continuum with a maximum energy concentration
in any particular wavelength range. Continuum generation is a rather complex
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Figure 3.20 Femtosecond spectral super broadening. (a) In a 0.5-mm CaF2 sample with 20 fs
pulses at 800 nm. (Adapted from Zeller et al. [57].) (b) In a 60 cm long Ar cell (40 atm), the pump
pulses (4 mJ, 308 nm, 160 fs) were focused with a 50 cm lens. (Adapted from Glownia et al. [58].)

issue which involves changes in the temporal and spatial beam characteristics.
With fs pulses, the dominant process and the starting mechanism leading to spec-
tral super broadening is SPM because of an intensity-dependent refractive index.
However, a number of other nonlinear effects play a role as well. The inter-
play of self-focusing (see Section 5.6.6) and various nonlinear processes make
the exact treatment of the continuum generation with short pulses extremely
complex. Indeed, an inspection of Fig. 3.20 shows that the spectral features can-
not be explained by the action of SPM alone. Other nonlinear effects that are
likely to contribute are parametric four wave mixing and Raman scattering. The
strong anti Stokes component visible in Fig. 3.20 is likely because of multiphoton
excitation of the dielectric material followed by avalanche ionization [59]. The
resulting electron plasma in the conduction band produces a fast rise of a nega-
tive refractive index component that can explain the dominant broadening toward
the shorter wavelengths. As will be explained in the next section SPM is asso-
ciated with self-focusing leading to extremely high intensities where the beam
collapses. It is at this point where the continuum generating nonlinear processes
are most effective.

The continuum pulse at the sample output is chirped. This is because of
the time dependence of the nonlinear optical processes, which produces various
spectral components at different parts within the pulse. Another origin of chirp
is the propagation of the generated continuum from the point of beam collapse
through the medium and all optical elements (including the path through air)
leading to the detector. The chirp of the continuum was measured by fs frequency
domain interferometry [60] and transient grating diffraction [57] for example.
The dispersive processes account for most of the chirp of the continuum for
pulses <50 fs. This is illustrated in Figure 3.21.
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Figure 3.21 Spatio-temporal distribution of a fs white light continuum after propagation through 1
m air (640 Torr). Solid line: dispersion expected from the 1 m path through the atmosphere; dotted
line: atmospheric path and 0.11 mm of CaF2 (the distance from the beam collapse to the exit face of
the crystal). (Adapted from Zeller et al. [57].)

Sending the continuum pulse through a proper element with GVD can result
in pulse compression (Chapter 8). The “ideal” fs continuum pulse is thus a nearly
bandwidth-limited fs pulse which is considerably shorter than the original pump
pulse. Such continuum pulses enabled optical spectroscopy with time resolution
better than 10 fs [61, 62].

Traditionally continua were generated in bulk materials with amplified fs
pulses. Dispersion and the associated pulse broadening together with the finite
propagation length until beam collapse limited the effective material length.
This changed with the introduction of microstructured fibers [63] and tapered
fibers [64]. These fibers either shift the wavelength of zero dispersion to regions
were fs oscillator pulses were readily available and/or reduce the dispersion while
increasing the nonlinearity. Because of the possible large propagation lengths at
constant beam diameter (guided modes) the overall nonlinear interaction length
can be greatly increased, which allowed the generation of continua with nJ and
sub-nJ pulses directly from oscillators, and even using cw light (e.g., [65]). Using
pulses directly from Ti:sapphire oscillators, continua covering almost two decades
from ≈380 nm to 1600 nm were obtained.

An interesting application of the continuum is in metrology. Under certain
circumstances, that will be discussed in Chapter 5, the continuum extends the
regular mode structure of a mode-locked laser, making it possible to perform
frequency mixing experiments over more than one octave in frequency.
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3.8. SELF-FOCUSING

The nonlinearities of a medium affect both the temporal and spatial depen-
dence of the electric field of the light. In the previous sections we have avoided
this difficulty by assuming a uniform beam profile or neglecting nonlinear
space–time coupling effects. However, any nonlinear interaction strong enough
to affect the pulse temporal profile will also affect its transverse profile. One
example is SHG, slightly off-exact phase matching condition (large nonlinear
phase shifts), or at large conversion efficiencies. As sketched in the inset of
Fig. 3.9, an initially Gaussian temporal profile will be depleted predominantly in
the center, resulting in a flattened shape. The same interaction will also transform
an initially Gaussian beam into a profile with a flat top.

In this section we will consider as an important example the problem of
self-focusing. The intensity-dependent index of refraction causes an initially
collimated beam to become focused in a medium with n2 > 0. It is the same
intensity dependence of the refractive index that causes SPM of a fs pulse, as we
have seen in the previous section.

3.8.1. Critical Power

The action of a nonuniform intensity distribution across the beam profile on a
nonlinear refractive index results in a transverse variation of the index of refrac-
tion, leading either to focusing or defocusing. Let us assume a cw beam with a
Gaussian profile I = I0 exp(−2r2/w2), and a positive n̄2, as is typical for a non-
resonant electronic nonlinearity. The refractive index decreases monotonically
from the beam center with increasing radial coordinate. One can define a “self-
trapping” power Pcr,1 as the power for which the wavefront curvature (on axis)
because of diffraction is exactly compensated by the change in the wavefront
curvature because of the self-lensing over a small propagation distance 
z. We
assume that the waist of the Gaussian beam is at the input boundary of the non-
linear medium (z = 0). Within the paraxial approximation, diffraction results in a
spherical curvature of the wavefront at a small distance 
z from the beam waist:

ϕdiff (
z) = −k	
z

2ρ2
0

r2, (3.167)

where ρ0 is the Rayleigh range. This result is obtained by approximating
1/R ≈ 
z/ρ2

0 in Eq. (1.181). The action of the nonlinear refractive index results
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in a radial dependence of the phase after a propagation distance 
z:

ϕsf (r,
z) = −n̄2
2π

λ

zI0e−(2r2/w2

0) ≈ −n̄2
2π

λ	


zI0

(
1 − 2

r2

w2
0

)
, (3.168)

where the last equation is an approximation of the wavefront near the beam
center. This equation follows from Eq. (3.149) after replacing n2E2

0 by n̄2I(r).
The input beam has the critical power Pcr,1 = ∫ 2πrI(r)dr when the radial parts
of Eqs. (3.167) and (3.168) compensate each other:

Pcr,1 = I0
πw2

0

2
= λ2

8πn0n̄2
(3.169)

where we have made use of ρ0 = πw2
0n0/λ. One says that the beam is self-

trapped because neither diffraction nor focusing seems to occur. This value of
critical power is also derived by Marburger [66] by noting that the propagation
equation is equivalent to that describing a particle moving in a one-dimensional
potential. The condition for which the potential is “attractive” (leads to focusing
solutions) is P ≥ Pcr,1. One can define another critical power Pcr,2 as the power
for which the phase factor on-axis of the Gaussian beam, arctan(z/ρ0), exactly
compensates the nonlinear phase shift n̄2I0:

Pcr,2 = λ2
	

4πn0n̄2
. (3.170)

This second value of the critical power is also obtained by assuming that the
beam profile remains Gaussian and deriving an expression for “scale factor”
f (z) = w(z)/w0 as a function of distance z [67, 68]. The function f (z) reaches
zero after a finite distance if the power exceeds the value Pcr,2.

Another common approach to defining a self trapping power is to approximate
the radial beam profile by a flat top of diameter d [8]. The refractive index inside
the tube of diameter d is n = n0 + n̄2I0. The critical angle for total internal
reflection, α, is determined by sin α = n0/(n0 + n̄2I0). The beam is trapped inside
the tube if the diffraction angle θd ≈ 1. 22λ/(2n0d) is equal to θcr = π/2 − α.
From this condition and using the fact that n̄2I0 	 n0 one can derive the critical
power Pcr,3 = I0πd2/4:

Pcr,3 = (1. 22)2πλ2
	

32n0n̄2
(3.171)
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Table 3.6

Three approaches to defining a critical power for self-focusing.
They differ by the coefficient a in Eq. (3.172).

Phase on-axis Wavefront curv. Waveguide

2π

λ	
n̄2I0z = arctan

z

ρ0

2π

λ	
n̄2I0 = − k	r2

2R
θcr = θd

Pcr = 1

4π

λ2
	

n0n̄2
Pcr = 1

8π

λ2
	

n0n̄2
Pcr = (1. 22)2π

32

λ2
	

n0n̄2

These three approaches, summarized in Table 3.6, define a critical power of the
form:

Pcr = a
λ2
	

n0n̄2
(3.172)

The point of agreement between these different definition is the existence
of a critical power rather than a critical intensity. This result is not surprising,
because, for a given power, both the diffraction to be compensated and the lensing
effect (nonlinear index) are inversely proportional to the beam diameter. It is not
possible without numerical calculation to predict exactly the evolution of the
beam at powers close to any of these critical powers. The Gaussian characteristic
of the beam will be altered. Only numerical calculation can determine the fate
of the beam over long propagation distances. Calculations made in steady state
conditions have demonstrated the existence of a critical power Pcr ≈ 3. 77Pcr,1 ≈
1. 03Pcr,2, corresponding to the value of a ≈ 0. 142 in Eq. (3.172) [66].

A laser beam whose power exceeds the critical power reaches a focus after
a finite propagation distance—the self-focusing length zSF . Even for cw beams
the exact treatment of beam propagation in an n2 medium can only be done
numerically. According to such a simulation

zSF ≈ 0. 183ρ0√
(
√

P/Pcr − 0. 852)2 − 0. 0219
(3.173)

see, for example, Marburger [66]. Here ρ0 is the Rayleigh range of the original
beam assumed to have a beam waist at the sample input.

With some restrictive assumptions one can derive an approximate self-
focusing length analytically, which shows a similar structure as Eq. (3.173).
We will sketch this approach at the end of Section 3.9.1.
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3.8.2. The Nonlinear Schrödinger Equation

Let us consider the propagation of a laser beam along the direction z, in a
medium characterized by a linear index of refraction n, a third-order nonlinear
polarization and a linear loss–gain coefficient α [cf. Eq. (3.141)]. The nonlinear
polarization

P̃(3)
NL = 3

8
ε0χ

(3)|Ẽ |2Ẽei(ω	t−kz). (3.174)

is to be substituted into the wave equation (1.67), with the field given by Eq (1.83).
If we assume a steady state condition (no time dependence) the equation
describing the spatial dependence of the electric field is:

[
∂

∂z
+ i

2k	

(
∂2

∂x2
+ ∂2

∂y2

)
+ i

3ω2
	

8c2k	
χ(3)|E |2 − α

2

]
Ẽ = 0 (3.175)

The prefactor in front of the nonlinear term can also be written as
3ω2

	χ
(3)/(8c2k	) = n2k	/n0. One recognizes in Eq. (3.175) a three-dimensional

generalization of the nonlinear Schrödinger equation [69]:

i
∂ψ

∂z
− a

∂2ψ

∂x2
− b|ψ|2ψ + cψ = 0. (3.176)

The last term of Eq. (3.175) is a linear gain or absorption associated with the imag-
inary part of the linear index of refraction. In one dimension, these equations were
shown by Zakharov and Shabat [70] to have steady state solutions labelled “soli-
tons.” These solitons correspond to a balance between the self-focusing and the
diffraction. The physical reality is however more complex than can be included
in the nonlinear Schrödinger Eq. (3.176). Indeed, once the nonlinearity exceeds
the threshold to overcome diffraction, the beam collapses to a point (see next
section). To obtain a dynamically stable solution in the transverse dimension, it
is necessary to include a higher-order nonlinearity in the polarization to prevent
this collapse, as will be demonstrated.

If we consider a short pulse propagating as a plane wave through an infinite
medium with the nonlinear polarization of Eq. (3.174), the temporal evolution
of the field is given by a similar nonlinear Schrödinger equation:

[
∂

∂z
− ik′′

2

∂2

∂t2
+ i

n2k	
n0

|E |2 − α

2

]
Ẽ = 0, (3.177)

where the independent variables are now z and t. The soliton solution to
Eq. (3.177) results from a balance between dispersion and SPM caused by the
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nonlinear polarization. The condition for the existence of a temporal soliton

is that (anomalous) dispersion ik′′
2

∂2

∂t2 balances self-temporal lensing (positive

SPM) in2k	
n0

|E |2Ẽ . Normal dispersion and a negative SPM can also lead to soliton
solutions [71].

3.9. BEAM TRAPPING AND FILAMENTS

Once the beam power is sufficient for self-focusing to overcome diffraction,
the beam collapses to a point. In general, after the beam has collapsed, it diffracts.
However, numerous experiments have shown self-guiding of high peak power
infrared femtosecond pulses through the atmosphere [72–77]. Similar observa-
tions were made in the UV [78,79]. After reaching the focus, the light appeared
to trap itself in self-induced waveguides or “filaments” of the order of 100 µm
diameter. Before addressing problems specific to ultrashort pulses we will discuss
a steady state model to illustrate the possibility of beam self-trapping.

3.9.1. Beam Trapping

We start with the time-free wave equation

[
∂

∂z
+ i

2k	

(
∂2

∂x2
+ ∂2

∂y2

)]
Ẽ(x, y, z) = −ikNLẼ(x, y, z). (3.178)

For the nonlinear propagation constant on the right-hand side we assume a non-
linear refractive index because of a Kerr nonlinearity and a contribution of next
order.

kNL = ω	

c

(
n2|Ẽ |2 + n3|Ẽ |3

)
(3.179)

A physical system that can give rise to a negative n3 will be introduced later.
A general solution to Eq. (3.178) is only possible by numerical means. To illustrate
the possibility of beam trapping we will analyze the term on the right-hand
side of the wave equation near in the vicinity of the beam center. Assuming a
Gaussian beam profile, Ẽ = E0(w0/w) exp(−r2/w2)), over a propagation distance

z, the medium introduces a phase factor

φNL(r) = kNL
z = ω	

c

[
n2

E2
0 w2

0

w2
e−2r2/w2 + n3

E3
0 w3

0

w3
e−3r2/w2

]

z. (3.180)
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The curvature of the r dependent phase on-axis determines the focusing char-
acteristics of a slice of thickness 
z. For n3 = 0 this is the phase factor that
was discussed in Section 3.8.1 and was found responsible for self-focusing.
The curvature of the phase term in the vicinity of the beam center is

d2

dr2
φNL(r)

∣∣∣∣
r≈0

= −Q

[
1 + E0w0

(
n3

wn2

)]
(3.181)

where Q = 4ω	n2Ẽ2
0 w2

0
z/(cw4). For n2 > 0 as is the case in most materials and
n3 < 0 we have the situation that the term in brackets can change sign depending
on the ratio n3/(n2w) for given input beam (Ẽ0w0). For n2w> (<) n3 the material
will act like a positive (negative) lens. A positive lens tends to decrease w on
propagation until at some point the sign of the phase term reverses leading to
negative lensing. This in turn increases w until the process is reversed again.
This suggests the possibility of a periodically changing beam diameter (trapped
beam) even if diffraction is included. The effect of the latter is that the phase
curvature should have a certain positive value depending on w before the beam
actually contracts. Similar beam trapping can be expected from contributions that
are of order m > 2 if the sign of nm is negative. The nonlinear refractive indices
have their origin in nonlinear susceptibilities of order m+1. The Kerr effect, χ(3)

producing a nonlinear index n2, is one example, which we discussed in detail
previously.

Let us now briefly describe a physical system that can produce a negative n3.
Let us assume that the beam propagates through a gas that can be ionized by a
three photon absorption. The free electrons (density Ne) can recombine with the
positive ions and a steady state will be reached.

d

dt
Ne = σ(3)|Ẽ |6N0 − βepN2

e = 0 (3.182)

Here σ(3) is a three photon absorption cross section, N0 is the number density
of atoms, and βep is the two-body recombination constant. From Eq. (3.182) we
can obtain the steady state density of free electrons as a function of the laser field

Neq =
√

σ(3)N0

βep
|Ẽ |3. (3.183)

The (small) change of the refractive index 
ñ associated with the laser generated
free electrons can be estimated with the Drude model:

ñ2 = (1 + 
ñ)2 ≈ 1 + 2
ñ = 1 + ω2
p

ω2
	

(
1 − i

γ

ω	

)
. (3.184)
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where ω2
p = N2

eqe2/(mε0) is the plasma frequency and γ is the dephasing rate
determined by collisions. With the equilibrium electron density from Eq. (3.183)
the change of the refractive index becomes:


ñ =
√

σ(3)N0

βep

e2

2ω2
	mε0

(
1 − i

γ

ω	

)
|Ẽ |3. (3.185)

The index change is complex; the imaginary part accounts for free electron
absorption, the real part determines the nonlinear index n3 used in Eq. (3.179).

Numerical solutions of Eq. (3.178) with the nonlinear k-vector (3.179) and n3
because of three photon ionization [80] show several features that are similar to
those observed with fs filamented pulses. The power loss with distance plotted in
Figure 3.22 is remarkably low, after an initial drop. The explanation for the low
losses can be found in the plot of electron density and beam size w(z) of Fig. 3.22.
As the beam size decreases toward its minimum value wmin, the electron density
reaches a peak, before falling back to an insignificant value as the beam expands.
The beam waist w appears to “ricochet” at every period on the minimum value.
In most cases, the loss mechanism is effective only for a small fraction of the
period of oscillation of the beam. The loss decreases with distance because that
fraction of period spent at the shortest dimension w decreases with distance. This
phenomenon is the steady state analogue of “dynamic replenishment” observed
for fs filaments in numerical simulations by Mlejnek et al. [81].

Equation (3.178) with an n2 nonlinearity allows one to derive an approximate
expression for the self-focusing length zSF , see for example Shen [11]. To this
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Figure 3.22 Numerical simulation of the nonlinear propagation of a 60 MW cw Gaussian UV
(250 nm) beam in air. Left: plot of beam power versus distance. Right: beam size and electron
density versus propagation distance [80].
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end we insert the ansatz of a Gaussian beam profile

Ẽ = E0[w0/w(z)] exp(−r2/w(z)2)

and assume that the Gaussian beam shape is maintained throughout the propa-
gation (focusing). The beam waist w0 is at the sample input (z = 0). Within the
frame of paraxial optics we approximate the nonlinear term by

n2|Ẽ |2 ≈ n2E2
0

w2
0

w2(z)

[
1 − 2

r2

w2(z)

]
. (3.186)

Sorting the powers of r and setting the prefactors to zero results in a second-order
differential equation for the beam waist:

d2

dz2
w(z) = − 4

k2
	

(
P

Pcr
− 1

)
1

w3(z)
, (3.187)

where P is the (constant) beam power and Pcr is the critical power defined as
Pcr,1 in Eq. (3.169). The solution to this differential equation is

w2(z) = w2
0 − w2

0

ρ2
0

(
P

Pcr
− 1

)
z2 (3.188)

where ρ0 = kw2
0/2 is the Rayleigh range. Provided that P > Pcr , the beam

collapses at a distance equal to the self-focusing length z = zSF , where

zSF = ρ0√
P/Pcr − 1

. (3.189)

3.9.2. Ultrashort Pulse Self-Focusing

An exact treatment of short pulse self-focusing is complex as it involves the
inclusion of many different nonlinear effects combined with propagation effects.
The general approach is to start with Eq. (3.97) and specify the nonlinear polar-
ization of the material in which the pulse propagates. For example, by specifying
the nonlinear polarization as the Kerr effect and the Raman effect, one arrives
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at a generalized nonlinear Schrödinger equation often used to describe pulse
propagation in fibers and in bulk materials leading to filaments:

∂Ẽ
∂z

= α0

2
Ẽ + iD̂ − i

2k	

(
1 − i

ω	

∂

∂z

)−1

∇2⊥Ẽ

− iγ(1 − fR)

(
1 − i

ω	

∂

∂t

)
|Ẽ |2Ẽ

+ iγfR

[
1 − i

ω	

∂

∂t

]{
Ẽ
∫ ∞

0
hR(t′)|Ẽ(t − t′)|2dt′

}
(3.190)

where fR indicates the fraction of the nonlinearity that is a delayed Raman
contribution, as opposed to the “instantaneous” electronic contribution.
γ = πn̄2n0/(377λ) is the effective nonlinearity. The Raman response function
is given by hR(t). When applied to fibers [48], the transverse Laplacian term is
no longer relevant.

Numerical solutions of Eq. (3.190) exist for different propagation problems
(material parameters), see for example references [82–88]. The results vary
because of the complexity of the equation and the fact that some of the mate-
rial parameters in Eq. (3.190) are not well known. Comparison of the numerical
results with experiments is hampered by the difficulties encountered when mea-
suring the parameters of the propagating pulse and the filaments. We will discuss
some of the properties of self-focusing associated with short pulses and leading
to filaments in more detail in Chapter 13.

3.10. PROBLEMS

1. Verify the temporal behavior of the polarization and occupation number as
given in Eqs. (3.12) and (3.13).

2. Estimate the absolute value of the refractive index change at a frequency
off resonance by 
ωF /2 which is caused by saturation of a homogeneously
broadened, absorbing transition with Lorentzian profile. The change in the
absorption at resonance at the pulse center was measured to be 50%.
The pulse duration τp is much larger than the energy relaxation time T1.
The small signal absorption coefficient is α0.

3. Show that the nonlinear refractive index coefficient is related to the third-
order susceptibility through n2 = 3χ(3)/(8n0) [cf. Eq. (3.142)].

4. Starting from the density matrix equations of a two-level system, find an
approximate expression for n2 which is valid for ω	 far from a single
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resonance. In particular, comment on the statement following Eq. (3.151)
that n2 is mostly positive.

5. Chirp enhancement through parametric interaction provides an interesting
possibility to compress pulses. To illustrate this, let us consider the follow-
ing simplified model. An initially unchirped Gaussian pulse is sent through
a group velocity dispersive element, e.g., a block of glass of length L and
GVD parameter k′′, leading to linearly chirped output pulses (chirp param-
eter a). This pulse now serves as a pump in a parametric process producing
a (GAUSSIAN) output pulse of the same duration but with an increased
chirp parameter (of opposite sign), a′ = −Ra. A second piece of glass
of suitable length can be used to compress this pulse. Calculate the total
compression factor in terms of L and R. Note that this configuration would
allow us to control the achievable compression factor simply by changing
the GVD (e.g., L) of the first linear element that controls the initial chirp.

6. Consider the situation of Section 3.6.4 relating to the interaction of two
counter-propagating pulses in a nonlinear medium characterized by a third-
order nonlinear susceptibility χ(3). The purpose of this problem is to
compare the counter-propagating interaction in the case of the homo-
geneous medium with the case of a set of Multiple Quantum Wells
(MQWs) separated by a wavelength, as sketched in Figure 3.23. For the
homogeneous medium, the nonlinear susceptibility is uniform and equal
to χ(3). The stratified medium is assumed to be made of N (infinitely thin)
quantum wells separated by half a wavelength, each quantum well having

ε1

�(3)

ε2

Figure 3.23 Geometry of counter-propagating wave interaction in a medium with a third-order
nonlinear susceptibility concentrated in quantum wells. We assume the spacing between quantum
wells to have a negligible nonlinear susceptibility. The quantum wells are located at the antinodes of
the standing wave field, resulting in a maximum interaction between the nonlinear medium and the
light field.
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a susceptibility χ(3)δ(kz− jπ)/N . The medium susceptibility χ(NL) can thus
be represented by:

χ(NL)(z) =
N∑

j=1

χ(3)

N
δ(kz − jπ) (3.191)

Insert this susceptibility in Eq. (3.159), and average (integrate) over the
thickness of the medium, to find an average third-order polarization.
Show that the coupling term in this polarization, which in an homoge-
neous medium would average to zero, has now a contribution of the same
order as the other terms.
It is interesting to contrast the result from the MQW with that of the
homogeneous medium. First, the nonlinear polarization is larger in the
case of the MQW sample: if the fields are equal, P (3)

1 = 4ε0χ
(3)|E2

1 |E1 to

be compared with P (3)
1 = 3ε0χ

(3)|E2
1 |E1 in the homogeneous case. Second,

the “nonreciprocity” because of cross-phase modulation, which appears in
the homogeneous case, is not present in the MQW geometry. Show that,
for the change in index, instead of 
nnl = n2(Ẽ2

1 + 2Ẽ2
2 ) for the forward

beam, in the homogeneous case—a consequence of Eq. (3.163)—we have


nnl = n2

(
Ẽ2

1 + Ẽ2
2 + 2E1E2

)
= 3χ(3)

8n0

(
Ẽ2

1 + Ẽ2
2 + 2E1E2

)
, (3.192)

an expression that is the same for both directions of propagation. This is
basically a result from the fact that the emission of layers of dipoles (spaced
by a wavelength) in the forward and backward directions is equal [89].
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4
Coherent Phenomena

This chapter reviews some aspects of coherent interactions between light and
matter. By coherent interaction, it is meant that the exciting pulse is shorter than
the phase memory time of the excited medium. Femtosecond pulses have made
quite an impact in this field (some selected examples of application are presented
in Chapters 10 and 11), because the phase-relaxation time of absorbing transitions
in condensed matter is generally in the fs range.

Experiments in this field have somewhat contradictory requirements: a source
of high coherence, but ultrashort duration. The experimentalist has to walk a
tightrope to meet the coherence requirements for pulses sometimes shorter
than 10 fs.

To be classified in the field of coherent interactions, the result of a particular
experiment should depend on the coherence of the source. This brings us to the
question of what constitutes an incoherent source? To make a radiation source
incoherent, should random phase fluctuations be applied in the time domain or
in the frequency domain? Is the temporal coherence always linked to the spatial
coherence? These questions are discussed in the first few sections of this chapter.

Coherent interactions with near resonant two-level systems constitute the
nucleus of this chapter (Section 3). Section 4 extends the theory of coherent
interactions to multilevel molecular or atomic systems.

4.1. FROM COHERENT TO INCOHERENT
INTERACTIONS

The highest level of coherence is easy to define: monochromatic radiation
with a δ-function spectrum, emitted from a point source, has an infinite coherence
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time and coherence length. Most interesting phenomena of coherent interaction,
however, occur with broad bandwidth radiation, involving temporal variations of
either the field amplitude or its phase, which are faster than the dephasing time
of the system of atoms or molecules being excited. Therefore, a short pulse will
be defined as coherent if its bandwidth–duration product satisfies the minimum
uncertainty relation for that particular pulse shape, as defined in Table 1.1. The
lack of coherence can be deterministic. Such is the case for chirped pulses, as
discussed in Chapter 1. It can also be of aleatory origin. In the latter case,
incoherence can be introduced through either

• statistical fluctuations in the time domain; or
• statistical fluctuations in the frequency domain.

In the first approach, given a fixed amount of time during which the radiation
is applied, one can introduce incoherence through statistical (temporal) fluc-
tuations of the field amplitude or phase. The bandwidth of the radiation is
increased as a result of the decrease in coherence. In the second approach,
the statistical fluctuations are introduced in the amplitude and phase of the
field in the frequency domain. The bandwidth of the radiation is fixed. The
distinction between incoherence in the time and frequency domains can best
be understood through the experimental implementation of these two concepts.
Coherence is a parameter in the interaction of radiation with matter. The influence
of coherence on a particular process will be different if incoherence is defined
as statistical fluctuations in time or frequency. To illustrate this concept, let us
look at the influence of coherence on multiphoton photoionization of atoms.
To study the influence of coherence on two- and three-photon resonant ioniza-
tion of Cs and other alkali, Lecompte et al. [1] have adjusted the bandwidth
of the cavity of a Q-switched Nd:glass laser used to excite a resonant tran-
sition. By changing the number of modes let to oscillate simultaneously, the
temporal structure of the pulse is also modified. Because the relative phase
and amplitude of the oscillating modes are random (the laser is Q-switched,
not mode-locked), one has introduced statistical fluctuations in the Q-switched
pulse as illustrated in Figure 4.1(a). For the particular interaction being inves-
tigated, it was shown in De Bethune [2] that, for all practical purposes, the
radiation can be considered to be incoherent when 20 or more modes are
allowed to oscillate simultaneously. Clearly, the bandwidth of the radiation is
modified.

Multiphoton interactions are typically intensity-dependent processes. It is
not surprising therefore that an increase in multiphoton interaction is observed,
because the fluctuations result in larger peak intensities, and hence an increase
in nonlinear transition rates. Such an approach is appropriate for the study
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Figure 4.1 Illustration of two different ways to act on the coherence of an optical signal. On the
left sides of (a) and (b), the time domain representation is shown. On the right sides, the frequency
representation is depicted. Two material resonances (single photon or multiphoton) are represented by
dashed lines. (a) Modifying coherence by changing the number of oscillating modes of a Q-switched
laser. On top, a single oscillating mode, shown off resonance. As the number of oscillating modes,
of random amplitude and phase, is increased, resonances can occur (bottom). The corresponding
situation in the time domain (left) shows increasing amplitude and phase fluctuations within the
pulse duration. The radiation is never completely random, even in the time domain, because the
regularity of mode spacing is seen as a repeating pattern of fluctuations. (b) Modifying coherence
in the frequency domain by creating a random pulse sequence in the time domain. On the left side,
the time domain shows an increasing number of ultrashort pulses of random phase. On the right side,
the Fourier amplitude remains within the single pulse bandwidth. The two Fourier transforms have
different amplitude and/or phase fluctuations (not shown) under the same envelope. In case (b), with
increasing incoherence, the detuning from resonance with the material transitions (dashed lines) is
not modified.

of nonresonant interactions. However, if the multiphoton process has sharp
resonances, such as indicated by the dashed lines in Fig. 4.1(a), then the prob-
lem of finding the influence of coherence on the resonance curves is ill-defined
because the resonance and coherence conditions are not independent. Indeed, in
the presence of a sharp resonance, it is not possible to modify independently the
parameter “detuning” and the parameter coherence [Fig. 4.1(a)]. If the bandwidth
of the laser is increased, to allow more modes to oscillate simultaneously, the
resonance condition may be modified (if one of the modes coincides with one
resonance).

For the study of the influence of source incoherence on near resonant
light–matter interaction, it would be desirable to have the radiation confined in
a fixed bandwidth. The experimental procedure consists of exciting the sample
with a random sequence of pulses [Fig. 4.1(b)]. Each single pulse has the same
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envelope in the frequency domain, but a different phase corresponding to the
random time of arrival in the time domain. Thus, in the frequency domain,
within the spectral envelope, the field amplitude and phase become random vari-
ables. A comparison of Figs. 4.1(a) and (b) shows that these two approaches are
Fourier transforms of each other. The condition of validity of the use of mul-
timode Q-switched pulses to study the influence of coherence on (multiphoton)
photo ionization is that there be no resonance within the broadest bandwidth of
excitation. Otherwise, a change in bandwidth will mean a change in resonance
condition. The corresponding criterion for the study of coherence in resonant
processes with ultrashort statistical pulse sequences is that there has to be a
memory time associated with the resonance(s), long enough to establish a cor-
relation between the first and last pulse of the sequence. Otherwise, each pulse
of the sequence acts independently, and the result of a two pulse measurement
is simply the sum of the results for each individual pulse. This “memory time”
is the phase-relaxation time of the resonance process, such as was introduced
for single photon processes in the previous chapter. As an example, we refer to
Diels and Stone [3] for a study of the influence of coherence on multiphoton
ionization.

The sequence of pulses represented in Fig. 4.1(b) cannot be defined as random
out of context. The set of numbers representing the relative phases and delays
between pulses are chosen out of a particular statistical distribution, of which the
parameters define the coherence of the source. A large number of experiments
must be averaged to establish the response of a process to the light statistics
chosen. Sets of relative phases and delays can be predetermined to match any
selected statistical distribution. There are two possible techniques for generating
such random pulse sequences. The first one involves simply splitting and delay-
ing pulses with polarizers and mirrors. The second one consists of filtering the
Fourier transform of a single pulse.

Should white light be seen as an ensemble of monochromatic sources
statistically distributed in amplitude and phase in the frequency domain or as
a random sequence of ultrashort pulses? The question is not purely academic.
One or the other aspect dominates, depending on the particular experimental
situation. It is the second definition that generally applies to the conditions of
coherent interactions discussed in this chapter.

Light is defined as coherent in time if there is a well-defined phase relation
between the radiation at times t and t + δt. The typical instrument to measure this
type of coherence is the Michelson interferometer. Young’s double slit experiment
will determine the degree of spatial coherence of a source [4]. A definition of
temporal coherence for electromagnetic radiation is the normalized first-order
correlation 〈Ẽ(t)Ẽ∗(t+τ)〉/√〈I(t)I(t + τ)〉. A bandwidth-limited ultrashort pulse
has thus a coherence of unity. A similar definition can be applied to spatial
coherence. A single source of diameter d 	 λ has perfect spatial coherence.
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If the source is an atom, spherical waves are emitted with identical fluctuations
at all points at equal distance from the source. Macroscopically, we are used to
looking at a volume average of randomly distributed dipoles. Some new sources
have the emitted dipoles arranged in a regular fashion. For instance, multiple
quantum well lasers are made of “sheets” of emitting atoms which are thinner
than the wavelength of the light. This particular arrangement of emitters has
important implications for the macroscopic properties of the source [5, 6].

4.2. COHERENT INTERACTIONS WITH
TWO-LEVEL SYSTEMS

4.2.1. Maxwell–Bloch Equations

Whether we are dealing with molecular or atomic transitions, the situation
can arise where the ultrashort duration of the optical pulse becomes compara-
ble with—or even less than—the phase-relaxation time of the excitation. In the
frequency domain, the pulse spectrum is broader than the homogeneous linewidth
defined in the first section of Chapter 3. If the pulse is so short that its spectrum
becomes much larger than the inhomogeneous linewidth, the medium response
becomes similar to that of a single atom. It may seem like a simplified situa-
tion when the excitation occurs in a time shorter than all interatomic interaction.
It is in fact quite to the contrary; in dealing with longer pulses, the faster phase-
relaxation time of the induced excitation simplifies the light–matter response. One
is accustomed to dealing with a steady state rather than the “transient” response
of light–matter interaction.

We will start from the semiclassical equations for the interaction of near
resonant radiation with an ensemble of two-level systems inhomogeneously
broadened around a frequency ωih. The extension to multilevel systems will
be discussed in the next section. We refer to the book by Allen and Eberly [7]
for more detailed developments.

We summarize briefly the results of Chapter 3 for a two-level system, of
ground state |0〉 and upper state |1〉, excited by the field E(t). The density matrix
equation for this two-level system is:

ρ̇ = 1

i�
[H0 − pE, ρ], (4.1)

where H0 is the unperturbed Hamiltonian, and p the dipole moment that is parallel
to the polarization direction of the field. Introducing the complex field through
E = Ẽ+ + Ẽ− in Eq. (4.1) leads to the following differential equations for the
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diagonal and off-diagonal matrix elements:

ρ̇11 − ρ̇00 = 2p

�

[
iρ01Ẽ− − iρ10Ẽ+] (4.2)

ρ̇01 = iω0ρ01 + ipẼ+

�
[ρ11 − ρ00] , (4.3)

where ω0 is the resonance frequency of the two-level system. It is generally
convenient to define a complex “pseudo-polarization” amplitude Q̃ by

iρ01pN̄ = 1

2
Q̃ exp(iω	t) (4.4)

where N̄ = N̄0ginh(ω0 −ωih) and N̄0 is the total number density of the two-level
systems. The real part of Q̃ will describe the attenuation (or amplification for
an initially inverted system) of the electric field. Note that Q̃ = iP̃ where P̃
is the slowly varying polarization envelope defined in Eq. (3.28). Further we
introduce a normalized population inversion:

w = pN̄(ρ11 − ρ00). (4.5)

The complete system of interaction and propagation equations can now be
written as:

˙̃Q = i(ω0 − ω	)Q̃ − κẼw − Q̃

T2
(4.6)

ẇ = κ

2
[Q̃∗Ẽ + Q̃Ẽ∗] − w − w0

T1
(4.7)

∂Ẽ
∂z

= −µ0ω	c

2n

∫ ∞

0
Q̃(ω′

0)ginh(ω′
0 − ωih)dω′

0. (4.8)

The quantity κE with κ = p/� is the Rabi frequency. T1 and T2 are respectively
the energy and phase-relaxation times. Most of the energy conserving relaxations
are generally lumped in the phase-relaxation time T2. Equation (4.8) has been
obtained from Eq. (3.30) by integrating over the polarization of subensembles
with resonance frequency ω′

0. The set of Eqs. (4.6)–(4.8) is generally designated
as Maxwell–Bloch equations.

Another common set of notations to describe the light–matter interaction uses
only real quantities, such as the in-phase (ν) and out-of-phase (u) components
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of the pseudo-polarization Q̃, and, for the electric field Ẽ , its (real) amplitude E
and its phase ϕ. Defining

Q̃ = (iu + ν)eiϕ (4.9)

and substituting in the above system of equations leads to the usual form of
Bloch equations1 for the subensemble of two-level systems having a resonance
frequency ω0.

u̇ = (ω0 − ω	 − ϕ̇)ν − u

T2
(4.10)

v̇ = −(ω0 − ω	 − ϕ̇)u − κEw − ν

T2
(4.11)

ẇ = κEν − w − w0

T1
(4.12)

where the initial value for w at t = −∞ is

w0 = pN̄(ρ(e)
11 − ρ

(e)
00 ). (4.13)

The propagation equation, [Eq. (4.8)] in terms of Ẽ and ϕ, becomes

∂E
∂z

= −µ0ω	c

2n

∫ ∞

0
ν(ω′

0)ginh(ω′
0 − ωih)dω′

0 (4.14)

∂ϕ

∂z
= −µ0ω	c

2n

∫ ∞

0

u(ω′
0)

E ginh(ω′
0 − ωih)dω′

0. (4.15)

The vector representation of Feynman et al. [9] for the interaction equations
is particularly useful in the description of coherent phenomena. The repre-
sentation is a cinematic representation of the set of equations (4.10), (4.11),
and (4.12). For simplicity, we consider first an undamped isolated two-level
system (T1 = T2 = T3 = ∞), and construct a fictitious vector �P of components
(u, v, w), and a pseudo-electric field vector �E of components (κE , 0, −
ω). The
detuning is defined as 
ω = ω0 − ω	 − ϕ̇. The system of Eqs. (4.10)–(4.12)
are then the cinematic equations describing the rotation of a pseudo-polarization
vector �P rotating around the pseudo-electric vector �E with an angular velocity

1These equations are the electric dipole analog of equations derived by F. Bloch [8] to describe
spin precession in magnetic resonance.
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(a) (b)

Qi

Qr
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E
~

~

ν

Figure 4.2 Vector model for Bloch’s equations. (a) The motion of the pseudo-polarization vector
�P (initially pointing downward along the w axis) is a rotation around the pseudo-electric field vector
�E with an angular velocity proportional to the amplitude of that vector. (b) In the complex amplitude
representation, the phase of the electric field determines the particular vertical plane containing the

pseudo-electric field vector �̃E .

given by the amplitude of the vector �E [Figure 4.2(a)]. The vectorial form of
Eqs. (4.10)–(4.12) is thus:

∂ �P/∂t = �E × �P (4.16)

Depending on whether the two-level system is initially in the ground state or
inverted, the pseudo-polarization vector is initially pointing down or up. Because
we have assumed no relaxation, the length of the pseudo-polarization vector
is a constant of the motion, and the tip of the vector moves on a sphere. The
conservation of length of the pseudo-polarization vector can be verified directly
from the set of Bloch’s equations. Indeed, the sum of each equation (4.10), (4.11)
and (4.12) multiplied by u, ν, and w, respectively, yields after integration:

u2 + ν2 + w2 = w2
0 (4.17)

which is satisfied for each subensemble of two-level systems. As shown in
Fig. 4.2(a), a resonant excitation (
ω = 0) will tip the pseudo-polarization
vector by an angle θ0 = ∫∞

−∞ κEdt in the (v, w) plane. For a sufficiently intense
pulsed excitation, it is possible to achieve complete population inversion when
θ0 = π. The effect of phase relaxation (homogeneous broadening) is to shrink
the pseudo-polarization vector as it moves around. To take into account inho-
mogeneous broadening, we have to consider an ensemble of pseudo-polarization
vectors, each corresponding to a different detuning 
ω.
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A similar representation can be made for the system of Eqs. (4.6)–(4.7).
The pseudo-polarization vector is then the vector �Q(Qi, Qr , w) rotating around
a pseudo-electric field vector �E(κẼr , κẼi, −
ω) [Fig. 4.2(b)]. Physically, the
first two components of the pseudo-polarization vector �Q represent the dipolar
resonant field that opposes the applied external field (and is thus responsible
for absorption).

4.2.2. Rate Equations

If the light field envelope is slowly varying with respect to T2, Bloch’s
equations reduce to the standard rate equations. For pulses longer than the dephas-
ing time T2, the two first Bloch equations, (4.10) and (4.11) are stationary on the
time scale of the pulse. Solving these equations for u, ν, and substituting ν into
the third equation (4.12) for the population difference, leads to the rate equation:

ẇ = − E2(κ2T1T2)

1 + 
ω2T2
2

w

T1
− w − w0

T1
. (4.18)

We note that this equation is identical to the rate equation (3.46) introduced
in Chapter 3 in terms of 
N (
N = w/p). Equation (4.18) defines a sat-
uration field at resonance Ẽs0 = 1/(κ

√
T1T2). Off-resonance, a larger field,

Ẽs = Ẽs0

√
1 + 
ω2T2

2 is required to saturate the same transition.
In Chapter 3 we discussed various cases of pulse propagation through resonant

media resulting from the rate equations. For example, for pulses much shorter
than the energy relaxation time τp 	 T1 and purely homogeneously broadened
media the rate equation (4.18) can be integrated together with the propagation
equation (4.8), which yields for the transmitted intensity

I(z, t) = I0(t)
eW (t)/Ws

e−a − 1 + eW (t)/Ws
. (4.19)

In this last equation W (t) = ∫ t
−∞ I0(t)dt, and a = σ

(0)
01 w0z/p is the linear

gain–absorption coefficient. Equation (4.19) corresponds to Eq. (3.55) which
was written for the photon flux F.

Femtosecond pulse propagation through a homogeneously broadened
saturable medium in the limit of T2 	 τp 	 T1 is completely determined by
two parameters: the saturation energy density Ws and the linear absorption
(gain) coefficient a. Equation (4.19) is particularly useful in calculating pulse
propagation in amplifiers, as shown in Chapter 3, and further detailed in
Chapter 7.
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4.2.3. Evolution Equations

Energy Conservation

The total energy in the resonant light–matter system should be conserved if
the pulses are shorter than the energy relaxation time T1, because no energy is
dissipated into the bath. The pulse energy density was defined in Eq. (1.22):

W = 1

2
ε0cn

∫ ∞

−∞
E2dt = 1

2

√
ε/µ0

∫ ∞

−∞
E2dt. (4.20)

A simple energy conservation law can be derived by integrating Eq. (4.14) over
time, after multiplying both sides by E and using the third Bloch equation (4.12):

dW

dz
=
√

ε

µ0

∫ ∞

−∞
E ∂E
∂z

dt

= −µ0ω	 c

2

√
ε

µ0

∫ ∞

−∞

∫ ∞

0
ν(ω′

0)Eginh(ω′
0 − ωih)dω′

0 dt

= −�ω	

2p

∫ ∞

0

[
w∞(ω′

0) − w0(ω′
0)
]

ginh(ω′
0 − ωih)dω′

0. (4.21)

The population difference (per unit volume) (w∞ − w0)/p integrated over the
inhomogeneous transition is a measure of the energy stored in the medium, as a
consequence of the energy lost by the pulse, dW /dz.

Area Theorem

There are other conservation and evolution laws that can be derived for
certain parameters associated with pulses of arbitrary shape. An essential physical
parameter for single photon coherent interactions is the pulse area θ0, defined as
the tipping angle of the pseudo-polarization vector (at resonance) as illustrated
in Fig. 4.2(a):

θ0 =
∫ ∞

−∞
κE(t)dt. (4.22)

For a pulse at resonance, the area θ0 fully describes in which state the medium
is left. It can be seen directly from the vector model of Fig. 4.2(a), or by direct
integration of Bloch’s equations (4.10), (4.11), and (4.12) for exact resonance
[ω	 = ω0 and ˙ϕ(t) = 0] and negligible relaxation (T1 ≈ ∞ and T2 ≈ ∞), that:

w∞ = w(t = ∞) = w0 cos θ0. (4.23)
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Similarly, one finds that the polarization (absorptive component) is proportional
to sin θ0. A “π pulse” is thus a pulse that will completely invert a two-level
system, leaving it in a pure state with no macroscopic polarization. A “2π pulse”
will leave the system in the ground state, having completed a cycle of population
inversion and return to ground state.

Because the area involves the integral of the electric field amplitude rather than
the pulse intensity, higher energy densities will be required to achieve the same
area with shorter pulses. Therefore, experiments of single photon coherent reso-
nant interactions with fs pulses require intensities at which higher-order nonlinear
optical effects may have to be taken into account. Another consequence of the
electric field amplitude dependence of the area is, that in an absorbing medium,
it is possible to have the area conserved, or even growing with distance, although
the energy is decreasing. Such a situation arises when the pulse duration increases
with distance.

For inhomogeneously broadened media an “area theorem” can be derived
which tells us exactly how the pulse area evolves with propagation distance.
With the assumptions that the pulses are at resonance (ω	 = ωih), and shorter than
both the energy relaxation time T1 and the phase-relaxation time T2, a time
integration of Eq. (4.14), taking into account Bloch’s equations (4.10)–(4.12),
yields the area theorem [10]:

dθ0

dz
= α0

2
sin θ0, (4.24)

where

α0 = πµ0ω	 cp

�n
w0(ωih) = πκ2

�ω	

ε0cnp
w0(ωih) (4.25)

is the linear absorption coefficient (at resonance) for the inhomogeneously
broadened transition. w0(ωih) is the initial inversion density at the transition
center (ω′

0 = ωih).
The area theorem applies to amplifying (w0 > 0) as well as to absorbing

media (w0 < 0). The derivation is straightforward if we assume a square pulse
at resonance, and neglect the reshaping of the pulse. However, Eq. (4.24) can
be proven to be quite general and applies to any pulse shape. A graphical
representation of the solution of Eq. (4.24) is shown in Figure 4.3.

The low intensity limit of Eq. (4.24) (sin θ0 ≈ θ0) is the exponential attenua-
tion law (Beer’s law). A remarkable feature of Eq. (4.24) is that it points to area
conserving pulses. Indeed, for any pulse of area equal to a multiple of π, the
area is conserved. This is true, for instance, for a “zero area” pulse, which is not
necessarily a zero energy pulse. A signal consisting of two pulses π out of phase
has an area equal to zero, but an energy equal to twice the single pulse energy.
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2π

θ

αz

π

0 6�6

Figure 4.3 Graphic solution of the area theorem equation. The area is plotted as a function of
distance (in units of linear absorption length (α−1

0 )) for an absorbing medium. There is only one
point on the set of curves that corresponds to any given area. The origin of distance is the abscissa
corresponding to the initial area. From this initial point, a pulse will propagate to the right in an
absorbing medium, to the left in an amplifier. Any initial area will evolve asymptotically with distance
toward the limits 0, 2π, … , 2Nπ (N integer) in an absorbing medium. The asymptotic limits are
π, 3π, … , (2N + 1)π in an amplifier.

Such a pulse sequence propagates without loss of “area” through a resonant
medium.

In addition the area theorem tells us which of the steady-state areas are sta-
ble solutions. For a pulse with an initial area smaller than π, the right side
of Eq. (4.24) is negative, and the area as well as the pulse energy will decay
with distance as the pulse is absorbed. On the other hand, if the pulse area
is initially between π and 2π, θ increases with distance. With such a pulse,
a population inversion has been achieved, and the pulse tail is amplified. The
stimulated emission at the pulse tail results in pulse stretching, and hence an
increase in pulse area with distance. The pulse energy, however, still decreases
with distance in the reshaping process. Pulse reshaping proceeds until the area
reaches the value of 2π. Once the pulse reshaping is completed, the electric
field envelope has acquired a well-defined and stable hyperbolic secant (sech)
shape and propagates without further distortion or attenuation through the reso-
nant absorbing medium. This phenomenon is called self-induced transparency.
Pulses of initial area 2nπ break up into n “2π” pulses. It can easily be verified,
by substitution into Eqs. (4.10)–(4.12), that the envelope given by:

E(t) = 2

κτs
sech

(
t

τs
− z

τsνe

)
, (4.26)
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is a solution of Bloch’s equations. The pulse given by Eq. (4.26) has an area
of 2π and a duration (FWHM) of 1. 763τs. This solution is valid on- and off-
resonance. In Eq. (4.26), νe 	 c is the envelope velocity of the 2π pulse. For a
pulse duration short compared to the inverse (inhomogeneous) linewidth of the
absorber, the envelope velocity is given by νe = 2

/
(α0τs). This slow velocity

essentially expresses that the first half (τs/2) of the pulse is absorbed in a distance
α−1

0 , to be restored to the second half by stimulated emission.
The subscript in θ0 indicates that the amplitude of the electric field of a pulse

at frequency ω	 is used in the previous definition (4.22). In Eq. (4.22) the pulse
envelope θ0 was introduced by a time integral. Another definition for the area is
related to the amplitude of the Fourier transform of the pulse defined in Eq. (1.6):

θ = κ|Ẽ(� − ω0 = 0)|. (4.27)

Because κE(t) has the dimension of a frequency, the Fourier transform of that
quantity is dimensionless. It is left as a problem at the end of this chapter to
show that the definitions (4.22) and (4.27) are equivalent for unchirped pulses at
resonance. Chirped or nonresonant pulses of the same energy or of the same area
θ0 will have a smaller area θ, because of the broadening of the Fourier spectrum
because of the phase modulation. The distinction is important in determining the
threshold for nonlinear propagation phenomena such as self-induced transparency
[11]. Chirped off- or on-resonance pulses will evolve toward a pure unmodulated
2π pulse at the original pulse frequency ω	, provided the initial area θ is larger
than π, as has been demonstrated by numerous computer simulations [11].

The coherent absorber is therefore an ideal filter for phase and amplitude
fluctuations for pulses of initial area larger than π. Because of the slow prop-
agation velocity of the 2π pulse, all fast phase and amplitude noise propagates
ahead of the pulse as a “precursor” that is ultimately absorbed [11–13]. An
example of the evolution of a small Gaussian disturbance (90o out-of-phase)
initially superimposed on top of a 2π hyperbolic secant pulse is illustrated
in Figure 4.4. The amplitude and phase of the electric field are represented
as a function of time and distance. The propagation distance is expressed in
units of the linear absorption length. The initial “noise pulse” on top of the
2π pulse is indicated by the dashed circle around the top of the main pulse.
The phase of the perturbation is indicated above the amplitude disturbance.
The phase modulation is seen to be continuously amplified with propagation
distance. This is consistent with the discussion on the average frequency of a
pulse off-resonance being shifted further away from resonance with distance.
In the spectral domain (not shown), this perturbation appears as little “bumps”
on the wings of the pulse spectrum. The amplification of the phase modula-
tion corresponds to the Fourier components of the perturbation being rejected
farther away from resonance. Numerical simulations have shown that the phase
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Figure 4.4 Propagation of a 2π pulse at resonance, showing the “filtering” of a small 90◦ out-
of-phase Gaussian disturbance (shown in the dashed circles). The medium is inhomogeneously
broadened with the line profile ginh(
ω) = (1/

√
π) exp[−(
ω/δAV )2]. The initial amplitude is

κE(t) = (2/1. 5)sech[(t −7)/1. 5]+ (0. 1i/0. 3
√
π) exp{−[(t −7)/0. 3]2}, where the time t is expressed

in units of δ−1
AV . Three steps of propagation are shown. The amplitude perturbation is indicated by the

dashed circle. The initial modulation is seen to be amplified in amplitude and phase. Because of its
faster group velocity as compared to the envelope velocity of the 2π pulse, it separates in time from
the latter. The amplification of the phase fluctuation indicates that the perturbation also separates in
frequency from the main pulse (Adapted from Diels and Hahn [12]).

perturbations become amplitude and phase perturbations, which propagate at the
normal group velocity of the medium, rather than the low velocity νe of the 2π
pulse. When the 2π pulse has separated in time from the noise signal, it has
reshaped into a lower energy sech pulse broadened by 0.7% in the particular
example shown.

Pulse Frequency Evolution

Bloch’s equations describe the transient response of the complex polarization
for a two-level system. As mentioned in the introduction, the pulse frequency
is no longer a conserved quantity in the presence of a transient polarization.
The medium considered in this section can be represented by a collection
of two-level systems, each with a homogeneous broadening of T−1

2 , with a
frequency distribution represented by a function ginh(ω′

0 −ωih) (inhomogeneous
broadening).
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In this section, we will derive expressions from Bloch’s equations that will
allow us to establish quantitatively the evolution of the average carrier frequency
of a pulsed signal as it propagates through the medium. We have seen in Chapter 1
that the frequency modulation ϕ̇ has to be averaged to define a mean pulse
frequency [Eq. 1.18]. We will introduce the notation 〈ϕ̇〉 for the average phase
derivative (average deviation of the frequency from ω	):

〈ϕ̇〉 =
∫∞
−∞ E2ϕ̇dt∫∞
−∞ E2dt

= 1

2W

[√
ε

µ0

∫ ∞

−∞
E2ϕ̇dt

]
. (4.28)

Multiplying both sides by W and taking the derivative we obtain:

d(W〈ϕ̇〉)
dz

= W
d〈ϕ̇〉
dz

+ 〈ϕ̇〉dW

dz

= 1

2

√
ε

µ0

d

dz

∫ ∞

−∞
E2ϕ̇dt. (4.29)

The last term of Eq. (4.29) can be directly calculated using the Maxwell–Bloch
equations. In particular, we can insert the time derivative of Eq. (4.15) in this
equation:

1

2

√
ε

µ0

∫ ∞

−∞

(
E2 ∂ϕ̇

∂z
+ ϕ̇

∂E2

∂z

)
dt

= −ω	

4

∫ ∞

−∞
dt
∫ ∞

0
dω′

0 ginh(ω′
0 − ωih)

[
u̇E − uĖ + 2νE ϕ̇

]

= −ω	

2

∫ ∞

0
dω′

0

∫ ∞

−∞
dt ginh(ω′

0 − ωih) [u̇E + ϕ̇νE]

= −ω	

2

∫ ∞

0
dω′

0

∫ ∞

−∞
dt ginh(ω′

0 − ωih)

[
(ω′

0 − ω	)νE − uE
T2

]
(4.30)

where we have made use of the first Bloch equation (4.10). We have already
derived an expression for the evolution of the pulse energy density W. Combining
Eqs. (4.21), (4.29), and (4.30) yields the following expression for the evolution
with propagation distance of the pulse carrier frequency:

d〈ϕ̇〉
dz

= ω	

2κW

∫ ∞

0
ginh(ω′

0 − ωih)
[
ω′

0 − ω	 − 〈ϕ̇〉] (w∞ − w0) dω′
0 + 2〈k〉

T2
.

(4.31)
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In analogy to the definition of the average frequency in Chapter 1 [cf. Eq. (1.18)],
we have introduced the average contribution to the propagation vector because
of the resonant dispersion of the two-level system:

〈k〉 =
∫∞
−∞ E2(∂ϕ/∂z)dt∫∞

−∞ E2 dt

= ω	

4W

∫ ∞

0
dω′

0

∫ ∞

−∞
dt ginh(ω′

0 − ωih)uE (4.32)

The polarization amplitude u—and hence the resonant contribution to the wave
vector 〈k〉—will shrink with time in presence of phase relaxation (finite T2).
The corresponding temporal modulation of the polarization is responsible for
the second term of the right-hand side of Eq. (4.31). For short pulses, however,
(τp 	 T2), this second term can be neglected.

The frequency shift is proportional to the overlap integral of the lineshape
ginh(ω′

0−ωih) with the (frequency-dependent) change of the inversion (w∞ − w0)
times the detuning (ω′

0 − ω	 − 〈ϕ̇〉). The ratio of absorbed energy (which
is proportional to (w∞ − w0)) to the pulse energy W is maximum in the weak
pulse limit (θ 	 1). Therefore, the frequency pushing as described by Eq. (4.31)
is important in the weak pulse limit, and for narrow lines [T2 → ∞;
ginh(ω′

0 − ωih) ≈ δ(0)].
Bloch’s equations can be solved analytically in the weak, short pulse limit, i.e.,

for pulses that do not induce significant changes in population and have a duration
short compared to the phase relaxation time T2. The interaction equation (4.6)
can be written in the integral form:

Q̃(t) =
∫ t

−∞
κEwe−i[(ω′

0−ω	)t′−ϕ(t′)]dt′. (4.33)

For weak pulses (w ≈ w0) and the right hand-side of Eq. (4.33) at t = ∞ is
proportional to the Fourier transform of κẼw. Thus we have:

|Q̃|2 = u2 + ν2 = κ2w2
0|Ẽ(ω′

0 − ω	)|2

≈ −2w0(w∞ − w0) (4.34)

where Ẽ(ω′
0−ω	) is the amplitude of the Fourier transform of the field envelope at

the line frequency ω′
0. The last equality results from the conservation of the length

of the pseudo-polarization vector (u2 + ν2 + w2 = w2
0 = constant). The approx-

imation is made that the change in population is small, w2∞ = [w0 + (w∞ −
w0)]2 ≈ w2

0 + 2w0(w∞ − w0). Insertion of the approximation equation (4.34)
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into the energy evolution equation (4.21) leads to the expected result that the
absorbed energy is proportional to the overlap of the pulse and line spectra:

dW

dz
= κω	 w0

4

∫ ∞

0
|Ẽ(ω′

0 − ω	)|2ginh(ω′
0 − ωih)dω′

0. (4.35)

A similar expression is found by inserting the approximation equation (4.34) into
the frequency evolution equation (4.31):

d〈ϕ̇〉
dz

= κω	w0

2W

∫ ∞

0
(ω′

0 − ω	 − 〈ϕ̇〉)|Ẽ(ω′
0 − ω	)|2ginh(ω′

0 − ωih)dω′
0 (4.36)

Comparing expressions (4.35) and (4.36) leads to the conclusion that the
frequency shift with distance is largest for sharp lines (compared to the pulse
bandwidth), and pulses off-resonance by approximately their bandwidth. The
maximum possible shift is about half a pulse bandwidth per absorption length.

The initial frequency pushing with distance given by Eq. (4.36) has an
interesting simple dependence on the initial pulse area, in the case of a
sech2-shaped pulse. It can be verified that the functional dependence is exactly:

d〈ϕ̇〉
dz

= κω	 w0

4ε0cn

1 − cos θ0

θ2
0

�F(ω	), (4.37)

where �F(ω	) is the spectral overlap function:

�F(ω	) =
∫∞

0 κ2E2(ω′
0 − ω	)ginh(ω′

0 − ωih)dω′
0∫∞

−∞ κ2E(t)dt
. (4.38)

The above expression pertains to sech2-shaped pulses. However, Figure 4.5
illustrates that Eq. (4.37) still provides a reasonable approximation even for
asymmetric pulse shapes.

The frequency shift with distance is a manifestation of the fact that the response
time of matter is finite. We alluded to this in Chapter 1, when we wrote the polar-
ization as a convolution integral, expressing that the instantaneous polarization
is not an immediate function of the electric field of the light, but a function of the
history of the field [Eq. (1.71)]. Such convolution expressions can be obtained
directly by Fourier transformation of Bloch’s equations [for instance Eq. (4.6)].

To appreciate physically why the carrier frequency should not be a conserved
quantity, let us consider a square pulse sent through a near resonant absorbing
medium at the average carrier frequency ω	 where ω	 <ωih. High frequency
components within the pulse spectrum are closer to the center of the inhomoge-
neous transition and, thus, are absorbed more than low frequency components.
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d(ϕ)
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0.4
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0

Figure 4.5 Frequency pushing with distance for an asymmetric pulse applied one linewidth
off-resonance, as a function of initial pulse area. The medium is inhomogeneously broadened
with the line profile ginh(
ω) = (1/

√
π) exp[−(
ω/δAV )2]. The pulse shape is given by κE(t) =

1/[exp(t/2) + exp(t/0. 8)]. The frequency (time) is normalized to the (inverse of the) inhomogeneous
broadening linewidth.

The result is a continuous shift of the pulse spectrum to lower frequencies. Essen-
tially the same phenomenon has been discussed in Chapter 1 (Section 1.2.2).
There, the cause was a frequency dependent imaginary part of the dielectric con-
stant. It is left as a problem to find the connection between both descriptions.
Another way to describe the frequency pushing is in the time domain. Initially—
i.e., prior to the arrival of the light pulse—there were no induced dipoles, because
there was no field present to induce them. The initial value of the susceptibility
χ (or, using the notations of this chapter, the pseudo-polarization Q or u, v) is
thus 0. As the leading edge of the pulse enters the medium, it excites the elec-
tronic dipoles, resulting in a change of χ and in a change of the refractive index,
respectively. As we have seen before this results in a pulse chirp which can man-
ifest itself in a shift of the average pulse frequency. Such an effect can be simply
visualized with help of Figure 4.6, which is a three-dimensional representation
of the electric field versus time and distance.

Because the frequency pushing with distance is a general manifestation of
the response time of matter, it will occur whenever there is a transient in the
polarization because of a change in applied field. Even continuous radiation will
be frequency shifted if there are random fluctuations of the phase of the field.
Analytical expressions can be derived for the shift of average frequency with
distance for a phase fluctuating dc field [11].

Given a symmetric line shape, is the frequency pushing symmetric above
and below resonance? There is a blue shift equal to the red shift, only within
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Figure 4.6 Sketch illustrating the evolution of the average frequency of a short pulse as it prop-
agates through matter. Figure (a) shows the relative frequencies of the radiation (ω	) and material
resonance (ω0). These are however steady-state values. Prior to applying the field (and for the first
optical cycle(s) of the radiation), the electric dipoles have not yet been induced, and the abscissa
is the correct representation of both the absorption and dispersion. If a square pulse is applied, the
value of the absorption and dispersion evolve with time from the initial condition (0) to the value
on the corresponding curve at ω	. A representation of the evolution of the wave packet in time and
space is shown in (b). The leading edge of the square pulse is not affected, because the dipoles have
not yet been induced. The time varying index leads to a shift of the average pulse frequency to lower
frequencies.

the framework of the SVEA. Numerical simulations indicate that the material
response is larger below resonance than above, leading to a larger red shift than
blue shift. This may not come as a surprise, because the response of a system
with a resonance at ω0 will “follow” a low frequency (ω	 	 ω0) excitation, but
has zero response at frequencies far beyond its resonance (ω	 � ω0).

4.2.4. Steady-State Pulses

A steady-state pulse is a pulse for which the envelope E(t − z/νe) is conserved
along propagation. The quantity νe is the velocity of the pulse envelope. Usually it
depends on properties of the medium and the pulse and differs from the group and
phase velocity. If the pulse envelope remains constant, various pulse parameters
such as the pulse duration, energy, and area should also be conserved.

In the case of inhomogeneously broadened media, the area theorem applies.
From Eq. (4.24), a necessary condition for the existence of a steady-state pulse
is that dθ/dz = (α0/2) sin θ0 = 0. Obviously there are several values of the
area which do not change with distance; they are θ0 = 0,π, 2π, 3π, … . A quick
glance at the graphical representation (Fig. 4.3) of Eq. (4.24) indicates that in
an absorbing medium (α< 0) the areas θ0 = 0, 2π, 4π… are stable solutions,
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although for amplifying media, the stable areas correspond to uneven numbers
of π. At resonance, steady-state pulses correspond to the π pulse. As men-
tioned previously, in the case of an absorber, only the area 2π corresponds to
a stable stationary pulse. In the amplifier, however, even with constant area,
the pulse energy will tend to grow to infinity unless balanced by a loss mecha-
nism. We will use a scattering coefficient σs to describe such a loss mechanism
in searching for steady-state pulses in amplifiers. It is the same coefficient rep-
resenting linear losses as the κ1 introduced in Eq. (1.142)—the notation σs is
chosen here to avoid confusion with the Rabi coefficient κ.

Transverse effects have been neglected in the search for steady-state solutions
and in the evolution equations derived in the previous sections. In free space,
the plane wave approximation will only hold within the confocal parameter of a
beam of finite size. Even within this limit, transverse effects in coherent interac-
tion may contribute to self-focusing and defocusing of the beam [14]. As a rule of
thumb, the plane wave approximation for self-induced transparency may be
considered to hold for approximately five linear absorption lengths. There are
however two important types of confinements for which the single dimensional
approach remains valid over long distances:

• optical fibers and
• optical cavities.

The search for steady-state solutions in conditions of coherent interactions has
more than purely academic interest. The main motivations for these studies
relate to

• stability,
• minimizing energy losses, and
• maximizing energy extraction.

We have seen in the previous section that the 2π pulse in absorbing media
acts as a filter, “cleaning” the signal from amplitude and phase fluctuations.
The steady-state pulse in an absorber has minimum energy loss, because it returns
the absorbing two-level system to the ground state. In an amplifier or in a laser,
steady-state pulses can be found that bring the two-level system from inversion
to the ground state—and hence extract the maximum energy possible from the
gain medium.

Steady-State Pulses in Amplifiers

For finite T2, stable steady-state pulses do not exist in absorbing media.
The loss of coherence leads to irreversible energy losses, causing to the collapse
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of an initial 2π pulse. In the case of an amplifier, however, steady-state pulses
can be found even in the presence of homogeneous broadening, because there is a
gain mechanism to compensate for the losses. Because there is no mechanism to
“push back” in time, the leading edge of the pulse as in the case of “2π pulse prop-
agation,” the envelope velocity will generally be close to the phase velocity in
an amplifier. In searching for steady-state solutions off-resonance, it is important
to take into consideration the correct dispersive response, and the corresponding
phase velocity νp. It is this same near-resonant phase velocity—as opposed to
the phase velocity in the host medium c/n—that is used in the definition of the
slowly varying components of a propagating physical quantity X̃:

X = 1

2
X̃ exp[iω	(t − z

νp
)]. (4.39)

Following the procedure of Petrov and Rudolph, [15] we start directly from the
second-order Maxwell equation for a linearly polarized plane wave:

∂2E

∂z2
− 1

c2

∂2E

∂t2
= µ0

[
∂2P

∂t2
+ σs

∂E

∂t

]
. (4.40)

We are looking for solutions that satisfy the steady-state condition for the slowly
varying envelopes, describing “form-stable” pulse propagation. In a frame of
reference moving with the (yet unknown) envelope velocity νe, any function X̃
associated with the pulse (i.e., pulse envelope, polarization, medium inversion)
should remain unchanged:

∂

∂z
X̃(t − z/νe, z) = 0. (4.41)

It can be shown that, within the SVEA, νe ≈ νp. Substituting the slowly varying
field and pseudo-polarization amplitudes (4.6) and (4.7) defined in the section on
Maxwell–Bloch equations into Eq. (4.40), we find:

βẼ + igQ̃ − iγ Ẽ = 0 (4.42)

where we have defined:

β = ω2
	

(
1

ν2
p

− 1

c2

)
(4.43)

g = µ0ω
2
	 (4.44)

γ = µ0ω	σs. (4.45)
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Equation (4.42) expresses that, at steady-state, the “slippage” of the pulse
envelope with respect to the wave (term β) results from a balance between gain
(second term) and scattering losses (third term). According to Eq. (4.42), the
steady-state pseudo-polarization Q̃ = Q exp(iϑ) is proportional to the field E :

Ẽ = ÃQ̃ (4.46)

where

Ã = gγ − i gβ

β2 + γ2
. (4.47)

Substituting in Eq. (4.6) for the time evolution of the pseudo-polarization yields:

Q̇ + iϑ̇Q = −i(ω	 − ω0)Q − κwÃQ − Q

T2
. (4.48)

The real and imaginary parts of Eq. (4.48) and Bloch’s equation (4.7) for the
population difference w form a complete set:

Q̇ = − gγκ

β2 + γ2
wQ − Q

T2
(4.49)

ϑ̇ = −(ω	 − ω0) + κgβ

β2 + γ2
w (4.50)

ẇ = κgγ

β2 + γ2
Q2. (4.51)

Taking the time derivative of the first of these equations [Eq. (4.49)], and substi-
tuting ẇ from the last Eq. (4.51), we find a (relatively) simple equation which is
known to have a sech solution for functions Q that tend to zero at both ends of
the time scale [16]:

QQ̈ − Q̇2 +
[

κgγ

β2 + γ2

]2

Q4 = 0. (4.52)

Substituting the sech solution Ẽ(t) = E0sech(t/τs) exp(iϕ) into Eq. (4.46), and
hence a form Q̃(t) = Q0sech(t/τs) exp(iϑ) in Eq. (4.52), yields a relation between
β and the field amplitude E0. If we choose the carrier frequency ω	 to be the aver-
age pulse frequency, we impose that the average phase derivative over the pulse
duration is zero (

∫∞
−∞ ϕ̇|E0|2 = 0). Equation (4.49) provides an additional relation

to determine the steady-pulse parameters [pulse duration τs (time normalization
factor of sech pulse shape, as defined in Table 1.1), phase ϕ, amplitude E0,
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Table 4.1

Main parameters associated with steady-state pulses in homogeneously
broadened amplifiers. The pulse duration τs is defined in Table 1.1.

Steady-State pulse

Envelope E E0sech(t/τs)eiϕ(t)

Field amplitude E0 [1/(κτs)]
√

1 + (ω	 − ω0)2T2
2

Pulse duration τs T2

{
[α0/(σsκ

2E2
0 τ

2
s )] − 1

}

Average carrier frequency ω	 ω	

Chirp ϕ̇(t) τ−1
s [T2(ω	 − ω0)]2 tanh(t/τs)

Pulse area θ0 π

√
1 + (ω	 − ω0)2T2

2

Pulse energy density W E2
0 τs

√
ε
µ0

and frequency ω	]. The relations yielding the steady-state pulse parameters are
summarized in Table 4.1.

The larger the amount off-resonance, the larger the field amplitudes. A larger
“power broadening” is required to extract the same energy from the gain
medium off-resonance than on-resonance. This class of solutions include the
“π pulse” solution of Arecchi and Bonifacio [17, 18] and the “π

√
2” solution

derived in Diels and Hahn [11, 13]. These types of coherent steady-state pulses
are optimizing the energy extraction from the amplifier.

4.3. MULTIPHOTON COHERENT INTERACTION

4.3.1. Introduction

The high intensities associated with fs pulses lead to a nonlinear response
of the real and imaginary parts of the polarization. The imaginary part of the
nonlinear polarization is associated for instance with multiphoton transitions and
will exhibit a n-photon resonance when two levels of an atomic or molecular
system can be connected by n optical quanta. As for single photon transition,
there will be a linewidth and dephasing time associated with the higher-order
resonance. When the fs pulses are shorter than the multiphoton phase-relaxation
time, we are dealing with coherent transient resonant multiphoton interaction.
This situation is as complex as its name, because we are cumulating the problems
associated with nonlinear optics, coherent phenomena, transient absorption, tran-
sient dispersion, and propagation. In fact it is so complex that few have addressed
this problem either experimentally or theoretically. One might therefore wonder
whether there is any benefit in even considering such situations.



244 Coherent Phenomena

Before we lay down the theoretical framework of multiphoton coherent
resonant interaction, we show the potential benefits of fs coherent excitation
with a few simple examples (an encouragement to the reader to proceed to the
more tedious theoretical subsection).

There is a basic property of coherent transient interaction that is common to
single photon and multiphoton transitions. There is no longer a saturating inten-
sity that tends to equalize the population of the levels connected by the radiation.
Radiation coherently interacting with two-level systems can transfer all the pop-
ulation from one level into the other. If the two levels are initially inverted
(amplifier), the total energy stored in the two-level system is transferred to the
radiation (π pulse amplification). In the case of a system initially in the ground
state (absorber), lossless transmission can be observed (2π pulse propagation).
A typical application is harmonic generation in the presence of multiphoton reso-
nances. The resonant enhancement leads to a better conversion efficiency, which
saturates partly because of multiphoton absorption. Multiphoton coherent propa-
gation effects can be exploited to achieve larger penetration depths—and hence
better conversion.

Transitions always proceed via intermediate levels. In some cases, the effect
of numerous intermediate levels far off-resonance can be combined into one or
more “virtual” intermediate state(s). The multilevel system of equations then
reduces to coupled equations involving only the two extreme upper and lower
resonant levels. This approximation is typical of atomic systems where only a few
levels are directly connected within the pulse bandwidth at low quantum numbers.
In these systems, if two levels are connected by an n-photon transition, there is
generally no intermediate resonance (of order m < n) within the pulse bandwidth.

The situation is different in molecules. There are generally so many levels
around that one can describe the n-photon process as a “ladder” of single pho-
ton transitions. In the presence of a large number of levels—all with a different
detuning with respect to the radiation—maintaining some degree of coherence
requires a particular excitation tailored to the transfer function of the system.
Pulse shaping techniques have reached such a level of sophistication that it
should be possible to provide a fs excitation with a shape designed to produce a
pure inversion or frequency selective excitation of a particular level. The example
of the multiphoton excitation of CH3F by a group of pulses that will be consid-
ered in Section 4.4.2 shows that even in the case of such a complex anharmonic
vibrational–rotational ladder, highly selective excitation can be achieved with
broadband pulses. This complex problem has a solution nearly as simple as that
of the unfortunate “Romeo” ape of Figure 4.7(a) faced with an anharmonic lad-
der. In that analogy also, getting a group of friends to make a multiape coherent
transition could succeed in getting the system in the upper state.

We will start in Section 4.4.2 with the more general (and complex) sys-
tems comprising a large number of levels (such as molecules). In the following
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(a) (b)

Figure 4.7 The problem of reaching a high level with a harmonic ladder (a), and the multiple-pulse
multiphoton coherent solution (b).

section, Section 4.4.3. we will proceed from this more general situation to the
particular approximation that leads to the multiphoton analog of Bloch’s optical
equations.

4.3.2. Multiphoton Multilevel Transitions

General Formalism

The complex atomic–molecular system is represented by the unperturbed
Hamiltonian H0 to which corresponds a set of eigenstates ψk of energy �ωk .
In the presence of an electric field E, the state of the atomic–molecular system is
described by the wavefunction ψ, a solution of the time–dependent Schrödinger
equation:

Hψ = i�
∂ψ

∂t
, (4.53)
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with the total Hamiltonian given by:

H = H0 + H ′ = H0 − p · E(t) (4.54)

where p is the dipole moment. In the standard technique for solving time-
dependent problems, the wave function ψ is written as a linear combination
of the basis functions ψk :

ψ(t) =
∑

k

ak(t)ψk . (4.55)

This expression for ψ is inserted in the time-dependent Schrödinger equation (4.53).
Taking into account the normalization conditions for the basis functions ψk , one
finds the coefficients ak have to satisfy the following set of differential equations:

dak

dt
= − i

�
�ωkak +

∑
j

i

�
pk,jE(t) cos[ω	t + ϕ(t)]aj

= −iωkak +
∑

j

i

2�
pk,j[Ẽeiω	t + Ẽ∗e−iω	t]aj (4.56)

where pkj are the components of the dipole coupling matrix2 for the transition
k → j, and ak are the amplitudes of the eigenstates.

Apart from the basic assumption that the time scale is short enough for all
phase and amplitude relaxation to be negligible, Eq. (4.56) is of a quite gen-
eral nature, and it is ideally suited to numerical integration. It can be used to
solve the most complex problem of light–matter interaction, because no assump-
tions have been made as to the transitions, resonances, detuning, or degeneracies.
However, the complete numerical treatment leaves little room for physical insight.
We will therefore consider some simplified cases for which general trends emerge
from the solution. Even though numerical analysis is still required, it seems
possible to gain some intuition as to the response of the system.

As a first simplifying assumption, we will consider only the levels that can be
connected directly by a single photon at ω	. The separations of the successive
energy levels k from the ground state 0 are �ω0k . We designate with an index k
a state at an energy close to �kω	 (the ground state being thus labeled with the
index 0). The important levels to consider will be those sketched in Figure 4.8(a)
for which the detuning:


k = ω0k − kω	 (4.57)

2We will use both the notation pik and pi,k depending on the complexity of the subscripts.
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Figure 4.8 (a) Energy level diagram, (b) spectral representation, and (c) sequence of exciting
pulses.

is at most comparable to the sum of the radiation bandwidth and the transition
rate. Such a near-resonance condition is illustrated by the sketch of Fig. 4.8(b)
where the dashed line indicates the pulse spectrum overlapping the successive
single photon transitions. Consistent with this approximation, we replace the set
of coefficients ak , which have temporal variations at optical frequencies, by the
“slowly varying” set of coefficients ck , using the transformation:

ak = e−ikω	tck . (4.58)

This is the same type of transformation to a “rotating set of coordinates” as we
applied to the set of density matrix equations (4.2) and (4.3) in the section on
two-level systems.

Selecting from the sum in Eq. (4.56) the particular pairs of levels that matches
best the resonance condition for an incident field at frequency ω	, leads to the
simpler form:

dck

dt
= −i
kck + i

2�
pk−1,k Ẽ∗(t)ck−1 + i

2�
pk,k+1Ẽ(t)ck+1. (4.59)

The use of amplitudes ck rather than elements of the density matrix is more
convenient in dealing with multilevel systems. It is easier, however, to get a
physical picture from a density matrix representation. The density matrix ele-
ments can be calculated from ρii = aia∗

i and ρij = �ijeiω	t = aia∗
j eiω	t for i �= j.

To verify that the two descriptions are equivalent, let us look at the equations for
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a two-level system which can be written in the form:

d

dt

(
c0
c1

)
=
(

0 i p01Ẽ
2�

i p01Ẽ∗
2�

−i
1

)(
c0
c1

)
. (4.60)

Multiplying by c∗
i (i = 0, 1), we find the following set of equations for the

amplitudes c∗
i cj of the elements of the density matrix:

ρ̇11 − ρ̇00 = d

dt
(c1c∗

1 − c0c∗
0) = ip01

�
[Ẽ∗(c0c∗

1) − Ẽ(c0c∗
1)∗] (4.61)

�̇01 = d

dt
(c0c∗

1) = i
1c0c∗
1 + ip01

2�
Ẽ(ρ11 − ρ00). (4.62)

The substitutions:

κẼ = p01

�
Ẽ (4.63)

1

2
Q̃ = ic0c∗

1p01N̄ (4.64)

ρ11 − ρ00 = w

p01N̄
, (4.65)

lead identically to the equations of motion for the pseudo-polarization vector
[Eqs. (4.6) and (4.12)] derived earlier in this chapter. Consequently, some form of
Bloch vector model can be used whenever the multilevel system can be reduced
to a two-level system. It will be shown in the next subsection that such a simpli-
fication can be made even for multiphoton processes and n levels under certain
conditions of detuning of the intermediate levels.

To simplify the notation, we will use complex Rabi frequencies to represent
the electric field of the radiation:

Ẽk+1 = i

2�
pk+1,k Ẽ = i

2�
pk+1,k Ẽeϕk . (4.66)

This particular notation is only used in the following sections of this chapter.
The complex quantity Ẽk+1 represents the complex electric field envelope,
expressed in units of frequency (the Rabi frequency for the transition k → k+1).
This definition involves an arbitrary choice of phase. In general, the initial cycles
(near t = 0) of the applied electromagnetic field are taken to have zero phase
[ϕk(t ≈ 0) = 0]. The definition (4.66) corresponds to transitions from level k
to level k + 1 in Eq. (4.59). The same definition applied to transitions from the
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lower level [k −1 → k in Eq. (4.59)] yields i
2�

pk−1,k Ẽ∗(t)ck−1 = −Ẽ∗
k−1. Let us

consider the harmonic oscillator approximation, for which the dipole moments
are proportional to the square root of the ratio of the indices of the successive
levels [19]: pk+1,k ∝ √(k + 1)/k. It results from this proportionality that the Rabi
frequencies [defined by Eq. (4.66)] are proportional to the Rabi frequency of the
first transition 0 → 1: Ẽk = √

k Ẽ1, where k is the level index. Let us assume
in addition a constant anharmonicity: Each successive transition frequency is
reduced by the same frequency χ:

ω0,j − ω0,j−1 = ω0,j−1 − ω0,j−2 − χ = …

= ω0,1 − ( j − 1)χ. (4.67)

As an illustrative example, let us consider a four-level system excited by a
single pulse of average frequency ω	. With the above mentioned assumptions
and notations, the system of equations (4.56) reduces to:

d

dt

⎛
⎜⎜⎝

c0
c1
c2
c3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 Ẽ1 0 0
−Ẽ∗

1 −i
1 Ẽ2 0
0 −Ẽ∗

2 −i
2 Ẽ3

0 0 −Ẽ∗
3 −i
3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c0
c1
c2
c3

⎞
⎟⎟⎠ . (4.68)

Equation (4.59) and the particular four-level example Eq. (4.68) were established
assuming the presence of levels nearly equally spaced (cf. Fig. 4.8), and a single
frequency source of ultrashort pulses. We leave it as a problem at the end of this
chapter to generalize this treatment to a polychromatic source of several pulses,
matching stepwise transitions of a discrete level system, such as that of a simple
atom. It can be shown that Eqs. (4.53) and (4.68) still apply, with an appropriate
redefinition of the complex Rabi frequencies Ẽi and detunings 
i.

Climbing the Ladder

One of the main interests in coherent interactions with ultrashort pulses is
efficient creation of a population inversion. We will use the example of an anhar-
monic multilevel system to illustrate the high efficiency of optical pumping that
can be achieved in conditions of coherent interactions.

The set of interaction equations (4.68) is particularly convenient for the study
of the response of the multilevel system to a series of identical pulses (random
sequence or regular train). Let us consider, for instance, the simple level structure
of Fig. 4.8. We will assume that only the first four transitions participate in the
excitation process. The system is excited by the sequence of four ultrashort pulses
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of Fig. 4.8(c), with amplitude:

Ẽ(t − t1) + Ẽ(t − t2)eiϕ1 + Ẽ(t − t3)eiϕ2 + Ẽ(t − t4)eiϕ3 (4.69)

where ti denotes the pulse delay. The interaction with a single pulse can be
represented by a matrix that transforms any set of initial ci(t0) into a set of
coefficients ci(t

+
1 ) (where t+1 designates the time just following the pulse). The

phase of each pulse corresponds to a rotation of that matrix. Between pulses, all
the Ẽi in Eq. (4.68) are zero, and the interaction matrix is diagonal. The solution
of the system of equations (4.68) becomes in this case particularly simple. The
eigenvalues are the successive detunings given by Eq. (4.57). For the four-level
system, the coefficients ci after the first pulse will evolve according to:

c0(t) = c0(t+1 )

ci(t) = ci(t
+
1 )e−
i(t−t+1 ) for i = 1, 2, 3. (4.70)

The ci after a delay τ2 [in Fig. 4.8(c)] are the initial conditions for the second
pulse and so forth.

We have seen in the previous section how a π pulse excitation can completely
invert a two-level system, while incoherent excitation or continuous irradia-
tion (or irradiation with pulses longer than the phase-relaxation time T2) can
at most equalize the population of the upper and lower states. Similarly, “coher-
ent pumping” can also be used to complete inversion of multilevel systems. The
situation is, however, more complex because of the plurality of Rabi frequencies
and detunings involved. There is no simple analytical solution to this problem,
which is to find a waveform Ẽ(t) which transforms the initial population state
(1, 0, … , 0) into a final state (0, 0, … , 1). A practical method leading to the
multilevel inversion is to excite the system with sequences of pulses, applied in a
time short compared with the phase-relaxation time. The general procedure is to
optimize the relative phases and delays between pulses to maximize the transfers
of population toward higher energy levels.

Before illustrating this concept by a few simple examples, let us examine
first whether this problem should, in general, have a solution. Each pulse has
set in motion a few near-resonant harmonic oscillators in the molecular system,
of amplitude given by the matrix elements cic∗

j . After passage of the first pulse,

the matrix element cic∗
j is left with a phase ϕ

(1)
ij , which, between pulses, will

increase linearly with time as (
j −
i)(t − t+1 ) [Eq. (4.59)]. Two parameters can
be adjusted for the next (second) pulse:

• the interpulse spacing τ2, to ensure that several matrix elements c∗
i cj are

“caught” in phase by the next (second) pulse, and
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• the phase of the next pulse, ϕ2, equal or opposite to that of the various
matrix elements that were in phase after the delay τ2.

For the sake of illustration, let us suppose that we want the second pulse to start in
phase with c0c∗

1, c1c∗
2, and c2c∗

3. The common phase has to satisfy simultaneously
the equations:

ϕ
(1)
01 + 
1τ2 + m1 · 2π = ϕ2

ϕ
(1)
12 + (
2 − 
1)τ2 + m2 · 2π = ϕ2

ϕ
(1)
23 + (
3 − 
2)τ2 + m3 · 2π = ϕ2. (4.71)

The three equations (4.71) can be solved to determine τ2, ϕ2, m1, m2, and m3.
Because the mi are integers, the system of equations (4.71) will, in general, have
only approximate rather than exact solutions. Among the various approximate
solutions within certain tolerance limits of ϕ2, the one corresponding to the
smallest delay τ2 will be selected.

The procedure of selecting the proper delays and phases of the pulse train can
be explained by means of a simple picture in the frequency domain. A sequence
of equal pulses (tj − ti is the delay between successive pulses) exhibits a modu-
lated spectrum where the envelope is given by the single pulse spectrum. If the
pulse delays and phases are chosen properly the modulated spectrum matches
the transition profile of the energy ladder. Of course, finding the optimum
pulse sequence is more complex than a simple spectral overlap of the optical
excitation and the transition frequencies, because of the nonlinearity of the
interaction.

The various phases and elements (cic∗
i = ρii, and cic∗

j = �̃ij exp[iϕij]) of
the density matrix can be represented, for convenience, at any stage during the
excitation by the pulse sequence in the form of a matrix:

(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00 2|�̃01| 2|�̃02| 2|�̃03|
ϕ10

2π
ρ11 2|�̃12| 2|�̃13|

ϕ20

2π

ϕ21

2π
ρ22 2|�̃23|

ϕ30

2π

ϕ31

2π

ϕ32

2π
ρ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us now apply the procedure outlined above to a specific multilevel system.
The parameters chosen for this particular example are taken from the v3 C–F
stretch mode of vibration of the molecule CH3F. For the first few levels of the
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vibrational ladder the transition frequencies and detunings are:

ω01

2π
= 197. 66 ps−1 
1 = 4. 45 ps−1

ω02

2π
= 392. 34 ps−1 
2 = 5. 92 ps−1

ω03

2π
= 584. 42 ps−1 
3 = 4. 79 ps−1.

We assume that level 4 and higher energy levels are far off-resonance so that they
can be neglected. Our intention is to show that indeed a suitable pulse sequence
can lead to an almost complete inversion of the system (which is initially in
the ground state). For the excitation of this model four-level system, we use
four Gaussian pulses of 1 ps FWHM at 1025 cm−1 (or an angular frequency
of ω	 = 193.20 ps−1) [cf. Fig. 4.8(c)]. The pulse peak amplitudes (in terms of
the complex Rabi frequency) are |Ẽi(0)| = 2 ps−1. This pulse amplitude and
duration, for a dipole moment of p01 = 0. 21 Debye,3 corresponds to a pulse
energy density of 5 J/cm2. The pulse phases and delays are:

ϕ1 = ϕ2 = 0 ϕ3 = ϕ4 = π/3

τ2 = τ3 = 1. 8 ps τ3 = τ4 = 0 ps. (4.72)

The successive density matrices, (M1) at a time τ2 after application of the first
pulse and just before arrival of the second pulse, (M2) at time τ3 (following the
second pulse), and (M4) at time τ4 (following the fourth pulse) are:

(M1) =

⎛
⎜⎜⎝

0. 71 0. 57 0. 44 0. 56
0. 21 0. 11 0. 18 0. 23
0. 24 0. 03 0. 07 0. 17

−0. 18 0. 11 0. 08 0. 11

⎞
⎟⎟⎠

(M2) =

⎛
⎜⎜⎝

0. 46 0. 12 0. 49 0. 87
0. 08 0. 01 0. 06 0. 11
0. 04 −0. 04 0. 13 0. 45
0. 25 0. 17 0. 21 0. 40

⎞
⎟⎟⎠

(M4) =

⎛
⎜⎜⎝

0. 01 0. 05 0. 04 0. 22
−0. 02 0. 05 0. 07 0. 42
−0. 10 −0. 08 0. 03 0. 31
−0. 05 −0. 03 0. 05 0. 91

⎞
⎟⎟⎠ .

31 Debye = 10−18 esu = (1/3) 10−29 C· m
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We note that after the first pulse, the diagonal terms of the density matrix indicate
a distribution of 29% of the population among the three excited states. The popu-
lation density in the middle of the pulse sequence (after excitation by the second
pulse, see matrix (M2)) is particularly interesting, for having the population
nearly equally distributed among the two extreme (ground and upper) states, and
a maximum value for the off-diagonal matrix element |�̃03|. The subsequent pair
of exciting pulses (pulse 3 and 4) is identical to the first one, except that it is
phase–shifted by π/3. That second pulse sequence results in a 91% inversion of
the four-level system.

This type of excitation is the multiphoton analogue of a nonresonant “zero
area pulse excitation” [20] for single photon transitions, which consists of a
sequence of two pulses π out-of-phase. We recall that, in the case of single
photon transitions, referring to the area theorem Eq. (4.24), a signal consisting of
successive equal positive and negative (phase = π) half will have a zero area θ0,
and conserve its zero area during propagation. The Fourier transform of such a
waveform is zero at its resonance frequency but has sidebands that can produce
significant excitation of absorbing lines off-resonance.

In the preceding example of multistep excitation, each of the two successive
pair of pulses acts in an analogous way on the four-level system. We have seen
that a vector model can be constructed for two-level systems. It will be shown
in the next section under which conditions such a model can be extended to

a multiphoton resonance. In general, however, the submatrix

(
ρ00 2|�̃0n|
… ρnn

)

can lead to such a description at times τ2, τ3 and τ4 [Fig. 4.8 (c)], but not
during the application of the pulses, when all states are mixed by the electro-
magnetic field. The general strategy that emerged from a study of anharmonic
systems [21] is to design a pulse (or a sequence of pulses) Ẽs(t) leading to a matrix(

ρ00 2|�̃0n|
… ρnn

)
=
(

0. 5 1
… 0. 5

)
. Repeating the same excitation, with a dephasing

of π/n, i.e., applying Ẽ(t) exp(iπ/n), generally leads to a good approximation

of a pure inversion

(
0 0
… 1

)
, as in the case of the four-level system considered

previously.
The theory presented applies to any physical system that can be modeled

adequately by a set of isolated levels as sketched in Fig. 4.8. It can be generalized
to a step ladder excitation in atomic systems, where radiation pulses containing
different frequencies ω	,i matching the ladder of energy levels are applied.

A Molecular System

The basic approximation made so far is that we have discrete, isolated levels
(1, 2, 3, … ) separated by about the photon energy of the exciting pulse(s).
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This, however does not apply to most molecular systems. In considering tran-
sitions of a real molecule, the model should be corrected to include all the
vibrational–rotational transitions that fall within the excitation spectrum. That
is, any level previously labelled by 1, 2, 3, … , corresponds now to a certain
vibrational band which contains many rotational levels. We will show in this
section that this additional element of complexity can be handled numerically,
and that the general conclusion—namely that a total inversion can be achieved
with properly shaped input signals—remains valid. Throughout this section we
will neglect transitions between different electronic levels.

Depending on the molecular structure the actual vibration–rotational spectra
can be complex, and its detailed derivation is beyond the scope of this book.
The reader is referred to the monograph by Herzberg [22] for example. In the
case of molecular transitions, the wave function has to be expanded in a series
of energy eigenfunctions corresponding to the quantum numbers υ (vibrational
quantum number) and J (rotational quantum number). A dipole allowed transition
can only occur between two vibrational bands that satisfy the selection rules

J = ±1 and 
υ = ±1. Therefore the initial population of rotational states
determines essentially the number of rotational levels that needs to be considered
for each vibrational state during the excitation.

The definition of the detuning has to be extended to take into account the
rotational level structure. Instead of Eq. (4.57), we define the detuning of the
level labeled with the quantum number (υ, J) as:


υ,J = 
υ,0 + B J(J − 1) (4.73)

where


υ,0 = ωυ,0 − υω	 (4.74)

is the detuning of the molecule in the rotational ground state, and 
0,0 = 0.
B is the rotational constant. To simplify the notations, we will use for the matrix
elements of the dipole moment:

pυ,+ = 〈υ, J − 1|p|J , υ + 1〉 (4.75)

pυ,− = 〈υ, J + 1|p|J , υ + 1〉. (4.76)

The J dependence of the dipole moments pυ,+ and pυ,− is given by [23, 24]:

pυ,+ = pυ

√
J + 1

2J + 3
and pυ,− =

√
J

2J − 1
. (4.77)
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For this simplified model of a vibrational–rotational level structure, the system
of differential equations for the coefficients ckJ takes a form similar to Eq. (4.59).
The first two equations are:

d

dt
c0J = − i
0Jc0J + Ẽ1[p0,+c1,J−1 + p0,−c1,J+1]

d

dt
c1J = − Ẽ∗

1 [ p0,−c0,J+1 + p0,+c0,J−1] − i
1Jc1J

− Ẽ2[ p1,+c2,J−1 + p1,−c2,J+1]. (4.78)

As for the previous Eq. (4.56), the frame of reference is rotating at the angular
velocity ω	.

The system of equations (4.78) can be solved numerically starting with an
initial (Boltzmann) distribution for the population of the rotational levels in the
vibrational state (υ = 0):

c0Jc∗
0J = A(J + 1)e[−BJ(J+1)/kBT ] (4.79)

where kB is Boltzmann’s constant, T is the absolute temperature, and A a nor-
malization factor (total population = 1). The numerical calculations were applied
to the situation sketched in Figure 4.9 and will be detailed. A particular result is
shown in Figure 4.10.
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Figure 4.9 Multiphoton excitation of the CH3F molecule. Sketch of the molecule identifying the
C–F stretch mode (a), and corresponding energy level diagram (b). Optimized five pulse sequence
leading to selective excitation of the fifth (υ = 4) vibrational band (c). The absolute phase of each
pulse (in radians) and the relative delays between pulses are indicated.
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Figure 4.10 Selective pumping of the CF stretch mode of a CH3F molecule by a sequence of five
Gaussian pulses, each 1 ps FWHM and with a peak Rabi angular frequency of 1.85 ps−1. With the
first pulse taken as reference for phase and time, the successive pulses are at t = 10.4, 20.85, 31.09,
and 41.32 ps, with a phase of 0.2, 0, 0.1, 0 radian, respectively. The ground state population versus
rotational quantum number is represented before (dotted lines, shaded area) and after (thin dashed
line) the five pulse excitation, as a function of rotational quantum number J . The heavy lines indicate
the population distribution among the rotational lines after the four pulse excitation. The radiation
wavelength is 9.7713 µm. (Adapted from [21].)

Let us choose again as an example the excitation of the C–F stretch mode of
the CH3F molecule (Fig. 4.9), but now taking into account rotational levels. The
transition frequencies are ω1,0/(2πc) = 1048.6 cm−1, ω2,0/(2πc) = 2081.4 cm−1,
ω3,0/(2πc) = 3100.4 cm−1, and ω4,0/(2πc) = 4104.4 cm−1. The excitation con-
sists of a sequence of five identical Gaussian pulses for which 1/λ	 = ω	/2πc =
1023. 4 cm−1, slightly below exact four photon resonance with the upper vibra-
tional level (Fig. 4.9). To compute the interaction with the train of pulses, a
system of circa 50 × 4 coupled equations (4.78) has to be solved numerically.4

As a result of the excitation by a first pulse, a complex distribution of populations
is created among the rotational lines in each vibrational state. When a second
identical pulse is applied, the modification of the population distribution is a
function of the relative delays and phases of the two pulses.

The question of main interest—in fact the main purpose of dealing with
the complexities of coherent interactions—is: can one find a distribution of
pulses that excites only a single rotation level in the upper vibrational state

4The exact number of equations needed depends on the number of rotational states initially
populated, incremented by the number of additional states being accessed by stepwise J → J + 1
excitations.
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(number 4)? The transfer function of this problem is too complex to solve
the general inverse problem—i.e., find the pulse shape, intensity, phase, and
spacing that would provide optimal selective excitation of the vibrational state
υ = 4. Numerical algorithms, however, exist to solve such problems in partic-
ular cases. With some intuition and luck, a trial and error method can, after a
few iterations, lead to quite satisfactory solutions. The general guidelines are as
follows:

• Each pulse should be short and intense enough to meet the bandwidth
requirements of the anharmonicity. As indicated in Fig. 4.8(b), the spectrum
of a single pulse (dashed line) should cover the frequencies of the successive
transitions to be excited. We choose 1 ps pulses, of intensity corresponding
to a peak Rabi frequency of |Ẽ(0)1| = 1. 85 1012 s−1 (notation defined by
Eq. (4.66).

• The interpulse delay should be close to π/2B (10.45 ps for CH3F), which
is one half of the period of the difference frequency between adjacent
rotational lines.

Because there are two upward transition possible for any particular level with
quantum numbers υ, J (υ, J → υ + 1, J + 1 and υ, J → υ + 1, J − 1), we can
expect the initial Boltzman distribution of population in the ground vibrational
state to be transposed as a broader distribution in the excited states (rotational
line heating). The particular choice of interpulse delay (π/2B) should minimize
this effect. Indeed, let us consider an isolated pair of vibrational levels reso-
nant with the laser radiation, in a frame of reference rotating at the angular
velocity corresponding to the (forbidden) J ↔ J transition. A first pulse cre-
ates off-diagonal elements for the transitions J → J + 1 and J → J − 1.
The precession after a delay π/2B brings these two matrix elements exactly
in opposite phase; hence, they cancel each other. The transitions to the next
vibrational level will populate the sublevel J from a pure state at J − 1 and
J + 1.

Systematic calculations of the excitation to the fifth level, for pulse sequences
of various relative phases and delays, lead to the optimal five-pulse sequence
sketched in Fig. 4.9(c). The population distribution created by the pulse
sequence in the upper level (υ = 4) is shown in Fig. 4.10 (heavy line), as a
function of rotational quantum number. For comparison the Boltzmann distribu-
tion taken as initial condition for the ground state υ = 0 (at a temperature of
T = 250oK) is indicated by the light gray area under the dashed curve. The thin
broken line shows the population distribution in the ground state after the pulse
sequence. It is remarkable to note to which extent the choice of interpulse delay
of π/2B resulted in a cooling of the rotational temperature in the excited state.
Indeed, the pulse sequence has essentially resulted in transferring most of the



258 Coherent Phenomena

populations in the J = 2 and J = 3 rotational state of the upper vibrational level.
A population inversion has been achieved for the vibrational levels (higher total
population in υ = 4 than in υ = 0).

4.3.3. Simplifying a N -Level System to a Two-Level
Transition

Taking into account the detailed level structure of a complex molecule,
following the procedure of the previous section is an arduous task. The atomic or
molecular system can be assimilated to a two-level system (the upper and lower
levels) if the intermediate levels are sufficiently off-resonance. To quantify the
conditions under which multiphoton transitions—as opposed to the cascade of
single photon transitions discussed in the previous sections—will be observed,
two problems have to be solved. First, one has to determine the detuning

n = ωn0 − nω	 that provides the maximum amount of mixing (i.e., the largest
amount of population exchange for a given optical field) between the extreme
levels. Second, we have to determine the minimum detuning of the intermediate
levels for which the perturbation of the intermediate levels is negligible. For
simplicity of the analysis, we will approximate the pulse by a square wave.

Two main assumptions are that (a) the detuning 
k of the intermediate level
k is larger than the Rabi frequencies Ẽk defined in the previous section, and that
(b) there is no resonance between any pair of intermediate levels (i.e., ωij �= ω	).

The approach in the following paragraph requires familiarity with properties
of matrices, such as can be found in Franklin [25]. It is not essential to the
understanding of the remainder of this book. The same final result has also been
obtained by a totally different approach [26].

We start from the time-dependent Schrödinger equation (4.53) for the n-level
system. The wave function ψ(t) is expanded the usual way [cf. Eq. (4.55)] in
terms of the eigenfunctions ψk , corresponding to the eigenvalues �ωk of the
unperturbed Hamiltonian H0 [defined in Eq. (4.54)]. We proceed also to the same
rotating wave approximation to represent the interaction by the set of differential
equation put in matrix form in Eq. (4.68) (the latter equation is readily generalized
to a n-level system).

Because we have assumed the field to be constant during the interaction
(square pulse approximation), the coefficients ck(t) of this expansion can be
found exactly through a calculation of the eigenvalues and eigenvectors of the
matrix of this set of differential equations. The coefficients ck(t), solution of
Eq. (4.68), are given by:

ck(t) =
n−1∑

0

xkje
λj t , (4.80)
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where xkj are the eigenvectors corresponding to the eigenvalues λj of the
interaction matrix. Because of the particular form of the interaction matrix H
[the n × n square matrix in Eq. (4.68)], some recurrence relations exist to sys-
tematically search for the eigenvalues and eigenvectors. Indeed, the matrix H
belongs to the class of tri-diagonal matrices, so-called because the only nonzero
elements are of the type aii, ai,i±1 and ai±1,i. Properties of these matrices are
given in Franklin, [25] pages 251–253. Let �n−1 be the determinant of the char-
acteristic equation of the interaction matrix H, and �k−1(λ) be the determinant
of the submatrix containing the first k rows and columns:

�k−1(λ) = (Hk−1,k−1 − λ)�k−2(λ) − Hk−1,k−2Hk−2,k−1�k−3(λ). (4.81)

The characteristic equation �k−1(λ) = 0 has in general k solution which are the
eigenvalues λ0, λ1, … λk−1. There are in general k eigenvalues. To each solution
λj corresponds a set of solutions or eigenvector of the eigenvalue equation:

⎛
⎜⎜⎝

H00 + λ H01 0 … …
H10 H11 + λ H12 0 …

0 H21 H22 + λ H23 …
… 0 … … …

⎞
⎟⎟⎠
⎛
⎜⎝

x0
...

xk−1

⎞
⎟⎠ = 0. (4.82)

Recurrence relations can be found in Franklin [25] for the eigenvectors of
matrix H:

xk−1 = �k−2(λ);

xv = (−1)k−νHv,v+1 … Hk−1,k�v−1(λ), (4.83)

where ν takes any value < (k − 1), and λ can take any of the λj values. The sum
of the roots is equal to the sum of the diagonal elements

∑k−1
0 Hii and is the

coefficient of the term of the characteristic equation in λk−1 where k is the order
of the submatrix. The product of the roots is equal to the value of the determinant
and is equal and opposite to the constant term of the characteristic equation.

These recurrence relations are sufficient to determine, for a given n-level
system, the n roots λi of the characteristic equation, and the n2 numbers xk(λi) that
constitute the n eigenvectors of the characteristic equation, needed to determine
the coefficient ck according to Eq. (4.80). As stated previously, it is desirable to
be able to reduce the n-level system to an equivalent two-level system, between
which the radiation induces multiphoton transitions. We outline the procedure of
this reduction for a three-level system, leaving the generalization to a n-level as
a problem.
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In the particular case of the three-level system, the characteristic equation is:

�2(λ) =
∣∣∣∣∣∣

λ Ẽ1 0
−Ẽ∗

1 −i
1 + λ Ẽ2

0 −Ẽ∗
2 −i
2 + λ

∣∣∣∣∣∣ = 0

= λ3 − i(
1 + 
2)λ2 − (
1
2 − |Ẽ1|2 − |Ẽ2|2)λ − i
2|Ẽ1|2. (4.84)

According to the recurrence expressions (4.83), the solutions xk(λi) (k, i = 0, 1, 2)
should be proportional to:

x0 = Ẽ1Ẽ2 (4.85)

x1 = −λẼ2 (4.86)

x2 = |Ẽ1|2 − λ(i
1 − λ), (4.87)

where λ takes any of the three values, solution, of the characteristic
equation (4.84). Consistent with the original assumption that 
1 � 
2, |Ẽ1|,
|Ẽ2|, one approximate solution to the characteristic equation (4.84) is λ = i
1.
With a large detuning of the intermediate level, we will have thus one eigenvalue
λ1 ≈ i
1 � λ0, λ2. Consistent with the absence of population transfer to and
from level 1, the coefficient c1 is proportional to exp(i
1t). One of the eigen-
values (λ1) is much larger than the two others, because according to Eq. (4.86),
the values x1(λi) are proportional to λ.

Because our goal is to reduce the three-level system to an equivalent two-level
system, the characteristic equation (reduced to second order) should have the
same form as that of a two-level system, which can be seen by reducing the
determinant in Eq. (4.84) to be:

�1(λ) = λ2 − i
λ + |Ẽ1|2, (4.88)

where |Ẽ1| is the Rabi frequency and 
 the detuning of the two-level system.
For the similarity between the equation for the three-level system and the two-
level model [Eq. (4.88)] to hold, the detuning of the upper state should be
redefined as:


 = 
2 − |Ẽ1|2

1

− |Ẽ2|2

1

. (4.89)

The correction to the original detuning 
2, proportional to the square of the
optical electric field, is a “Stark shift.”
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We note that in the case of the two-level system, the frequency of the
Rabi cycling at exact resonance is determined by the difference between the
two eigenvalues. “Exact resonance” in the case of our tri-level system implies
[from Eq. (4.89)] that 
2 = [|Ẽ1|2 + |Ẽ2|2]/
1. Substituting that value in the
characteristic equation, and after some algebraic manipulations, one finds for
the Rabi cycling frequency of the equivalent two-level system:

ERabi = λ2 − λ0 = |Ẽ1||Ẽ2|

1

. (4.90)

We conclude thus that the three-level system, within the approximation of
intermediate level far off-resonance, is equivalent to a two-level system. The
resonance condition is modified by the Stark shift given by Eq. (4.89). A two
photon Rabi frequency can be defined, proportional to the product of the transi-
tion frequencies Ẽ1 and Ẽ2, hence proportional to the square of the electric field
amplitude.

The preceding considerations extend to an arbitrary number of levels. Quite
generally, the multilevel system can, under certain conditions of large detuning
of the intermediate levels, be reduced to a two-level system. The generalized
Rabi frequency and the Stark shift can be incorporated into the density matrix
equations of a two-level system, or into the vector model.

For the n-level system, a crucial approximation is that the detuning of the
intermediate levels be large compared with the Rabi frequencies |Ẽk|. This is a
more complex condition than might appear at first glance; there should be no
accidental resonance of order smaller than n for any pair of levels in the system
being considered.

We refer the interested reader to a derivation of the generalized multilevel Rabi
frequencies. One finds that the multilevel Rabi frequency ERabi, as in the case
of the three-level system, is the small difference of order |Ẽn−1

k |/
n−2
j between

two roots of the characteristic equation, and is

ERabi = 2
Ẽ1Ẽ2 … Ẽn−1


1
2 …
n−2
= κn−1Ẽn−1. (4.91)

κn−1Ẽn−1 is the generalized Rabi frequency, with the scale factor for the
multilevel Rabi cycling given by:

κn−1 = p01 … pn−2,n−1

(
1 …
n−2)(2�)2
. (4.92)
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The Stark shift is the detuning δωs of the upper level 
n−1 consistent with these
solutions.

δωs = 
n−1 = |Ẽ1|2

1

− |Ẽn−1|2

n−2

(4.93)

=
[(

p01

2�
1

)2

−
(

pn−1,n−2

2�
n−2

)2
]

|E |2. (4.94)

Because the multilevel system is equivalent to a two-level system, a simple
system of two density matrix equations should apply (or a modified Bloch vector
model). Using the notation �̃ij = cic∗

j for the off-diagonal matrix element in the
rotating frame, we can write for the two-level system approximation:

˙̃�0,n−1 = i(
0,n−1 − δωs) + iκn−1Ẽn−1(ρn−1,n−1 − ρ00),

ρ̇n−1,n−1 − ρ̇00 = 2κn−1

[
Ẽ (n−1)∗�̃0,n−1 + Ẽ (n−1)�̃∗

0,n−1

]
. (4.95)

The reduction of multiphoton interaction to a coherent model involving only
the two extreme levels may seem like a coarse approximation. It has the value of
making Bloch’s vector model applicable to this complex problem. In particular,
it has been shown to be valuable in designing pulse sequences leading to a
complete population inversion in multilevel systems [21]. The validity of the two-
level approximation has been tested numerically by computing the response of
three- to five-level systems excited by sequences of pulses of different phase [28].

In the following subsection, we consider as an example of higher-order
two-level system four photon resonance in mercury.

4.3.4. Four Photon Resonant Coherent Interaction

In an atomic system, the level density is much smaller than in molecules.
Therefore, in the case of a multiphoton resonance, one will generally not find
intermediate resonances between a pair of levels and the light field. The two-level
approximation introduced above is generally appropriate. We will discuss in this
section harmonic generation by multiphoton resonant coherent propagation in
atomic vapors.

We have considered in Chapter 3 nonresonant nonlinear polarization, leading
to self-lensing, parametric generation, and harmonic generation. The nonlinear
susceptibility responsible for these effects can be enhanced by the proximity of
a resonance. The presence of a resonance, on the other hand, complicates the
interaction and introduces losses.
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Coherent interaction processes take increasing importance the higher the
order (n) of the nonlinear process5 is. As we have seen in the previous sec-
tions, the transition rate between the two levels (a generalized Rabi frequency)
is proportional to the nth power of the field envelope E . Therefore, the parameter
characteristic of the interaction is the pulse “area,” proportional to the integral
of the multiphoton Rabi frequency defined in Eq. (4.91), θn = ∫ κnEn(t)dt. For a
two photon transition, the area is proportional to the pulse energy. In the case of
higher-order processes, for the same pulse energy, shorter pulses have a larger
area, hence favor the higher-order nonlinear process. With the progress in pulse
shaping techniques (see Chapter 8), femtosecond pulses could be used to establish
multiphoton coherences, manipulate population transfers, and generate with high
efficiency higher-order harmonics. This is a rather unexplored area of nonlinear
optics, but extremely promising to generate efficiently short wavelength radiation,
or store a large amount of energy in an atom or molecule.

Let us consider for instance the case of resonant nth harmonic generation,
where the fundamental radiation is in a kth (k < n) photon resonance with a
particular atomic transition. At moderate powers, the conversion efficiency is
orders of magnitude larger than in the nonresonance case, because of the inter-
mediate resonance. However, as the power is increased, in an attempt to achieve
higher conversion efficiencies, the k–photon absorption can deplete the fun-
damental radiation, before significant conversion is achieved. The energy of
the fundamental radiation is transferred to the atomic system rather than to
the harmonic radiation. A solution to this problem is to minimize the energy
lost to the atomic system by the fundamental by making use of pulse shapes
or sequences that propagate through the (multiphoton) resonant medium with
minimum absorption losses.

This technique has been used successfully to increase the third harmonic
conversion in the case of a two photon resonant transition in lithium
vapor [28–30]. A first pulse excites (via a two photon transition) the 4s level
of lithium. For a second pulse, following the first one with a delay short com-
pared to the phase-relaxation time of the two photon transition, and sent through
the same medium π/2 out-of-phase, two photon stimulated emission occurs. The
second pulse recovers the energy lost by the first one to the medium. If conditions
of phase matching (for third harmonic generation) are not met, the peak intensity
of the second pulse increases with propagation distance (two photon stimulated
emission) at the expense of the first pulse which is depleted. If conditions for
phase matched third harmonic generation are met, however, energy is continu-
ously transferred from the second pulse to the third harmonic field. As a result,

5In this subsection n is the order of the process, or the number of photons required to make the
transition between the two levels, and should not be confused with the n representing the number of
levels in the previous subsection.
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instead of growing at the expense of the first pulse, the second pulse propagates
with near constant peak intensity over a long distance. Efficient third harmonic
generation occurs during that second pulse.

Among the multiphoton processes of various orders n, two photon resonant
processes are somewhat unique, because, as long as the pulses are shorter than the
inverse linewidth of the resonances, the result of the interaction is independent of
the pulse duration and depends only on the pulse energy. This is mainly because,
as we have seen before, the rate of population transfer (Rabi frequency) and level
motion (Stark shift) are all proportional to the pulse intensity. For instance, if a
10 ps pulse of 1 mJ/cm2 is a π pulse producing complete inversion, a 10 fs pulse
of 1 mJ/cm2, having a 103 times higher intensity, will produce exactly the same
result.

The situation is quite different with higher-order processes, as pointed out at
the beginning of this section. We will therefore chose the example of a four pho-
ton resonance to illustrate the potential benefits, as well as some of the difficulties
associated with higher-order resonances. Specifically, we will consider four pho-
ton coherent resonant excitation of mercury, as sketched in Figure 4.11. If its
intensity is sufficiently high, a fs pulse of amplitude Ẽ(t) at ω	 (fundamental)
will be attenuated through four photon absorption. The excited level (61D2 in
Fig. 4.11) can be seen as a “springboard” for third (frequency 3ω	, field Ẽ3)
and fifth (frequency 5ω	, field Ẽ5) harmonic generation through Stokes and
anti-Stokes Raman processes. The motivation for studying such a complex system

61D2

61P1

61S0

5� 3�

�

�

�

�

�

Excitation Harmonic
generation

Re-excitation

Figure 4.11 Energy levels of mercury and some of the possible excitation and harmonics generation
mechanisms. The third and fifth harmonic can be generated by a Raman process involving the 61D2
state for example. The main loss mechanisms are four photon absorption and five photon ionization.
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is to generate efficiently third and/or fifth harmonic, using the four photon reso-
nance to enhance the nonlinear susceptibility, and coherent propagation effects to
minimize energy transfer (absorption) to the atomic system. We use this problem
as an example to illustrate the various interesting phenomena that complicate
significantly the study of higher-order processes.

Because a resonant level has been excited by four photon absorption (61D2
in Fig. 4.11), generation of the third harmonic frequency is possible through a
Raman process. Energy losses occur because of direct (four photon) absorption,
and subsequent absorption of another photon leading to (five photon) ionization.

As discussed in the previous section, the system of interaction equations can
be reduced to a system of three equations resembling Bloch’s equations [cf.
Eq. (4.95)]. One can define a fourth-order Rabi frequency proportional to the
fourth power of the complex electric field amplitude Ẽ(t). The off-diagonal
matrix element representing the four photon coherent resonant excitation is a
quantity oscillating at the frequency 4ω	, with a complex amplitude of the
pseudo-polarization Q̃4. As shown in Appendix D, third and fifth harmonics
Ẽ3 and Ẽ5 are generated by the combinations Q̃4Ẽ∗ and Q̃4Ẽ , respectively which
appear as source terms in the wave equation for the electric field amplitudes.
These coupling terms describe stimulated Raman processes. There is also a non-
resonant contribution to the harmonic fields. In particular, the nonresonant third
harmonic generation source term is proportional to the third power of the field
[of the form χ(3)Ẽ3(t)] and may not be negligible compared to the Raman term
Q̃4Ẽ∗. Combinations of these fields (Ẽ4

1 , Ẽ1Ẽ3, Ẽ∗
1 Ẽ5 and Ẽ2

1 Ẽ5Ẽ∗
3 ) are the source

terms in the interaction equations (D.1 and (D.2) given in Appendix D.6 The
upper level of the transition is pumped by four photons at the fundamental fre-
quency, but also by the sum of a third harmonic photon and a fundamental photon.
If these two excitation processes have opposite phase, there is no more interaction
between the resonant radiation and the medium (interaction quenching).

The complexity of the problem is because of the number of combinations
of fields which give rise to an interaction of order four or lower. Second-order
Stark shifts can sweep intermediate levels through resonance, creating “transient
resonances.”

The example of four photon resonant transient coherent interaction in Hg
vapor points to three puzzling effects typical of higher-order systems:

1. interference between resonant and nonresonant harmonic generation;
2. transient Stark shifts; and
3. interaction quenching.

6In Eqs. D.1 and D.2, the field amplitudes Ẽi are replaced by corresponding Rabi frequencies Ṽi
defined in Eq. D.2.
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All these effects are particularly dramatic when an intermediate level approaches
resonance with an harmonic of the field. This is in particular the case with the
6S–6D four photon resonance of Hg, where the 6P state approaches a three photon
resonant condition, as shown in Fig. 4.11. This near-resonance accounts for the
three above effects. First, the nonresonant susceptibility χ(3) given in Eq. (D.8)
is enhanced, resulting in a nonresonant contribution to the third harmonic, which
can interfere with the resonant term in Eq. (D.9).

For the particular levels of Hg shown in Fig. 4.11, the four photon area is:

θ4 = 0. 0175
W2

τp
(4.96)

where W is the energy density in J/cm2 of a pulse of duration τp (in ps). This
example shows indeed that higher-order coherent interactions require fs pulses.
An area of θ4 = 0. 7 can be achieved with a 100 fs pulse of 2 J/cm2 [200 µJ in
a cross section of (0.1 mm)2].

Because of the proximity of the 6P level (indicated in Fig. 4.11), the main
contribution to the Stark shift of the resonant transition is a shift of the upper
6D level:

δω2 ≈ 1√
r04

[ |p04|2
(ω34 − ω	)

]
|Ṽ1|2, (4.97)

where the index 0, 3, and 4 have been given to the ground, the 6P and the
6D levels, respectively. Equation (4.97) is the Stark shift expression Eq. (D.5)
in which the dominant term of the susceptibility [Eq. (D.6)] has been inserted.
The symbol |Ṽ1(t)| represents the electric field in units of s−1/4, defined through
the four photon Rabi frequency Ṽ4

1 (t) = r04Ẽ4
1 (t). The various coefficients are

defined in Appendix D.
As the field intensity of the fs pulse increases, the level 6D (level 4) is shifted

in accordance with Eq. (4.97). The resulting change in the denominator of
Eq. (4.97) implies a redefinition of the detuning δω. Thus, with increasing field
amplitude, there is a nonlinear self-induced detuning effect, reducing the reso-
nant coherent interaction with ultrashort pulses. This effect has been predicted
within the framework of the approximation used in Refs. [30, 32]. It should be
noted that in this particular example the field induced shifts are too large and too
fast to be consistent with the adiabatic approximation used in the elaboration of
the four photon resonant interaction equations (see Appendix D).

The last mentioned effect of interaction quenching is probably the most
challenging—yet unsolved—dilemma of resonant multiphoton coherent inter-
action. When intermediate resonances make the generation of an harmonic field
particularly efficient, the source terms for the four photon coherent excitation
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through the harmonic and through the fundamental are out-of-phase—hence
cancel each other. In the density matrix equations for this interaction (as out-
lined in Appendix D), the “coherent excitation” is represented by an off-diagonal
matrix element ρ̃04 or its complex amplitude defined as Q̃4 = 2iρ̃04e−4iω	t .
The sequence of events that unfolds by solving the system of interaction equa-
tions (D.1) can be told through phenomenological arguments. As a strong pulse
propagates through the medium, coherent excitation (of amplitude Q̃4) is created
through a source term proportional to the fourth power of the fundamental field
Ẽ4

1 , resulting also in some population of the level 4 (61D2 in Fig. 4.11). The
mixing of the four photon excitation and the fundamental leads to the generation
of a third harmonic field (ω3	 = 3ω	; Ẽ3 ∝ Q̃4Ẽ∗

1 ) and a fifth harmonic field
(ω3	 = 5ω	; Ẽ5 ∝ Q̃4Ẽ1). Both the third and fifth harmonic field are themselves
source terms for the coherent four photon excitation through second-order pro-
cesses: difference frequency generation ω5	 − ω	 (source term for Q̃4 ∝ Ẽ5Ẽ∗

1 )
and sum frequency generation ω3	 +ω	 (source term for Q̃4 ∝ Ẽ3Ẽ1). The phase
relation between the three source terms for the coherent excitation is such that
they cancel each other. For all practical purposes, the radiation does not interact
with the resonant system anymore. This effect is illustrated in the simulation of
Figure 4.12, where the generated third harmonic and the five-photon ionization
are plotted as a function of propagation distance. Because of the proximity of the
61P1 level to a three photon resonance condition, the third harmonic generation
dominates the fifth harmonic in this particular example. The incident wavelength
is at 566.7 nm, or 6 nm above the weak field resonance (560.7 nm) to compensate
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Figure 4.12 Five photon ionization (in %; solid line) and third harmonic peak field conversion
factor η (dashed line) versus propagation distance (in µm) in mercury vapor. The vapor pressure
is 10 torr. The incident pulse shape is the Gaussian Ẽ1(t) = Ẽ10 exp[−(t/τG)2], with τG = 3 ps.
The pulse energy density is 20 J/cm2. (Adapted from [29].)
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for the Stark shift. As the pulse propagates through the mercury vapor, the third
harmonic generation is seen to saturate after a short distance, while the ionization
drops to zero. The third harmonic being generated with a phase opposite to that
of the fundamental, the interaction vanishes, because the second order (ω3	+ω	)
and fourth order (4ω	) mechanisms of four photon resonant excitation [Eq. (D.1)]
cancel each other. This problem could be solved by adjusting the relative phase
of the fundamental and third harmonic and by using phased pulse sequences to
control the relative phase of the coherent excitation (term of amplitude Q̃4) and
that of the radiation.

Multiphoton resonances reduce the energy requirements on higher-order
harmonic generation by enhancing the nonlinear susceptibilities. Energy losses
associated with the inevitable multiphoton absorption associated with the
resonance can be minimized by exploiting the property of reversibility of light–
matter energy transfers in coherent multiphoton resonant interactions with fs
pulses. The above example, however, illustrates the complexity of multiphoton
coherent effects. Mastering the theory and being able to generate the fs pulses
shapes dictated by numerical simulations is the price to pay for high nonlinear
conversion with low energy fs pulses.

These techniques are of increasing importance for the generation of femto-
second pulses in the UV, where one has to work with gases rather than crystals.

4.3.5. Miscellaneous Applications

Because fs pulses can be shorter than dephasing times even in condensed
matter, the reversibility of coherent interactions can be exploited in various
applications. All experiments using photons as a source of momentum can be
made more efficient with ultrashort pulses. When an atom of mass M absorbs a
photon, the ratio of the recoil energy Mν2/2 to the photon energy is the minute
quantity �ω	/(2Mc2) ≤ 10−19.

To illustrate the latter point, let us consider the situation sketched in
Figure 4.13, where the intracavity beam path of a mode-locked laser crosses
an atomic beam at a right angle. Let us assume that the laser is tuned to an
absorbing transition of the atom, and the intracavity mode-locked pulse inten-
sity is such as to be a π pulse for the atom. At the first passage of the pulse, m
atoms will have been given a momentum Mν, while the pulse has lost m photons.
If the number of photons in the pulse is n � m, the pulse reflected back by the
mirror will still be a π pulse, which will return the m atoms to the ground state,
thereby restituting its original energy to the mode-locked pulse and imparting an
addition momentum Mν to the m atoms in the same direction. The net result is
that the number of photons is conserved, but the atoms have been given a kinetic
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Figure 4.13 Momentum transfers between a collection of atoms and an optical pulse. In (a), a pulse
of n photons loses one photon to the atomic system, providing a small recoil to the absorbing atom.
(b) and (c) show two successive steps of intracavity interaction of a π pulse with an atomic beam.
In a first passage, the atoms are inverted, resulting in a recoil to the right. The sketch assumes only
one atom interacting with the beam. That atom absorbs one photon from the pulse and is imparted a
kinetic energy Mν2/2 = (�ω	/2Mc2)�ω	 (b). The reflected pulse recovers its energy by stimulated
emission at the second passage, while giving an additional recoil to the right (c).

energy of 2Mν2. It is left as a problem at the end of this chapter to determine
how the energy is conserved in this problem. A simple mechanical analogy for
this problem is sketched in Figure 4.14.

Many optical interactions that involve optical pumping can be performed more
efficiently with ultrashort pulses. However, it may come as a surprise that, with
these ultrashort broad bandwidth pulses, frequency selective excitation is also
possible. The frequency selectivity can be obtained from a combination of one
or more pulses. For instance, it can easily be seen that a zero area pulse has no
Fourier component at its average frequency. Such a pulse can be designed to
produce complete inversion off-resonance and no excitation at resonance.

Similarly, a Gaussian pulse can be designed to be a π pulse at resonance
and a 2π pulse off-resonance. The case of a square pulse is the most obvious.
For a square π pulse at resonance (ω0) with a line to be excited θ0 = κEτp = π.
If we want to leave a line at frequency ω1 = ω0 − 
ω unexcited, the condition
for the pulse duration and amplitude is τp

√
κ2E2 + 
ω2 = 2π or κE = √

3 
ω

[as can be seen from the vector model sketched in Fig. 4.2 (a)]. These prop-
erties can be exploited for selective optical excitation, for instance, isotope
separation [33, 34]. It can be shown that, in the case of Doppler broadened
transitions, the “π–2π” (π pulse on resonance; 2π pulse off-resonance) selective
excitation scheme is more selective and efficient with Gaussian shaped than with
square pulses [20]. If the pulse duration and amplitude are appropriately chosen,
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strong (“π”) pulse can...

...completely invert a two level system.

If the excited system reemits in the...

...opposite direction, the momentum is double,
and the system is left in ground state.

Figure 4.14 Momentum transfers between a short pulse and a two-level system; the “mechanical”
analogy.

the selected line can be completely inverted in a single shot, while the transition to
be left undisturbed is completely returned to ground state. The selectivity is high,
even though the pulse is short enough to interact with both lines. There is a simple
mechanical analogy to this “π–2π” excitation. The analog of the two absorbers
at different frequencies are two pendulae of different lengths. The element to be
selected is the longer pendulum (Fig. 4.15), while the “unwanted” transition is the
shorter toddler. The longer pendulum has a lower frequency. The potential energy
is the analogue of the population difference (taking as reference the axis of the
pendulum). For the same kick (light pulse) applied to both pendulae, it is possi-
ble to create a complete inversion for the selected transition, while the unwanted
element has gone through a whole cycle and returned to the ground state.
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Figure 4.15 Selective optical excitation with a π pulse on resonance and a 2π pulse off-resonance:
the pendulum analogy.

Another application of coherent interaction involves the use of an atomic
resonance as a local oscillator, to extract phase information of a chirped pulse [35]
with frequency ω	 + ϕ̇(t). The chirped pulse to be analyzed is sent through a cell
containing sodium vapor with a sharp resonance at ω0. The transmitted pulse
interferes with the resonant reradiation from the atomic line, resulting in a field
component modulated at a frequency ω	 + ϕ̇(t)−ω0. This modulation carries the
information about the chirp and is measured by cross-correlation with a shorter
fs pulse. The result of such a measurement is illustrated in Figure 4.16. The
chirp was induced on a 5.4 ps pulse from a synchronously pumped dye laser by
passage through a polarization preserving fiber (3 m long). The pulse bandwidth
was increased by SPM from 1 Å to 50 Å. A fraction of the original self-modulated
pulse is sent through a two-stage compression (as described in Chapter 6) to create
the 22 fs pulses needed to cross-correlate the signal transmitted by the sodium
cell [34]. The upper trace (a) in Fig. 4.16 is the cross-correlation of the input to
the sodium cell with the 22 fs pulse. The lower figure (b) shows the modulation
induced in the sodium cell (optical thickness a = 95). Because the phase of the
pulse changes by exactly π from one extremum to the next, a plot of the phase
versus time can easily be made. Such a measurement is particularly useful to test
the linearity of frequency chirping techniques.
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Figure 4.16 Transmission of a frequency swept pulse through a sodium cell. (a) Cross-correlation
of the input pulse with a 22 fs probe pulse. (b) Cross-correlation of the output pulse with a 22 fs
probe pulse. The modulation indicates that the frequency of the pulse transmitted through the fiber
varies with time (chirp). The 22 fs probing pulse’s autocorrelation (FWHM 34 fs) is also shown.
(Adapted from [34].)

4.4. PROBLEMS

1. Compare the population transfer when a two-level system is excited by
(a) a step function dc field (zero carrier frequency) and (b) a step function
electric field resonant with the transition frequency.

2. Find the steady-state solution of Bloch’s equations valid for monochro-
matic, cw incident radiation, and a homogeneously broadened two-level
system. Calculate the results of an absorption measurement for high
incident field intensity (i.e., calculate the absorption versus wavelength
and light intensity). The calculated width of the absorption profile will
turn out to be a function of the incident intensity. However, if you
perform a pump probe experiment—i.e., you saturate the line with a
field at frequency ω1, and measure the absorption profile by tuning the
frequency ω	 of a weak probe beam—you find that the linewidth is 1/T2
independently of the intensity of the pump at ω1. Explain.

3. Demonstrate the area theorem for a square pulse at resonance, in an
inhomogeneously broadened medium, where gih can be approximated by
a square function of width 
ωih.
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4. Show that a pulse with zero area has no Fourier component at its average
frequency.

5. Show that the definitions (4.22) and (4.27) are equivalent for unchirped
pulses at resonance.

6. Discuss the connection between the frequency pushing (mentioned in
Section 1.2.1) and 〈ϕ̇〉 obtained in Chapter 4 (Section 4.3.3) for the weak
pulse limit. Hint: Define a dielectric constant in terms of u, ν, and w.

7. A short (weak) Gaussian pulse is sent through a resonant absorber with
T2 � τG (no inhomogeneous broadening). Being much narrower than the
pulse spectrum, the absorbing line should act as a frequency filter. It
is therefore a broadened pulse (in time) that should emerge from the
absorber. Yet, according to the area theorem, the pulse area should
decrease. Resolve this apparent contradiction in both frequency and time
domains.

8. Calculate the initial frequency shift with distance d〈ϕ̇〉/dz for a Gaussian
pulse, off-resonance by 1/τG with an absorbing (homogeneously broad-
ened) transition with T2 = 100τG. Express your answer in terms of the
linear attenuation.

9. Find an expression for d〈ϕ̇2〉/dz for a pulse propagating through an
ensemble of two-level systems. 〈ϕ̇2〉 is defined as

∫
ϕ̇2E2dt/

∫
E2dt. Hint:

Use a similar procedure as for the derivation of the expression for the
frequency shift with distance, writing first an expression for the space
derivative of W〈ϕ̇2〉, and using Maxwell-Bloch’s equations to evaluate
each term of the right-hand side.

10. Referring to Fig. 4.8(a), let us consider a stepwise excitation with
a polychromatic pulse given by the sum Ẽ1(t)eiω	,1t + Ẽ2(t)eiω	,2t +
Ẽ3(t)eiω	,3t + … . The frequencies ω	,1, ω	,2, ω	,3 … , are nearly reso-
nant with the successive transitions (0 → 1), (1 → 2), (2 → 3), … .
Derive Eq. (4.59) for this situation. Hint: Instead of Eq. (4.57), the
detunings are now 
1 = ω01 − ω	,1, 
2 = ω02 − (ω	,1 + ω	,2);

3 = ω03 − (ω	,1 + ω	,2 + ω	,3), … . The complex Rabi frequencies
are to be defined as Ẽk+1 = i

2�
pk+1,k Ẽk+1.
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5
Ultrashort Sources I: Fundamentals

5.1. INTRODUCTION

The standard source of ultrashort pulses is a mode-locked laser. Fundamental
properties of the radiation emitted by such a source, both in time and frequency
domains, are presented in this first section. Section 5.2 exposes the main theoret-
ical models to predict the shape of the pulses generated in such a laser. General
considerations about the evolution of the pulse energy are given in Section 5.3.
Section 5.4 is dedicated to the analysis of the main components of the laser, out-
lining the mechanism of pulse shaping of each element (or groups of elements).
Of course, the laser resonator itself has its role in the mode-locked operation.
The remainder of this chapter, Section 5.5 is therefore dealing with the properties
of the laser cavity.

5.1.1. Superposition of Cavity Modes

Central to the generation of ultrashort pulses is the laser cavity with its
longitudinal and transverse modes. A review of the mode spectrum of a laser
cavity is contained in Section 5.5.1. Mode-locked operation requires a well-
defined mode structure. As will be shown, mode-locking refers to establishing
a phase relationship between longitudinal modes. A transverse mode structure
will generally contribute to amplitude noise (at frequencies corresponding to the
differences between mode frequencies). Most fs lasers operate in a single TEM00
transverse mode. A typical laser cavity can support a large number of longitudi-
nal modes. In the absence of transverse mode structure, we can consider that the
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laser can operate on any of the longitudinal modes of index m, whose frequency
vm satisfies the condition

vm = mc

2
∑

i ni(vm)Li
≡ mc

2n(vm)L
(5.1)

where m is a positive integer and ni(vm)Li is the optical pathlength at the
frequency vm of the cavity element i of length Li. The total pathlength OL =∑

i ni(vm)Li is the sum of the optical pathlengths of all cavity elements. We will
formally write OL = n(v)L, where L is the geometrical cavity length and n is an
effective average refractive index. We will first consider the ideal textbook case
where the mode spacing 
 = vm+1 − vm = c/(2nL) is constant, which implies
that n is nondispersive for frequencies within the laser gain bandwidth.

The electric field of a laser that oscillates on M adjacent longitudinal modes
of frequency ωm = 2πvm = ω	 + 2πm
 with equal field amplitude E0 can be
written as

Ẽ+(t) = 1

2
Ẽ(t)eiω	t = 1

2
E0eiω	t

(M−1)/2∑
m=(1−M)/2

ei(2mπ
t+φm), (5.2)

where we now count m from (1 − M)/2 to (M − 1)/2. Here φm is the phase of
mode m, which is random for a free-running laser. The mode spectrum is centered
about a cavity mode of frequency ω	 = 2πp
, where p is a large positive integer.
The laser field, except for a phase factor, is a repeating pattern with a periodicity
of 1/
, because, for any integer q,

Ẽ+
(

t + 1



q

)
= Ẽ+(t)eiω	q/
 (5.3)

as can be verified using Eq. (5.2). This periodicity is the cavity round-trip time
τRT = 1/
. Figure 5.1 compares the laser output for random and constant
phase φm.

For any particular distribution of phases, the time-dependent laser power can
be written as:

P(t) ∝ E2
0 [M + f (t)]. (5.4)

Here |f (t)|< M carries the information on the time dependence of the periodic
laser output. This follows from the fact that the length of the sum vector of
M unit vectors of random phase is equal to

√
M (random walk). Note that each

member of the sum in Eq. (5.2) represents such unit vector. For random phases



Introduction 279

φm, the average laser intensity 〈I〉 = ME2
0 /(2

√
µ0/ε) is the sum of the intensity

of the individual modes.
Forcing all the modes to have an equal phase φ0—a procedure called

mode-locking—implies in the time domain that all the waves of different fre-
quency will add constructively at one point, resulting in an intense and short burst
of light [Figure 5.1(c)]. For the case of M oscillating modes of equal amplitude
the sum in Eq. (5.2) can be calculated analytically and the total electric field is

Ẽ+(t) = 1

2
Ẽ(t)eiω	t = 1

2
E0eiφ0 eiω	t sin(Mπ
t)

sin(π
t)
. (5.5)

For large M this corresponds to a train of single pulses spaced by τRT = 1/
.
The duration of one of such burst, τp, can be estimated from Eq. (5.5):

τp ≈ 1

M

. (5.6)

If we identify M
 with the spectral width 
v of the laser output we recognize the
relationship τp ≈ 1/
v from Chapter 1. The ratio τRT /τp is thus a measure of the
number of longitudinal modes oscillating in phase. For example, to produce a
train of 10-fs pulses with a period of 10 ns about 106 modes are required.

At the pulse peak the contribution of the M modes add constructively
to produce a field amplitude E(t = tpeak) = ME0. Unlike the case of the
random superposition of modes, the peak intensity is now equal to the product
of the intensity of a single mode and the square of the number of modes:
I(t) = E2/(2

√
µ0/ε) = M2E2

0 /(2
√
µ0/ε). Note that both the free-running and
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Figure 5.1 Spectral amplitude of a set of equally spaced cavity modes (a), and possible field
amplitudes in the time domain, (b) and (c), that belong to this spectrum. In (b), the modes have a
random phase distribution. In (c), all modes are “locked” to the same phase.
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mode-locked laser described here have identical mode combs given by Eq. (5.2)
(sketched in Fig. 5.1). Within that description, the average power of the free-
running and mode-locked train are both equal to M times the power of each
mode.1 The peak power of the pulsed output exceeds that of the cw free-running
laser by a factor M.

5.1.2. Cavity Modes and Modes of
a Mode-Locked Laser

The above description assumes equally spaced modes. This is no longer true
if the refractive index is a function of frequency, n = n(v), which is the case for
a typical laser cavity. The mode spacing at frequency v can be estimated by


(v) ≈ c

2Ln(v)

[
1 + v

n(v)

dn

dv

]−1

. (5.7)

To derive this result we approximated n(vm+1) ≈ n(vm) + dn
dv
 in Eq. (5.1).

The actual frequency dependence of the mode spacing depends on the cavity
dispersion that was lumped into n(v). The Fourier transform of a nonuniform
frequency comb is a nonperiodic, nonuniform pulse train. To illustrate this point
we consider a cavity dispersion that leads to a mode spacing that varies linearly
with the mode index. The frequency of cavity mode m can then be written as

ωm = ω	 + 2π(1 + mγd)m
, (5.8)

where γd is the dispersion coefficient. The superposition of M cavity modes of
equal amplitude and phase produces an electric field

Ẽ+(t) = 1

2
Ẽ(t)eiω	t = 1

2
Ẽ0eiω	t

(M−1)/2∑
m=(1−M)/2

ei2π(1+mγd )m
t . (5.9)

Unlike in the case of equally spaced modes shown in Eqs. (5.2) and (5.3), the field
amplitude, the intensity and the power P(t) are not periodic. At t = 0 all cavity
modes are in phase producing the maximum possible field amplitude. After one
round-trip the modes still interfere mostly constructively and produce another
pulse with a somewhat smaller amplitude. This scenario persists over a number
of round-trips until, roughly speaking, the mode at the end of the spectrum [mode

1This is a coarse approximation that does not consider the interaction of the light with the gain
medium. In an actual laser, the emission of each mode is not the same in cw or mode-locked operation.
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index (M − 1)/2] becomes π out-of-phase with the central mode. From Eq. (5.9)
one expects this to happen after about qM ≈ 2(M2γd)−1 round-trips. Note that
we can interpret the term quadratic in m in Eq. (5.9) as a phase term for mode
m that changes with time. Depending on the actual value of 
 and γd further
round trips lead to random superposition of modes with different phases. As a
result the individual pulses become broader, have unequal spacing and fluctuating
amplitudes.

Figure 5.2 shows, as an example, the maximum of the field amplitude during
one round trip as a function of the round-trip number for M = 101 and γd = 10−5.

So far we have referred to modes of a hypothetical cavity and their super-
position. In a mode-locked laser, even though n = n(v), the pulse spacing
(in time) and the mode spacing (in frequency) are constants.2 The theory of
the mode-locked laser shows this transformation of the unequal mode spacing
of the passive cavity into a perfect comb to be the result of an interplay of dis-
persion and nonlinear optical processes. Before elaborating on this surprising
result, let us describe two sets of experiments that further demonstrate the dif-
ference between cavity modes and the Fourier transform of a mode-locked laser.
The experiments were performed on a standard Ti:sapphire linear laser as depicted
in the left of Figure 5.3. In a first experiment the laser was operated in cw
mode. The bandwidth and center frequency of that laser can be controlled by
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Figure 5.2 Pulse train produced by a set of M = 101 cavity modes whose frequencies are not
equally spaced, ωm = ω	 + 2π(1 + mγd )m
, where γd = 10−5.

2The Fourier transform of a regular pulse train is a comb of frequency spikes. Here the term mode
spacing refers to the spacing between the teeth of that comb, and not between the actual longitudinal
modes of the laser cavity.



282 Ultrashort Sources I: Fundamentals

Tuned cw laser: the mode spacing
varies with frequency

Mode locked laser comb:
fixed teeth spacing

700 800
Wavelength [nm]

R
ep

. r
at

e 
-1

01
 8

84
 0

00
 H

z

900

200

100

∆

λ

λ
Unequally

spaced teeth

C

D
SP

C

D
SP

Figure 5.3 Top left: a standard Ti:sapphire laser operated in cw mode. As the wavelength (optical
frequency) is being tuned, the beat note between adjacent modes changes because of dispersion of the
cavity. Bottom left: the same laser is mode-locked, and portions of the output spectrum are selected
with a spectrometer. The mode spacing of the fs comb is recorded as a function of wavelength (bottom
right) either with a frequency counter or spectrum analyzer. The small change of the repetition rate
arises from a thermal expansion of the cavity during the measurement. (D, detector; C, counter or
spectrum analyzer; SP, spectrometer.)

translating intracavity slits [1, 2]. The beat frequency of longitudinal modes that
oscillate in a narrow frequency spectrum equals the mode spacing frequency 
.
It was found that the mode spacing frequency is not a constant across the tuning
range of the laser, but follows the expected frequency dependence given by
Eq. (5.7). The inverse mode spacing frequency would correspond to the pulse
repetition frequency if the laser were mode-locked and the spectrum limited to
a narrow range about v. Mode-locking that laser is similar to the orthodontist
intervention on the mode comb.

One can perform a similar measurement on the same laser, mode-locked after
opening the bandwidth limiting slit, and selecting a particular wavelength range
of the spectrum with a spectrometer, as sketched on the lower left of Fig. 5.3.
The laser emits a train of pulses of 9 fs duration, spanning a 200 nm broad
spectrum. A 0.2 nm bandwidth of the output spectrum of the laser is selected with
a spectrometer and sent onto a fast photodiode. The signal was recorded with
a frequency counter and a spectrum analyzer [3] as shown on the lower right
of Fig. 5.3. The sensitivity of the spectrum analyzer (spectral resolution 1 Hz)
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allows the measurement to extend far into the wings of the mode-locked spectrum,
greater than 50 dB down from the center peak. The repetition rate of the different
wavepackets does not vary as a function of frequency or wavelength over a total
span of 250 nm. It is the nonlinear phase shift because of the mode-locking
mechanism (in this case the Kerr modulation) that compensates for the GVD.
Such a result is expected, because the different wavepackets formed with any
group of modes should all travel at the same group delay, or they will not produce
a pulse that “stays together” after several round-trips. It is also consistent with the
Fourier transform of an infinite train of equally spaced pulses, which produces a
comb of equally spaced spectral components.

A recent experiment with a stabilized laser has confirmed that “teeth” of the
frequency comb, which is the Fourier transform of the pulse train, are equally
spaced throughout the pulse bandwidth to 3.0 parts in 1017 [4].

5.1.3. The “Perfect” Mode-Locked Laser

The perfect mode-locked laser produces a continuous train of identical pulses
at a constant repetition rate. Such a perfect mode-locked laser has to be stabilized
to minimize, for example, length fluctuations because of thermal expansion and
vibrations.

A mode-locked fs laser requires a broadband gain medium, which will
typically sustain over 100,000 longitudinal modes. The train of pulses results
from the leakage (outcoupling) of a single pulse traveling back and forth in
a cavity of constant length. The round-trip time of the cavity is thus a con-
stant, implying a perfectly regular comb of pulses in the time domain. The
frequency spectrum of such a pulse train is a perfect frequency comb, with
equally spaced teeth, at variance with the unequal comb of longitudinal modes
of a nonmode-locked cw laser.

The historical and standard textbook definition of mode-locking presented in
the previous section originates from the description of the laser in the frequency
domain, where the emission is considered to be made up of the sum of the
radiation of each of these (longitudinal) modes. This description can still be
applied to the ideal mode-locked laser considered in this section, if a fictitious
perfect comb with equal tooth spacing is substituted to the real longitudinal
modes of the cavity. This frequency description of mode-locking is equivalent
to having, in the time domain, a continuous single frequency carrier, sampled
at equal time intervals τRT by an envelope function, as shown in the top part of
Figure 5.4.

Our ideal mode-locked laser emits a train of equally spaced pulses with a
period τRT , which corresponds to a comb of modes in the spectral domain whose
spacing is constant, 
 = 1/τRT . Consequently the mode frequency can be
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Frequency

νN

Figure 5.4 Top: a pure carrier at a frequency vN is modulated periodically by envelopes, at regular
time intervals τRT . Bottom: the corresponding frequency picture. A comb of δ functions in frequency,
is extended to near zero frequency. The frequency f0 of the first mode is the carrier to envelope offset.

expressed as

vm = f0 + m
 = f0 + m

τRT
, (5.10)

where m is the mode index that now starts at m = 0. Note that f0 < 
 is nonzero
in general. This is different from the cold cavity referred to in the introduction
of this chapter, where the mode frequencies are solely determined by the optical
pathlength of the cavity Ln(v). In cases where the index can be approximated
by a constant over the gain bandwidth, the group velocity is equal to the phase
velocity, and the mode frequencies are integer multiples of 
.

While the pulse envelope peaks again exactly after one round-trip time τRT

the phase of a mode with index m changes by

2πvmτRT = 2πf0τRT + 2πm
τRT = 2πf0τRT + 2πm. (5.11)

Apart from multiples of 2π each mode acquires an additional phase with respect
to the pulse envelope

φCE = 2πf0τRT . (5.12)

This is illustrated in Fig. 5.4. Because the phase shift φCE is independent of the
mode index it leads to a slippage of the phase of the carrier frequency with
respect to the pulse envelope. The frequency f0 responsible for this slippage
is called carrier to envelope offset (CEO). One can also interpret the relative
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shift of envelope and carrier as the result of the difference of phase and group
velocity. An average group velocity can be defined as ν̄g = 2L/τRT . The time
a phase front of a mode of index N needs to complete one round-trip (2L) is
N /vN , which suggest to define an average phase velocity ν̄p = 2Lvn/N . The
delay between the pulse envelope and an arbitrary point on the phase front can
now be written as

τCE = 2L

(
1

ν̄g
− 1

ν̄p

)
= (τRT − N /vN ), (5.13)

which yields for the phase

φCE = 2πvNτCE = 2π(τRT vN − N). (5.14)

It is only when f0 = 0 that the repetition rate is an integer number of optical
cycles of an oscillating mode, cf. Eqs. (5.14) and (5.12).

The ability to measure (or control) f0 implies that one is able to establish a link
between the optical frequencies of the mode comb (vm) and the radio frequency
(1/τRT ). Let us assume for instance that one optical mode at vN of the laser is
linked to an optical frequency standard and that f0 = 0 so that there are N optical
cycles 1/vN within the pulse period τRT . Under these conditions, the repetition
rate can be considered to be a radio frequency standard with a relative linewidth,

v/v, N times narrower than that of the optical reference.

The existence of a perfectly regular frequency comb has revolutionized the
field of metrology. Such a comb can be used as a ruler to measure the spacing
between any pairs of optical frequencies v1 and v2. The technique is similar to
a standard measurement of length with a ruler. One measures the beat note 
v1
between the source at v1 and the closest tooth—assigned the index m1—of the
frequency comb, as well as the beat note 
v2 between the source at v2 and the
neighboring tooth m2 of the frequency comb. The frequency difference between
the two sources is v2 − v1 = 
v2 − 
v1 + (m2 − m1)/τRT .

We will discuss the frequency rulers and the mode-locked laser as time
standard in Chapter 13. Details on stabilization techniques as well as frequency
standards can be found in Ye and Cundiff [5].

5.1.4. The “Common” Mode-Locked Laser

The expression mode-locking suggests equidistant longitudinal modes of the
laser cavity emitting in phase. As mentioned in the previous section, this fre-
quency description of mode-locking is equivalent to having, in the time domain,
a continuous single frequency carrier, sampled at equal time intervals by an
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envelope function. Unless sophisticated stabilization techniques as described in
Section 13.4 are used, an ordinary mode-locked laser does not at all fit the above
description. We shall use the term common mode-locked laser when the cavity
length is not stabilized across the spectrum. In such a common situation, each
cavity mirror is subject to vibrational motions. A typical mechanical resonance
is around 100 Hz, with a motion amplitude 
L of up to 1 µm. Because of that
motion, the position of the longitudinal modes of the cavity is not fixed in time.
As the cavity length L drifts, so does the mode frequency vm and the repetition
rate 1/τRT . From Eq. (5.10), we can express the change in mode frequency 
vm

because of a change in cavity length 
L:


vm =
(

df0
dL

+ m
d


dL

)

L =

(
df0
dL

− m

τ2
RT

dτRT

dL

)

L. (5.15)

It depends on the specifics of the mode-locked laser how the CEO f0 and the
roundtrip time (group velocity) vary individually with L.

Pulse Train Coherence

Because of this change of the carrier frequency, the repetition rate and the
carrier to envelope offset, one can no longer talk of an output pulse train made of
identical pulses. The difference between the properties of the radiation from an
ultrastable “frequency comb” as opposed to the common mode-locked laser can
be established in a coherence measurement. Coherence can be measured with a
Mach–Zehnder interferometer, as sketched in Figure 5.5. In the case of a sin-
gle pulse, the interference contrast approaches zero for optical delays 
x of the
interferometer exceeding the coherence length of the pulse. The interferogram
will resemble that shown in Fig. 2.3. In the case of a pulse train from a perfect
mode-locked laser, as the delay of the interferometer is being scanned, an iden-
tical fringe pattern reappears at delays equal to an integer multiple q of the pulse
spacing τRT . In a common mode-locked laser, the visibility of these reoccurring
fringes will decay with increasing q. To explain this loss in fringe contrast let
us assume that at each delay 
x we measure a signal from N pulse pairs. The
signal at the detector

S(q,
x) = η2
N∑

i=1

〈
E2(t)

[
cos(ω	t + φi) + cos(ω	t + φi+q + k
x)

]2〉 . (5.16)

Here φi is the relative phase of the carrier with respect to the peak of the pulse
envelope and 〈〉 denotes time integration over the pulse envelope and carrier



Introduction 287

Delay of
1 s??

Interferences?

D

D

Time

Beat
note

A

B

fs pulses

fs pulses

(a)

(b)

Figure 5.5 Pulse train coherence measured by a Mach–Zehnder interferometer. (a) A fringe pattern
is observed around delays that are multiples of the pulse period, mτRT . The fringe contrast deteriorates
with increasing m for trains from common mode-locked lasers. (b) The coherence of an unknown
source A can be measured by optical beating with an ideal reference source B, provided both sources
have the same repetition rate. An optical delay is required to ensure that the pulse of each train
interfere at the detector. The bandwidth of the beat note carries the information on the coherence
properties.

period. After performing the time integration we obtain

S(q,
x) = W0

N∑
i=1

[
1 + cos(φi − φi+q − k
x)

]
, (5.17)

where W0 is the energy of one pulse pair. Because N is typically a large number∑
cos(φi − φi+q − k
x) ≈ 0 if the phase difference δφi = φi − φi+q is random,

which results in zero fringe contrast.
The change in cavity length 
L will result in a mode shift 
vm given by

Eq. (5.15), resulting in a total phase shift q
vmτRT . Let us use as an estimate for

vm the value of vm
L/L. The fringes will disappear for the value of 
L that
makes this phase shift of the order of unity. Because 
vm is an optical frequency,
it takes only a few round-trips in a typical laser to reach that value. It has been
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possible, however, to stabilize lasers to have a pulse train coherent over delays
14 orders of magnitude larger than the single pulse duration or q ≈ 108, as will
be shown in Chapter 13.

The method discussed previously is obviously not practical for measuring the
coherence of a pulse train over many interpulse spacings as the required optical
delay line can exceed hundreds of km. Another method to measure the coherence
of a common source A is to compare it with a perfectly coherent source B (lower
part of Fig. 5.5). Let us assume that both mode-locked lasers are locked3 to the
same repetition rate 1/τRT . From Eq. (5.15), it results that the mode frequency
fluctuations are all equal to carrier-to-envelope fluctuations dvm/dL = df0/dL if
τRT is constant. Let us assume that the CEO of source (B), fB,0, is kept constant
by a control unit while the carrier frequency of source (A), fA,0, is let to fluctuate.
If the two pulse trains are made to interfere on a detector, a beat note will be
observed. Using Eq. (5.10) to define the frequencies of the mode combs we find
for the beat frequency

fb(t) = | fB,0 − fA,0(t)|. (5.18)

The observation of fb(t) over a certain time period allows one to measure the
bandwidth of this beat note. The inverse of the bandwidth is the coherence time
of the source (B). A convolution of the bandwidths of each source is involved
if the CEOs of both sources fluctuate.

As an example, Fig. 5.6 shows the beat note and its spectrum produced by
two pulse trains of equal repetition rate. In this particular case of an unstabilized
laser source, mechanical vibrations constantly change the cavity length, resulting
in excursions of the cavity mode frequency of the order of one MHz. The beat
note bandwidth however can be extremely narrow (≈1 Hz) if, as is the case
in Fig. 5.6, identical cavity length fluctuations exist in the two resonators from
which the interfering pulse trains originate. This large degree of mutual coherence
indicated by the narrow beat note bandwidth proves that the cavity does have an
influence on the pulse train.

There is a simple method to generate two pulse trains that have the same
repetition rate and are subject to the same cavity fluctuations. The method consists
in constructing a single ring or linear resonator that emits two pulse trains of
the same repetition rate but different mode frequencies, as will be described in
Chapter 13. The two pulse trains from such a source produced the beat note
shown in Fig. 5.6. A bandwidth of less than 1 Hz is observed because of the fact

3This locking does not necessarily imply stabilization: a synchronously pumped optical parametric
oscillator and its pump laser have by design the same repetition rate. So does the two outputs of a
bidirectional mode-locked ring laser.
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Figure 5.6 Top: portion of a 1.5 second long beat note recorded between two femtosecond pulse
trains of the same repetition rate. The two pulse trains are issued from a common cavity. Lower
figure: the Fourier transform of the full 1.5 s recording. The bandwidth of the central peak of the beat
note spectrum is only 1 Hz wide. The side peaks are because of the fact that the beat note drifts over
longer periods of time, because of a small rocking motion of the optical table (gyroscopic response)
and/or air currents (Fresnel drag).

that the cavity length fluctuations change the mode comb of the two interfering
pulses in a similar way.

To illustrate this let us assume one of the mirrors moves with a constant
velocity ν relative to the cavity axis. In the time domain picture, both counter-
propagating pulses reflected off this mirror experience a Doppler shift 
vdop =
2(ν/c)vN . This leaves the beat note (difference frequency) unchanged. It also is
instructive to analyze the mode comb of a cavity, which for simplicity we assume
to be empty, under the condition of a moving mirror. The cavity length changes
according to L0 +vt. From Eq. (5.1), the mode comb frequencies can be expected
to change according to

vm(t) = mc

2(L0 + νt)
. (5.19)

For small velocities, the frequency change during one round trip τRT


vm = vm(t) − vm(t + τRT ) ≈ 2ν

c
vm(t) = 
vdop (5.20)
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is equal to the Doppler shift. These considerations are only valid within the
approximations that the change in cavity length at each round-trip is much
smaller than the wavelength, and that the relative change in velocity during a
cavity lifetime is small compared to unity. Thus for all practical situations relating
to mechanical vibrations of a cavity, the pulse frequency changes because of the
Doppler shift at each reflection on a moving mirror, but the Doppler shifted mode
frequency vN remains resonant with the cavity. A consequence of the equality
between the Doppler shift and the cavity resonance shift expressed by Eq. (5.19)
is that the cavity modes follow the same temporal evolution for both senses
of circulation in a ring cavity.4 This fact explains why pulse trains generated in
opposite sense of circulation in ring cavities can be mutually coherent. Figure 5.6
is thus also a demonstration that the pulse train emitted by an unstabilized laser
possesses properties pertinent to the resonator. This fact in itself is remarkable,
considering that radiation should completely fill a cavity to define the cavity
modes, and that a femtosecond pulse occupies only one part in a million of the
cavity length. The beat note of Fig. 5.6 is an indication that the femtosecond pulse
has started from noise distributed over the whole laser, noise that contained the
mode structure of the cavity and maintained it through the compression process,
shaping and evolution toward the fs pulse. The 1 Hz bandwidth of the beat note
in Fig. 5.6 signifies that the mode structure of the cavity is remembered over at
least 108 round-trips.

Time Domain Versus Frequency Domain Description
of a Mode-Locked Laser

There are two basic approaches to describe the operational principle of a
perfect mode-locked laser: the frequency and the time domain approach. The
frequency domain picture that we have stressed so far considers the oscillation
of a number of equally spaced (by 
) longitudinal modes of amplitude Em and
phase φ0, whose frequencies vm are given by Eq. (5.10). Some mechanism is
then introduced to lock the relative phases of the modes to each other so that
their coherent superposition produces a periodic pulse train in the time domain

Ẽ(t)eiω	t =
M∑

m=1

Emeiφ0 ei2πvmt . (5.21)

This locking can be accomplished through active, passive, and a combina-
tion of those techniques. Most femtosecond lasers utilize some kind of passive
mode-locking, where intensity-dependent loss and/or dispersion mechanisms

4In that particular case the repetition rate is locked to the same value, and both terms in Eq. (5.15)
are equal for both intracavity pulses.
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favor pulsed over continuous radiation. The problem with the frequency domain
picture is the difficulty to treat the various processes in the laser including the
coupling between the large number of modes to predict the pulse parameters
M, Em, vm, and φ0. Recall that the mode frequencies vm are not given by the dis-
persion of the cold cavity, cf. Eq. (5.7), but establish themselves in the process
of mode-locking. Therefore the simple picture presented in the beginning of this
chapter can only serve as a qualitative description of the mode-locking process.

We have seen in the previous section that the frequency domain picture,
in which all longitudinal modes within the gain bandwidth oscillate in phase,
is an oversimplification. The ratio of the laser cavity length to the pulse dura-
tion would be a measure of the number of modes oscillating in phase. Typically,
for a meter long laser producing a train of 100 fs pulses, there would be over
100,000 longitudinal modes contributing to the pulse bandwidth. Because of the
dispersion of the intracavity elements, the longitudinal modes are not equidis-
tant over that range. Moreover, because a real laser resonator is not infinitely
rigid, one cannot even talk of a fixed set of modes. Therefore, the most common
approach to model a mode-locked laser is to analyze, in the time domain, the
shaping mechanisms of one (sometimes more) pulse(s) traveling back and forth
in a linear cavity, or circulating in a ring cavity. This is the description that will
generally be followed in this book, and in particular in this chapter, Sections 5.2
and 5.3. In this picture the function of the cavity is not to establish a comb of
modes but rather to force the circulating field to interact periodically with the
cavity elements. Most analyses follow one of two main routes—(a) the evolution
of the pulse from noise (spontaneous emission) and (b) the characterization of a
steady state where the circulating pulse reproduces itself after an integer num-
ber (ideally one) of round trips. In either case, the result is the complex pulse
envelope Ẽ(t) rather than the frequency domain parameters M, vm, and Em.

In the case of passive mode-locking, some intensity dependent loss or
dispersion mechanism is used to favor operation of pulsed over continuous
radiation. Another type of mode-locking mechanism is active: A coupling is
introduced between cavity modes, “locking” them in phase. Between these two
classes are “hybrid” and “doubly mode-locked” lasers in which both mecha-
nisms of mode-locking are used. In parallel to this categorization in “active” and
“passive” lasers, one can also classify the lasers as being modulated inside (the
most common approach) or outside (usually in a coupled cavity) the resonator.

5.1.5. Basic Elements and Operation of a fs Laser

There are a few basic elements essential to a fs laser:

• a broadband (
vg � 1 THz) gain medium,
• a laser cavity,
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• an output coupler,
• a dispersive element,
• a phase modulator, and
• a gain–loss process controlled by the pulse intensity or energy.

The items listed above refer more to a function than to physical elements.
For instance, the gain rod in a Ti:sapphire laser can cumulate the functions of gain
(source of energy), phase modulator (through the Kerr effect), loss modulation
(through self-lensing), and gain modulation. To reach femtosecond pulse dura-
tions, there is most often a dispersive mechanism of pulse compression present,
with phase modulation to broaden the pulse bandwidth, and dispersion (positive
or negative, dependent on the sign of the phase modulation) to eliminate the
chirp and compress the pulse. It is the dispersion of the whole cavity that has to
be factored in the calculation of pulse compression. This interplay of nonlinear
and dispersion processes is responsible for the perfect (equally spaced) mode
comb of the mode-locked laser even if the dispersion of the cold cavity calls for
unequally spaced cavity modes.

The radiation builds up from noise as in any oscillator. In continuously pumped
lasers, the noise is because of spontaneous emission from the active medium.
The evolution from noise to a regular train of pulses has been the object of
numerous theories and computer simulations since the first mode-locked laser
was operated (see, for instance, [6]). The pump power has to exceed a given
threshold Pth for this transition from noise to pulsed operation to occur. This
threshold is sometimes higher than the power required to sustain mode-locking:
A mode-locked laser will not always restart if its operation has been interrupted.
Such a hysteresis is sometimes observed with dye lasers and is common with
Ti:sapphire lasers. Generally, it is a loss or gain modulation that is at the origin
of the pulse formation.

Emergence of a pulse from noise is only the first stage of a complex pulse
evolution. Subsequently, the pulse—which may contain sub-fs noise spikes and
be as long as the cavity round-trip time—will be submitted to several compression
mechanisms that will bring it successively to the ps and fs range. Progress in
ultrashort pulse generation has resulted from the understanding of compression
mechanisms that can act at the shortest time scale. Most of this chapter will be
devoted to the analysis of the most common compression schemes. First, a loss
(saturable absorption) and gain (synchronous pumping, gain saturation) mecha-
nism will steepen the leading and trailing edges of the pulse, reducing its duration
down to a few ps. Dispersive mechanisms—such as SPM and compression—take
over from the ps to the fs range.

There are mechanisms of pulse broadening that prevent pulse compression
from proceeding indefinitely in the cavity. The most obvious and simple broaden-
ing arises from the bandwidth limitation of the cavity (bandwidth of the difference



Circulating Pulse Model 293

spectrum of gains and losses). The bandwidth limit of the amplifier medium
has been reached in some (glass lasers, Nd:YAG lasers), but not all, lasers.
Other pulse width limitations arise from higher-order dispersion of optical com-
ponents and nonlinear effects (four wave mixing coupling in dye jets, two photon
absorption, Kerr effect, etc…).

The pulse evolution in a cw pumped laser leads generally to a steady state,
in which the pulse reproduces itself after an integer number of cavity round trips
(ideally one). The pulse parameters are such that gain and loss, compression and
broadening mechanisms, as well as shaping effects, balance each other.

5.2. CIRCULATING PULSE MODEL

5.2.1. General Round-Trip Model

As mentioned in the previous section, the simplest model for a practical
mode-locked laser is that of a pulse circulating in the cavity. The pulse travels
successively through the different resonator elements, each contributing to the
pulse shaping in a particular manner. The block diagram of Figure 5.7 is the basis
for the most commonly used theoretical description of such lasers. Which ele-
ments need to be considered and in which order will depend on the type of laser
to be modeled. Each block of the diagram of Fig. 5.7 can represent a real physical
element or a function rather than a physical element. For instance, the “saturable
loss” in Fig. 5.7 can represent either a saturable absorber, or the contribution of
all elements that give rise to an intensity or energy dependent transmission.

Pump

Amplifier Linear
loss

Dispersion

Saturable
absorber

Coupled
cavity

Aperture Self lensing Filter

Figure 5.7 Schematic representation of the circulating pulse model describing a fs laser.
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If we describe symbolically the action of each resonator element by an operator
function Ti, the field after the (n + 1)-th round-trip can be written in terms of
the field before that round-trip as

Ẽ (n+1)(t) = (TN TN−1. . . T2T1) Ẽ (n)(t), (5.22)

where we have numbered the resonator elements from 1 to N . If the parameters of
the laser elements are suitably chosen, the fields Ẽ (i) will evolve toward a steady-
state pulse, which reproduces itself (apart from a constant phase factor φ0) after
subsequent round trips, i.e., Ẽ (n+1) = Ẽ (n) for n being large enough. The resulting
steady-state condition

Ẽ(t)eiφ0 = (TN TN−1. . . T2T1) Ẽ(t), (5.23)

has been the basis for numerous analytical models.5 These models usually
assume certain beam and pulse shapes with parameters that are determined from
Eq. (5.23). In most cases the operators have to be suitably approximated to allow
for analytical treatment. We will discuss this procedure in detail in the next sec-
tions. While the analytical or semianalytical solutions give much insight into the
physical mechanisms involved in fs lasers the complexity of the processes often
calls for numerical modeling.

The round trip model illustrated in Fig. 5.7 is well-suited for a numerical
treatment. Starting from noise (spontaneous emission) the field is traced through
each cavity round-trip. The main advantages of this approach are

• Ease of incorporating various processes and optical elements with compli-
cated transfer functions, leading to the modeling of virtually any laser.

• There is no need to make restrictive approximations for the transfer func-
tions. This allows one, for example, to follow the evolution of both the
temporal and spatial field profile.

• The evolution of the mode-locked pulse from noise can be predicted as can
the response of the laser to external disturbances.

• One is not limited to the time or frequency domain. By using Fast Fourier
Transforms (FFT), one can chose to model any phenomena in the most
appropriate frame (for instance, phase modulation in the time domain,
dispersion in the frequency domain).

5A more general definition expresses that the pulse reproduces itself every m round trips,
i.e., Ẽ (n+m)eiφ0 = Ẽ (n).
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Even though the transient evolution toward steady state may take thousands
of round-trips, the modeling can generally be implemented with a personal
computer. The main disadvantage of a computer model that includes a plethora of
processes is that it is difficult to get a clear physical picture of the laser operation.

5.2.2. Continuous Model

If the change in electric field introduced by each element of the cavity, at each
round-trip, is small, the pulse evolution can be modeled by a differential equation.
An additional simplification is to assume that the pulse evolves along the mode of
a stable cavity, and thus the spatial pulse evolution is decoupled from the temporal
evolution. Because the change per element and per round-trip is assumed to be
infinitesimal, the order of the elements in the cavity does not matter, and the
laser is equivalent to an infinitely long medium, in which the resonator elements
are uniformly distributed (Figure 5.8). This “continuous model” in which the
resonator elements are replaced by a uniform medium is similar to the propagation
of a pulse in a fiber.

The continuous model is aimed at searching for a stationary pulse, which is
a shape-preserving signal propagating through this model medium. Such a pulse
is called a soliton of first order or fundamental soliton. Pulses that reproduce
after a certain periodicity length are labeled solitons of higher order. In an actual
laser, the “higher-order solitons” will reproduce after a given number of res-
onator round trips. We have seen some examples of solitons in Chapters 3 and
4. One of the simplest cavity model leading to solitons is that of a laser with
linear gain balancing linear losses and a combination of SPM and dispersion.
This particular soliton model and the related equations are discussed in more
detail in the following section.

Gain
Absorption
Dispersion
SPM
Linear loss
...

Figure 5.8 Representation of a fs laser as an infinitely long medium with the distributed properties
of the cavity.
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Solitons in Femtosecond Lasers

The existence of solitons is related to a particular structure of the equa-
tions governing propagation through the composite medium. No exact soliton
solutions have been found in any model incorporating most of the resonator ele-
ments. However, several subsystems have been found to lead to soliton solutions.
For instance, considering only the amplifier and an absorber as cavity elements,
soliton solutions can be found [8] which are related to the π and 2π pulse propa-
gation, as detailed in Chapter 4. Another subsystem that has been used considers
the laser to consist only of a GVD and Kerr medium. It is this latter model,
where absorption and gain are assumed to balance each other exactly, that will
be discussed here in more detail.

The elegance of the theory is at the expense of simplifying assumptions that
are not quite compatible with a pulse formation mechanism. Because the only
compression mechanism assumed in the model presented later is purely disper-
sive, there is no intensity-dependent mechanism that could preferably amplify
the noise fluctuations of the laser to start the pulse operation. Even though the
Kerr effect is taken into account, one assumes that the self-focusing associated
with it has no influence.

The ring laser model reduces to a product of two operations, as sketched in
Figure 5.9: phase modulation in the time domain (upper part of the figure) and
dispersion in the frequency domain. Both operations are combined into a single
equation (see problem at the end of this chapter) shown in a square box in the
middle of the figure.

This resulting expression is the nonlinear Schrödinger equation, which has
been analyzed in detail by Zakharov and Shabat [7], using the inverse scat-
tering method [9]. The problem is reduced to a search for eigenvalues of
coupled differential equations. The soliton is the eigenfunction associated with
that eigenvalue. The order of the soliton is the number of poles associated
with that solution. A soliton of order 1 is a sech-shaped pulse. It exhibits
a stable pulse shape, propagating without distortion. Solitons of order n are
periodic solutions with n characteristic frequencies. Periodic evolution of the
pulse train has been observed in some dye lasers [10, 11]. Salin et al. [12]
interpreted the periodicity in pulse evolution of a fs laser as a manifestation
of a soliton of order larger than 1. In the case of a dye laser, however, the
nonlinear Schrödinger equation is only a crude approximation of the complex
pulse evolution. For lasers with large gain, such that the continuity approx-
imation is no longer valid, periodic oscillation of the pulse energy can also
be observed [13, 14]. Despite the oversimplifications of this soliton model, it
appears to describe certain features of the stationary operation of a fs Ti:sapphire
laser [15, 16]. For instance, the unchirped pulse that returns identical to itself
after each round-trip is associated with the soliton of order 1. With some minor
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PHASE MODULATION

DISPERSION

Figure 5.9 Model used to describe a “soliton” laser. Only infinitesimal SPM (top part) and disper-
sion (bottom part of the figure) are applied on the pulse circulating in the cavity. Phase modulation
leads to a time-dependent wave vector k(t) = ω	n(t)/c = ω	n2|Ẽ |2/c. The combined operation of
phase modulation and dispersion results in the equation written in the center of the picture for which
soliton solutions are known (nonlinear Schrödinger equation in Zakharov and Shabat [7]). A steady
state in which gain and loss compensate is assumed.

changes in alignment, a periodicity is observed in the pulse train. If this periodic-
ity contains m frequencies, it is often possible to represent the pulse by a soliton
of order n = m − 1.

Before we give a detailed description of the evolution of various pulse
parameters and the role of the most common cavity elements, in the next two
sections, the basic features of a numerical model and an analytical approach will
be explained.
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5.2.3. Elements of a Numerical Treatment

Because of its central importance in the description of the pulse evolution
let us first elaborate on the successive treatment of processes in the time and
frequency domains. If a single cavity element represents several processes it is
often convenient to divide it into thin slices. The term thin means that the change
in the complex pulse envelope caused by one slice is small. In this case the order
of processes considered in one slice is unimportant. The choice about which
processes are treated in which domain (time, frequency, or spatial frequency) is
made based on numerical or analytical convenience and feasibility. Gain and the
Kerr effect are typically dealt with in the time domain ((x, y, z, t) space) while
free-space propagation and dispersion are usually treated in the frequency domain
((kx , ky, z, t) or (x, y, z,�) space). For example, if gain and dispersion occur in
one element, for each slice one has to solve a differential equation in the time
domain to deal with the gain and subsequently treats the effect of the dispersion
and diffraction in the frequency domain.

Figure 5.10 illustrates the procedure for the sequence of an element (or slice)
with gain, free-space propagation, phase modulation, and dispersion. The illus-
tration starts with an electric field Ẽ1(x, y, z, t) = Ẽ1(x, y, z, t)eiω	t entering the
gain medium. This could be noise if we want to simulate the pulse evolution.
This first step where all processes but the gain are neglected can formally be
written using a transfer operator Tg.

Ẽ2(x, y, t) = Tg(t)Ẽ1(x, y, t). (5.24)

In practice one solves the differential equations derived in Chapters 3 and 4 for a
medium with population inversion. The next step involves propagation over a
distance LP. This diffraction problem is best described in the frequency domain.
FFT algorithms are applied to obtain Ẽ3(�, x, y). In Fresnel approximation the

Noise 1 2 3 4 5

LP LM LD

Gain Free-space
propagation

Phase
modulator

Dispersion
N

Figure 5.10 Illustration of some of the main elements and processes in a circulation model that
describes pulse evolution in a laser. The numbers refer to the subscript of the electric field before
and after a certain element or process.
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propagation step through free space is described by Eq. (1.203):

Ẽ3(x, y,�) = i�

2πcLP
e−i�LP /c

∫ ∫
dx′dy′Ẽ2(x′, y′,�)

× exp

{
− i�

2LPc

[
(x′ − x)2 + (y′ − y)2

]1/2
}

. (5.25)

Inverse FFT then produces the output in the time domain Ẽ3(x, y, t). Except for
pulses of a few optical cycles or shorter the approximation � ≈ ω	 can be
made in the terms preceding the integral and in the exponent of the integrand.
As explained in Chapter 1 this is equivalent to separating the space and time
effects on propagation.

The next element introduces a phase modulation. Let us assume that through
some effect the (nondispersive) refractive index of the material is modulated
in time and/or space, n = n(x, y, t). Its effect on the pulse is advantageously
described in the time picture

Ẽ4(x, y, t) = Ẽ3(x, y, t) exp
[
−i

ω	

c
n(x, y, t)LM

]
. (5.26)

Note that the pulse envelope |E(t)| does not change while the pulse spectrum and
spatial frequency spectrum are modified because of the action of such a phase
modulator.

As detailed in Chapter 1, cf. Eq. (1.166), a dispersive element is characterized
by its (linear) transfer function, which for a dispersive path of length LD is simply
the propagator exp[−ik(�)LD] with k = �n(�)/c. Thus

Ẽ5(x, y,�) = Ẽ4(x, y,�) exp

[
−i

�

c
n(�)LD

]
. (5.27)

The necessary input field is obtained after FFT of the output of the phase
modulator.

This procedure is continued until all resonator elements are taken into account.
The final output pulse ẼN (x, y, t) is then coupled back into the first element (gain in
our case) to start the next round-trip.

As pointed out previously, the treatment of a single cavity element may
require a procedure as just described. This, for example, is true for the gain
crystal in a Kerr lens mode-locked laser. This element is responsible for gain,
dispersion, self-lensing and diffraction (beam propagation). The procedure is
exemplified in Figure. 5.11. The crystal is divided into slices of thickness 
z
and the various effects are dealt with one at a time in each slice. At the begin-
ning of each slice the pulse properties are defined by the complex amplitude
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Dispersion

Next z

z

Propagation
∆z ∆z

FT
IFT

Gain

Lensing
fnl

w(z)
R(z)
P(z)

w(z�∆z)
R(z�∆z)
P(z�∆z)

Figure 5.11 Successive calculations to be made to propagate a pulse through each slice 
z of a
gain crystal. FT and IFT stand for Fourier transform and inverse Fourier transform and indicate that
the treatment of dispersion can conveniently be done in the frequency domain.

Ẽ(z, r, t) = E(z, r, t) exp(ϕ(z, r, t)). At the end of each slice we obtain
Ẽ(z + 
z, r, t) which acts as the input for the next slice, z + 
z → z.

To study the switch on dynamics of a fs laser one starts from noise. The noise
bandwidth is roughly given by the width of the fluorescence spectrum of the
amplifier while its magnitude corresponds to the light emitted spontaneously into
the solid angle defined by the cavity modes. In most cases the particular noise
features vanish after few round-trips, and the final results are independent of the
field originally injected. Figure 5.12 shows as an example the development of
the pulse envelope, instantaneous frequency, and energy as a function of round-
trips completed after the switch on of the laser mode-locked with a slow saturable
absorber. Obviously the pulse parameters become stationary after several hundred
round-trips, which amounts to several microseconds.

5.2.4. Elements of an Analytical Treatment

A number of approximate analytical procedures has been developed by
New [18,19] and Haus [20] to describe the steady-state regime. The problem often
reduces to finding a complex pulse envelope Ẽ(t) that satisfies the steady-state
condition [20]:

Ẽ(t + h) =
N∏

i=1

TiẼ(t). (5.28)
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Figure 5.12 (a) Evolution of pulse envelope (solid line) and instantaneous frequency (dashed line)
after switch on of the laser, and (b) corresponding steady-state pulse energy (solid line), pulse duration
(dashed line), and frequency (dotted line). The active media were described by the density matrix
equations introduced in Chapter 3. All pulse parameters including the average frequency develop as
a result of the interplay of resonator elements. No extra frequency selective element was necessary
to limit the pulse duration (normalized to the spectral width of the gain transition 2/T2g). (Adapted
from Petrov [17].)

Equation (5.28) states that the pulse envelope reproduces itself after each round-
trip, except for a temporal translation h including a constant pase shift. The main
challenge is to find appropriate operator functions for the different resonator
elements that are amenable to an analytical evaluation of Eq. (5.28). A con-
venient approximation is to assume that the modification introduced by each
resonator element is small, which allows one to terminate the expansion of the
corresponding operator functions after a few orders. Another consequence of that
approximation is that the order of the resonator elements is no longer relevant.
We will briefly describe this approach here with a small number of possible
resonator elements and processes. Some of the most frequently used operators
representative of resonator elements are derived below.

The transformation of the pulse envelope by a saturable loss–gain can be
expressed as

Ẽout(t) =
{

1 + 1

2
a(0)

a L̃

[
1 − W (t)

Wsa
+ 1

2

(
W (t)

Wsa

)2
]}

Ẽin(t). (5.29)
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Equation (5.29) is the rate equation approximation (T2 → 0) of Eq. (3.79).
The expansion parameters are the small signal absorption coefficient (aa < 0)
and the ratio of pulse energy density to the saturation density of the transition.
Equation (5.29) applies to a gain medium with the substitutions aa → ag and
Wsa → Wsg.

The transfer function of a GVD element can be derived from Eq. (1.172)
and reads

Ẽout(t) =
{

1 + ib2
d2

dt2

}
Ẽin(t). (5.30)

For this expansion to be valid, the dispersion parameter b2 has to be much smaller
than τ2

p . In the case of a transparent medium of thickness d, b2 = k′′d/2.
A corresponding expression for the action of a Kerr medium of length d is

Ẽout(t) =
{

1 − i
k	n2d

n0
|Ẽin(t)|2

}
Ẽin(t) (5.31)

which can easily be derived from Eq. (3.146).
A linear loss element, which for example represents the outcoupling mirror,

can be modeled according to

Ẽout(t) =
{

1 − 1

2
γ

}
Ẽin(t) (5.32)

where γ is the intensity loss coefficient (transmission coefficient), for which
γ 	 1 is assumed.

Each resonator contains frequency selective elements which can be used to
tune the frequency. Such elements are for example prisms, Lyot filters, and mir-
rors with a certain spectral response. Together with the finite gain profile, they
ultimately restrict the bandwidth of the pulse in the laser. Let us assume a
Lorentzian shape for the filter response in the frequency domain H̃ = [1 + i(�−
ω	)/
ωF]−1 where the FWHM 
ωF is much broader than the pulse spectrum.
After expansion up to second order and retransformation to the time domain:

Ẽout(t) =
{

1 − 2


ωF

d

dt
+ 4


ω2
F

d2

dt2

}
Ẽin(t). (5.33)

If all passive elements are chosen to have an extremely broad frequency response,
the finite transition profiles of the active media act as effective filters. This can
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be taken into account by using the operator defined in Eq. (3.79) for the media
instead of Eq. (5.29) derived from the rate equations.

The operator describing the pulse change at each round-trip is obtained by
multiplying the transfer functions of all elements of the cavity, neglecting prod-
ucts of small quantities. To evaluate the steady state (5.28), Ẽ(t + h) can be
conveniently written as (1 + h d

dt + …)Ẽ(t), leading to an integro-differential
steady-state equation for the complex pulse envelope. The type of laser to be
modeled determines the actual elements (operators) that need to be included.
A parametric approach is generally taken to solve the steady-state equation.
An analytical expression is chosen for the pulse amplitude and phase, depending
on a number of parameters. This ansatz is substituted in the steady-state equation,
leading to a set of algebraic equations for the unknown pulse parameters. Several
types of mode-locked fs lasers have been modeled by this approach [21–24].
Changes in the beam profile because of the self-lensing effect have been incor-
porated [25,26]. The transverse dimension is included through a modification of
the pulse matrices introduced in Chapter 2 to include the action of the various
active resonator elements [26].

5.3. EVOLUTION OF THE PULSE ENERGY

Before proceeding with a discussion of the various processes of pulse
formation and compression, we will consider only the evolution of pulse energy
in the presence of saturable gain and nonlinear losses. Based on the continu-
ous model we will derive rate equations that describe the evolution of the pulse
energy on time scales of the cavity round-trip time and longer. The rate equations
will be written in terms of derivatives with respect to time. To relate this to the
spatial derivatives used in the continuous model we apply

d

dz
≈ 1

νg

d

dt
= τRT

2L

d

dt
, (5.34)

where L is the cavity length. Through most of this section we will neglect the
transverse variation of the beam intensity (flat top beam) and diffraction effects.
If we assume a beam cross section area A we may refer either to the total pulse
energy W or the energy density W = W/A.

We will concentrate first on parameters that may lead to a continuous
mode-locked pulse train, as opposed to Q-switched mode-locking. Most broad-
band solid-state laser media being used for short pulse operation have a long gain
lifetime. As a result, there is a tendency for the intracavity pulse to grow until
the gain has been depleted. The laser operation thereafter ceases until the gain



304 Ultrashort Sources I: Fundamentals

is recovered, which takes a time of the order of the gain material lifetime (typi-
cally microseconds). The output of such a laser consists in bursts of Q-switched
mode-locked pulse trains.

This first subsection is dedicated to straightforward linear cavities. The case
of ring cavities and some linear cavities with two pulses per cavity round-trip is
more complex because it involves mutual coupling between counter propagating
pulses in an absorber or nonlinear loss element.

5.3.1. Rate Equations for the Evolution of the
Pulse Energy

Nonlinear Element

The hypothetical laser to be considered here consists of a gain and a loss
medium whose parameters vary with the intensity and the energy of the evolving
pulse, depending on the time constant of the nonlinearity. Examples are saturable
gain and loss as described in detail in Chapter 3. A nonlinear element will be
said to provide negative feedback if it enhances the net cavity losses with increas-
ing energy or intensity. The reverse (cavity losses decreasing with intensity or
energy) occurs for a nonlinear element that provides positive feedback. “Saturable
absorption” is an example of positive feedback: the loss decreases with increas-
ing intensity. Positive feedback is needed for the establishment of a pulse train.
It is generally desirable to have a positive feedback dominating the nonlineari-
ties of the cavity at higher intensities. Examples of negative feedback are two
photon absorption and intracavity SHG. It will be shown in Section 5.4 that Kerr
lensing contains both types of feedback. Another important example of positive
and negative feedback is found with semiconductor absorbers, as discussed in
Section 6.5.

We will consider in this section a combination of positive and negative passive
feedback nonlinearities. The nonlinear losses can be expressed through their
dependence on the pulse energy density W . We assume that at a certain energy,
a negative feedback takes over, i.e., the loss start increasing with energy. The sim-
plest form of nonlinear loss that will show a transition from positive to negative
feedback is:

L(W) = LL + a(W − W0)2, (5.35)

where W0 defines the energy at which the nonlinear losses switch over from
saturable losses (positive feedback) to induced losses (negative feedback). As we
will see when discussing specific examples of cavities, Eq. (5.35) is a second-
order fit for the actual energy dependence of the losses, hence LL is not simply
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a sum of the linear losses but may also contain a contribution from the nonlinear
elements.

The saturable gain is another factor that determines the dynamics of the pulse
evolution in the cavity. We will show in an example of saturable absorption and
intracavity two photon absorption (cf. Section 5.3.2) how the parameters LL ,
a, and W0 are related to those material parameters. In the case of mode-locking
dominated by self-lensing, we will show in Section 5.4.3 the connection between
the phenomenological parameters LL , a, and W0 and properties such as the
magnitude of the nonlinearity, the transverse dimension of the beam, the length,
and position of the nonlinear element.

Rate Equations

In the present derivation of the evolution of the pulse energy we will use a rate
equation approximation for the gain medium. Referring for instance to Eq. (4.18)
for a two-level system, we can write for the population difference 
N :

d
N

dt
= − I(t)
N

IsT1
− 
N − 
N0

T1
− 
N + 
N0

2
R (5.36)

where I(t) is the laser intensity, R is a constant pumping rate,6 and Ws = IsT1 is
the saturation energy density. 
N0 is the equilibrium population difference in the
absence of the pump and laser field. For most gain media, the energy relaxation
time T1 is longer than the pulse duration. The preceding equation is equivalent
to the rate equation often used to model a gain medium:

d
N

dt
= − I
N

I ′
sTp

− 
N − 
N0

Tp
+ R′ (5.37)

which has a constant pump rate R′ = −R
N0, and where the energy relaxation
time T1 has been replaced by a shorter characteristic constant Tp given by:

1

Tp
= 1

T1
+ R

2
. (5.38)

A modified saturation intensity was introduced as I ′
s = (T1/Tp)Is. Without laser

field (I = 0) the population difference, according to Eq. (5.37), approaches an

6The pumping term is proportional to the population of the ground state which is N1 = (
N +

N0)/2. R is an effective (assumed to be constant) pump rate that also contains the properties of a
third energy level involved in the pumping process.
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equilibrium value


Ne = TpR′ + 
N0, (5.39)

which can be positive for a sufficiently large pumping R′ > −
N0/Tp, or
R > 2/T1.7 In terms of 
Ne Eq. (5.37) can be written as

d
N

dt
= − I
N

Ws
− 
N − 
Ne

Tp
. (5.40)

Because we are neglecting effects of pulse shape and will be considering
gain media with relaxation times much longer than the cavity round-trip time,
the effect of a short pulse on depleting the gain is equivalent to that of a con-
stant intensity filling the cavity for a round-trip time τRT . Defining a gain factor
G = σ
N	, where σ is the cross section for stimulated emission, and 	 is length
of the gain medium traversed per round trip, an equivalent form for Eq. (5.40) is:

dG

dt
= −G − Ge

Tp
− GW

WesTp
. (5.41)

In Eq. (5.41), Wes = Ws ×Ag ×τp/Tp is an effective saturation energy in the gain
medium, where Ag is the cross section of the beam at that location. The physical
meaning of the energy Wes is obvious from the steady state (dG/dt = 0) solution
of Eq. (5.41):

G(W) = Ge

1 + W
Wes

. (5.42)

Next we need a rate equation for the pulse energy. We assume that the laser
consists only of the gain medium and the nonlinear loss element that was intro-
duced in Eq. (5.35). The combined effect of gain and loss for the pulse energy
per round-trip is dW/(dt/τRT ) = (G − L)W or:

dW
dt

= G − LL − a(W − W0)2

τRT
W . (5.43)

The system of Eqs. (5.41) and (5.43) describes the evolution of the energy of
a single pulse.

7In the condition leading to population inversion, the recovery rate 1/Tp as defined by Eq. (5.38)
is dominated by the pumping rate R.
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dW
dt

= G − LL − a(W − W0)2

τRT
W (5.44)

dG

dt
= −G − Ge

Tp
− GW

WesTp
. (5.45)

It is useful to investigate first under which condition there is a steady-state
solution for the evolution equations. Steady state, dW/dt = 0, is reached when
G(W) = LL+a(W−W0)2, cf. Eq. (5.44). With Eq. (5.42) for the gain coefficient,
this condition becomes:

Ge

1 + W
Wes

= LL + a(W − W0)2 (5.46)

The existence of a real solution for the pulse energy W indicates that a steady-
state regime of the laser is possible.8 This is exemplified in the two examples
discussed below for a short and a long lifetime gain medium.

Immediately after the gain is turned on, the energy is given by the spontaneous
emission into the lasing mode, Wsp 	 W0. At this early time the evolution of
energy and gain can be calculated using W = 0 and G = Ge in the right-hand
side of Eq. (5.44), and W = Wsp and G = Ge in Eq. (5.45):

W(t) = Wsp exp

(
Ge − LL − aW2

0

τRT
t

)
(5.47)

G(t) = Ge exp

(
− Wsp

WesTp
t

)
. (5.48)

The laser is self-starting (the energy increases) if the gain exceeds the loss (Ge >

LL + aW2
0 ). The gain decreases from its initial value Ge because of saturation.

Case of a Laser with a Short Lifetime Gain Medium

The gain medium of a dye or a semiconductor laser is characterized by an
energy relaxation time in the nanosecond range (typically a few nanoseconds),
and a large gain cross section leading to a saturation energy density of the order
of a few mJ/cm2. Therefore, all the time constants in the system of Eqs. (5.44)

8Note that Eqs. (5.44) and (5.45) do not distinguish between mode-locked and cw laser. As such
they can only be used to discuss the evolution of the pulse energy or cw power (W/τRT ).
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Figure 5.13 Saturated gain and loss of a laser with a short gain life time. The solid line describes
the loss L(W). The other lines represent the gain G(W) for different small signal gain values
Ge = G(W = 0). The laser parameters are defined in the text.

and (5.45) are of the same order of magnitude. The saturable absorber saturates at
an energy smaller than the gain medium. The case of a strong positive–negative
feedback with a = 0. 008 nJ−2, with a turnover energy W0 = 5 nJ and a larger
gain saturation energy of Wes = 10 nJ (this proportion would be typical in
a dye laser) is illustrated in Figure 5.13. The heavier solid line represents the
losses L(W) (linear loss LL = 0. 1) of Eq. (5.35). The other succession of curves
represents the saturated gain G(W), cf. Eq. (5.42), for various levels of pumping,
i.e., the unsaturated gain Ge varies from 0.15 to 0.4, with increments of 0.5.
Steady-state solutions W exist where the loss and the gain curves intersect, which
represents a solution of Eq. (5.46). Obviously, the laser is self-starting for values
of unsaturated gain larger than 0.3. Steady-state solutions can be expected only
for Ge > 0. 15.

The steady-state pulse energy should correspond to the highest energy intersec-
tion of the saturated gain curves with the loss curve. The low-energy intersection
is an unstable equilibrium; a small positive excursion of the pulse energy from
this value will drive the system toward the high-energy intersection point. For
values of initial gain less than 0.3, an initial energy larger than the first intersec-
tion of the saturated curve with the loss curve is required. For instance, if the
unsaturated gain is 0.25, an initial pulse energy larger than 1 nJ is required to
have evolution toward the steady-state energy of 7.35 nJ.
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Case of a Laser with a Long Lifetime Gain Medium

In most solid-state crystalline lasers, such as Ti:sapphire, Li:CAF, Nd:YAG,
or Nd:vanadate, the energy relaxation time of the upper lasing level is orders of
magnitude larger than the cavity round-trip time. The loss modulation is small
[a(W0−W)2 	 1], with a turnover point for the nonlinear loss curve much higher
than the gain saturation W0 � Wes. In most solid-state laser crystals used for
fs pulse generation, the gain lifetime being in the microsecond range, the two
Eqs. (5.41) and (5.43) operate on totally different time constants. Once the gain
Ge has been switched on, the pulse energy reaches a value that corresponds to the
steady state of Eq. (5.44). Because of the long lifetime Tp of the upper state, the
gain [Eq. (5.45)] evolves on a much longer time scale of thousands of round-
trips. Thus one can assume that the pulse energy derived from the steady-state
solution of Eq. (5.44) follows the slowly evolving gain adiabatically. Substituting
the steady-state solution W of Eq. (5.44) into Eq. (5.45) yields:

dG

dt
= −G − Ge

Tp
− GW0

TpWes
∓
√

G − LL

a

G

TpWes
. (5.49)

A plot of the function dG/dt versus gain G is shown in Figure 5.14. The steady-
state condition corresponds to the intersection of these curves with the abscissa,
dG/dt = 0. As initial condition, the pulse energy W is small, and the gain has its
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Figure 5.14 Plot of the function dG/dt from Eq. (5.49), taken for two sets of parameters leading
either to cw mode-locking (solid line) or to Q-switched mode-locking (dotted line). The parameters
are W0 = 25 nJ, Ws = 13 nJ, Ge = 1 (solid line); and LL = 0. 3, Tp = 2000 ns and Ge = 0. 8
(dotted line).



310 Ultrashort Sources I: Fundamentals

maximum value equal to the linear gain Ge, cf. Eqs. (5.47) and (5.48). The laser
starts necessarily on the lower branch of any of these curves, where dG/dt is
negative because the gain decreases as the laser power builds up. Referring to
the solid line, the gain is expected to decrease until dG/dt = 0, which happens at
the lower branch of this curve. The point dG/dt = 0 describes a stable steady state,
because an increase in pulse energy leading to a further decrease in gain leads
to a positive dG/dt, hence an increase in gain and return toward the dG/dt = 0
point. This indicates the possibility of the existence of a stable pulse train.

The situation is different with the parameter set leading to the dotted curve.
Here, dG/dt is still negative at the minimum gain value G = LL = 0. 3. At this
point there are no real solutions to Eq. (5.49). Reducing the gain below LL as
required by the negative dG/dt drives the laser below threshold. Hence the laser
will turn itself off, until the gain can recover to its small signal value, and the
laser can start again. This describes the scenario of Q-switching.

CW-Mode-Locking Versus Q-Switching

The condition for a cw regime (or a stable pulse train) is thus that at the
minimum value G = LL , the gain derivative as shown in Eq. (5.49) be positive,
dG
dt

∣∣∣
G=LL

> 0. This can be expressed as:

εg = Ge − LL

(
1 + W0

Wes

)
> 0. (5.50)

The condition (5.50) was derived under the approximation that the gain lifetime
is infinite. It remains a good approximation for the typical solid-state laser cavities
with a round-trip time of 10 ns and a gain lifetime of 2 µs.

To illustrate this point Eqs. (5.44) and (5.45) were solved numerically and
the results are plotted in Figure 5.15. Figure (a) corresponds to a set of param-
eters leading to εg ≈ 0 [Eq. (5.50)], and shows that steady-state continuous
mode-locking is reached after a few transients. The pulse energy initially rises
quickly as Eq. (5.44) reaches equilibrium at the initial gain value. After a few
transient oscillations the pulse energy settles to a value nearly equal to W0.
At this point and for this choice of parameters, the gain is just balancing the
linear losses. Figure 5.15(b) corresponds to a slightly smaller gain (gain reduced
from Ge = 0. 87 to Ge = 0. 8). Substituting the values in Eq. (5.50), we find
a negative value for ε = −0. 07, which indicates Q-switching. Indeed, a periodic
burst of mode-locked pulse trains is seen.
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Figure 5.15 Pulse energy versus round-trip index. The lifetime of the upper laser level is 2000 ns.
The round-trip time is 10 ns. The linear loss parameter is LL = 0. 3. The turnover energy is W0 =
25 nJ. The saturation energy is Ws = 13 nJ. The amplitude coefficient for the nonlinear interaction
is a = 0. 0006 nJ−2. The figure on the left (a) is for a linear gain of Ge = 0. 87. The figure on the
right (b) is for a linear gain of Ge = 0. 8.

5.3.2. Connection of the Model to Microscopic
Parameters

In the previous sections we found a condition for continuous mode-locked
operation, as opposed to Q-switched operation. The model was based on a
simple model for the nonlinear intracavity losses of a hypothetical element
[cf. Eq. (5.35)]. Although the exact functional behavior of the losses at the transi-
tion from positive to negative feedback depends on the actual cavity elements and
processes involved, the general trend described by Eq. (5.35) is quite general.
To illustrate this point we identify the terms of that expression with physical
quantities for a specific example.

We consider here the case where the nonlinear losses are caused by a saturable
absorber of thickness d1 and a two photon absorber of thickness d2. Each element
is traversed once per round-trip, and we assume that the change in energy per
round-trip is small (
W/W 	 1). For a saturable absorber whose relaxation
time is much longer than the pulse duration we derived a relation between the
input and output pulse energy in Chapter 3, cf. Eq. (3.57):

Wout = Wsa ln
[
1 − e−α0d1

(
1 − eWin/Wsa

)]
, (5.51)

where Wsa is the saturation energy for the absorber. After expanding this
expression into a Taylor series up to first order in the small signal absorption
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coefficient, α0d1, and up to third order in (Win/Wsa) we obtain

Wout = Win − Wsaα0d1

[
Win

Wsa
− 1

2

(Win

Wsa

)2

+ 1

6

(Win

Wsa

)3
]

. (5.52)

The energy attenuation per round-trip for the saturable absorber becomes:

dW
d(t/τRT )

= −Wsaα0d1

[
W

Wsa
− 1

2

( W
Wsa

)2

+ 1

6

( W
Wsa

)3
]

, (5.53)

where we have replaced Win by W . Clearly, the transmission increases with
increasing pulse energy (saturation). The opposite can be expected from a two
photon absorber. Here, a beam of intensity I is attenuated according to

dI

dz
= −β2I2, (5.54)

where β2 is the two photon absorption cross section. Spatial integration relates
the input to the output intensity

1

Iin
− 1

Iout
= −β2d2. (5.55)

Assuming small changes per pass (
I = |Iout − Iin| 	 Iin, Iout ≈ I) we can
approximate

dI

d(t/τRT )
= −β2d2I2. (5.56)

Within our approximation of a fixed pulse shape (duration τp) and flat top beam
of area A we can obtain from Eq. (5.56) the rate of change for the pulse energy
W = IτpA

dW
d(t/τRT )

= −βwd2W2, (5.57)

where βw = β2/(Aτp) is the effective two photon absorption cross section for the
pulse energy.9

9We have made the approximation in this section that reshaping and focusing effects are negligible.
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If we add linear losses L0 to the effect of the one photon absorber [Eq. (5.53)]
and the two photon absorber [Eq. (5.57)], we find for the total beam attenuation
per round trip:

dW
d(t/τRT )

= −
{

L0 + α0d1 − α0d1W
2Wsa

+ α0d1W2

6W2
sa

+ βwd2W
}

W . (5.58)

This equation can be compared to the formal expression for the nonlinear loss
introduced in Eq. (5.35):

L(W) = LL + a(W − W0)2. (5.59)

We find the correspondences

LL = L0 + α0d1 − aW2
0 , (5.60)

where the turnover energy is given by:

W0 = 3Wsa

2

(
1 − 2βwd2Wsa

α0d1

)
. (5.61)

The amplitude of the nonlinear losses is characterized by the parameter a:

a = α0d1

6W2
sa

. (5.62)

Colliding Pulses in the Loss Element

In some cases several pulses can circulate in the cavity. This is the case for
a bidirectional ring laser and a linear laser where several pulses exist during
one round-trip. If the cavity consists of a saturable gain and a saturable loss
medium the pulses of a ring laser will collide in the loss medium if the attenuation
decreases with energy. This favors optimum pulse overlap in the absorber because
each pulse feels an absorption that is saturated by twice the energy. The same
situation can occur in linear resonators where two (or more) pulses oscillate.
If the absorber is in the cavity center equal pulse spacing results. Asymmetric
pulse spacings have been observed that result in colliding pulses in nonlinear
elements placed off center in linear cavities (see for example Lai et al. [27]).
The evolution of such regimes is complex; at this point we want to sketch the
modifications necessary for the nonlinear loss element only.
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For a thin saturable absorber the transmitted pulse energy, according to
Eq. (5.52), is:

Wout = Win

{
1 − α0d1

[
1 − β

2

Win

Wsa
+ θ

6

(Win

Wsa

)2
]}

. (5.63)

We have introduced the coefficients β and θ to describe the colliding pulse
effect on the saturation. If the absorber is geometrically thin compared to the
pulse length and the pulses interact incoherently, for example because of crossed
polarizations, Win should be replaced by 2Win and θ = β2 = 4.

In the case of coherent overlap the two counter-propagating pulses produce
an intensity grating in the absorber.

I(z) = I0 [1 + cos(2kz)] . (5.64)

While at the nodes of the intensity modulation there is no saturation, the saturation
at the maxima corresponds to an energy density of 4Win. An analysis of the
grating and its effect on the propagating field gives β = 3 and θ = 5 in
Eq. (5.63) [28].

5.4. PULSE SHAPING IN INTRACAVITY ELEMENTS

In any description of a laser that follows the round-trip model, either
numerically or analytically, each element is taken in sequence, represented either
by a matrix or a scalar function. Essential intracavity elements are analyzed in this
section. In the sections that follow and in Appendix E, we will derive expressions
for the most essential combinations of intracavity elements. The term element
refers here more to a function than a physical element, because each compo-
nent of a laser will have generally a plurality of properties which are most easily
treated separately. For instance, the Ti:sapphire crystal in a laser may serve simul-
taneously as a gain medium, dispersive element, nonlinear nonresonant element,
astigmatism compensator. In each subsection characterizing an element, we will
give expressions for its function at various levels of approximation, either in the
time domain or in the frequency domain, as appropriate.

The various elements are organized in resonant, nonresonant passive elements
and active elements. Under resonant elements we include saturable absorbers and
gain, because they are generally associated with a near-resonant transition.

The organization of this section is as follows:

1. Saturable absorbers and gain
2. Nonlinear nonresonant elements
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(a) SPM and cross-phase modulation
(b) Polarization coupling and rotation
(c) Two photon absorption

3. Self-lensing
4. Summary of compression mechanisms
5. Dispersion

5.4.1. Saturation

Most fs mode-locked lasers involve some intensity dependent loss mecha-
nism. Saturation of an absorber is the first one that comes to mind and has been
used for mode-locking. The typical passive mode-locking element favors pulsed
over cw operation by reducing the cavity losses for high intensities. Through
the sheer mechanism of saturation, an absorber–gain element can also produce
phase modulation and coupling between counter-propagating beams.

Because there should be at least one pulse per cavity round-trip time τRT ,
the recovery time τr of the device should not exceed that time: τr ≤ τRT . Within
that constraint, there is still room for a distinction between “slow” and “fast”
intensity dependent elements. A slow element—such as the saturable absorber of
a fs laser—will recover in a time long compared with the pulse duration. A fast
element—such as a Kerr lens—will have its time constant(s) even shorter than
the fs pulse.

The most commonly used saturable absorbers are dyes and semiconductors—
specifically MQW’s. When used in a free flowing dye jet, the saturable absorber
dye has the advantage of a continuously adjustable optical density (through its
concentration) and a high damage threshold. The latter is because of the tiny
interaction volume (a tight focal spot) is replenished in microseconds. To ensure
a good stability and optical quality of the jet, a viscous solvent—typically ethy-
lene glycol—is used. Saturable absorber dyes have a saturation energy density
of the order of 1 mJ/cm2, and an energy relaxation time ranging from 1 ps to
several ns. The obvious disadvantage of a dye is the inconvenience of having to
deal with carcinogenic solutions and noisy, bulky circulation systems. There is a
widespread effort to replace dyes by MQW saturable absorbers.

MQW’s provide the substitute saturable absorber with the smaller saturation
energy required to mode-lock semiconductor lasers [29]. Measurements per-
formed at room temperature with cw radiation and a 5 µm spot size indicate a
saturation intensity of less than 1 kW/cm2 for MQW, against 10 MW/cm2 for pure
GaAs [30]. It has been possible to achieve even more control on the parameters of
the saturable absorber (in particular its saturation intensity) by inserting a MQW
in a Fabry–Perot used in antiresonance [31, 32]. Such a device can be added to
an end mirror of a mode-locked laser. Because of the antiresonance condition,
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the material inside the Fabry–Perot is subjected to a smaller field than the one
present in the laser cavity, hence a better damage threshold and higher satura-
tion intensity for the device than for the MQW used directly. Such a device has
therefore been successfully applied to most cw mode-locked solid state lasers.

The general case of saturable gain and absorption was treated in Chapters 3
and 4. Here we want to summarize the main results for a fast and a slow element
in the rate equation approximation.

Fast Absorber or Amplifier

The propagation equation for the intensity through a fast saturable material

d

dz
I = αI

1 + I/Is
, (5.65)

cf. Eq. (3.62), can be integrated and one obtains after a distance 
z an implicit
solution for the output intensity

ln
I(
z, t)

I0(t)
+ I(
z, t) − I0(t)

Is
= α
z = a. (5.66)

Here a = α
z is the small signal absorption (a < 0) or gain (a > 0) coefficient.
For optically thin elements or a slice 
z of an arbitrary element, |a| 	 1, the
change in intensity becomes


I(t) � aI0(t)

1 + I0(t)/Is
. (5.67)

The phase modulation associated with saturation and interaction away from the
line center, according to Eq. (3.71), is

ϕ(
z, t) � −1

2
(ω	 − ω10)T2a ln

I(
z, t)

I0(t)
. (5.68)

These fast elements can follow the pulse instantaneously. The saturation and
consequently the pulse shaping is therefore controlled by the intensity. As
explained in detail in Chapter 3 this leads to pulse shortening in an absorber
and broadening in an amplifier.

Slow Absorber or Amplifier

In slow elements the saturation is controlled by the pulse energy. The medium
at a given time t accumulates the changes in the occupation numbers induced
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by all parts of the pulse arriving prior to t. From Eq. (3.55) we obtain for the
intensity after such an element

I(z, t) = I0(t)
eW0(t)/Ws

e−a − 1 + eW0(t)/Ws
. (5.69)

For weak absorption or gain (|a| 	 1) this expression can be simplified and the
change of pulse intensity


I(t) � aI0(t)e−W (t)/Ws . (5.70)

In this limit the phase modulation is given by Eq. (3.67) and reads:

ϕ(t) � −1

2
(ω	 − ω10)T2ae−W0(t)/Ws . (5.71)

The pulse shaping in these elements is a result of (unsaturated) attenuation or gain
in the leading part of the pulse while the trailing part is less affected (saturated
transition).

5.4.2. Nonlinear Nonresonant Elements

(a) Self-Phase Modulation

Some elements impress a nonlinear phase on the propagating pulse. As detailed
in Chapter 3, this phase is the result of a nonlinear process of third order and
characterized by a nonlinear polarizability χ(3). In the limit of a fast nonlinearity
the response is instantaneous and is usually described by an intensity-dependent
refractive index. Acting only on the phase, such an element leaves the pulse
envelope, E0(t), unchanged. From Eq. (3.149)

ϕ(t, z) = ϕ0(t) − k	n2

n0
zE2

0 (t) = ϕ0(t) − k	n̄2

n0
zI2

0 (t). (5.72)

If the actual profile of the incident beam is taken into account the index change
becomes a function of the transverse coordinate, which leads to self-lensing
effects. The general mechanism is described in Chapter 3; the effect of such an
element in a fs laser is discussed in the next section.
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(b) Polarization Coupling and Rotation

Nonlinear effects can also act on the polarization state of the laser pulse.
This effect is used in some lasers (for instance in fiber lasers [33]) to produce
mode-locking. Let us consider a pulse with arbitrary polarization, with complex
amplitudes Ẽx(t) and Ẽy(t) along the principal axis characterized by the unit
vectors x̂ and ŷ:

E = 1

2

(
x̂Ẽ0x(t) + ŷẼ0y(t)

)
ei(ω	t−k	z) + c. c. (5.73)

The propagation of such a field through the nonlinear material leads to a coupling
of the two polarization components. One can calculate, see [33], the nonlinear
index change probed by polarizations along x̂ and ŷ:


nnl,x = n2

[
|Ẽ0x|2 + 2

3
|Ẽ0y|2

]


nnl,y = n2

[
|Ẽ0y|2 + 2

3
|Ẽ0x|2

]
. (5.74)

In an element of thickness dm, this induced birefringence leads to a phase change
between the x and y components of the field vector


�(t) = 2π

λ	

(

nnl,x − 
nnl,y

) = 2πn2dm

3λ	

[
|Ẽ0x(t)|2 − |Ẽ0y(t)|2

]
. (5.75)

The phase shift is time dependent and, in combination with another element,
can represent an intensity-dependent loss element.

To illustrate this further let us consider a sequence of such a birefringent
element and a linear polarizer. We assume that the incident pulse, E0 cos(ωt),
is linearly polarized with components

E0x(t) = E0(t) cosα

E0y(t) = E0(t) sin α. (5.76)

The pass direction of the polarizer is at α + 90◦ resulting in zero transmission
through the sequence for low-intensity light (
� ≈ 0). Neglecting a common
phase the field components at the output of the nonlinear element are

E ′
x(t) = [E0(t) cosα] cos(ω	t)

E ′
y(t) = [E0(t) sin α] cos [ω	t + 
�(t)] . (5.77)
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Next the pulse passes through the linear polarizer. The total transmitted field
is the sum of the components from E ′

x(t) and E ′
y(t) along the polarizer’s path

direction

Eout(t) = E0(t) cosα sin α {cos(ω	t) + cos [ω	t + 
�(t)]} . (5.78)

The total output intensity Iout(t) = 〈E2(t)〉 is

Iout(t) = Iin(t)
1

2
[1 − cos
�(t)] sin2(2α). (5.79)

Let us now assume a Gaussian input pulse Iin = I0 exp
[
2(t/τG)2

]
and parameters

of the nonlinear element so that for the pulse center the phase difference


�(t = 0) = 2πn2dm

3λ	

E2
0 (t = 0)

(
sin2 α − cos2 α

)
= π. (5.80)

For this situation we obtain a transmitted pulse

Iout(t) = 1

2
Iin(t)

{
1 − cos

[
πe−2(t/τG)2

]}
. (5.81)

The transmission is maximum (= 1) where the nonlinear element acts like a
half-wave plate that rotates the polarization by 90◦, lining it up with the pass
direction of the polarizer. For the parameters chosen here this happens at the pulse
center (t = 0). The phase shift 
� is smaller away from the pulse center produc-
ing elliptically polarized output and an overall transmission that approaches zero
in the pulse wings. Thus this sequence of elements can give rise to an intensity
dependent transmission similar to a fast absorber.

(c) Two Photon Absorption

In the case of an imaginary susceptibility of third order [χ(3)] there is a resonant
transition at twice the photon energy of the incident wave. As explained in
Chapter 3 this may lead to two photon absorption, which is governed by the
propagation equation for the pulse intensity

d

dz
I(t, z) = −β2I2(t, z). (5.82)
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Integrating this equation over a propagation distance d yields for the output
pulse Iout(t) in terms of the input Iin(t)

Iout(t) − Iin(t) = −β2dIin(t)Iout(t). (5.83)

If the pulse modification introduced by this element is small the change in pulse
intensity can be approximated:


I(t) = −β2dI2(t). (5.84)

For counter-propagating pulses of intensities I1 and I2 in an optically and
geometrically thin (d 	 τpc) absorber the induced change is


I1(t, d) = −β2d
[
I2
1 (t, 0) + 2I2

2 (t, 0)
]

. (5.85)

This follows directly from integrating Eq. (3.166) using the approximations for
thin absorbers.

5.4.3. Self-Lensing

An intensity-dependent index of refraction results in spatial phase modulation,
because of the transverse variation of the intensity, as well as in temporal phase
modulation through the time-dependent intensity of the pulses. We will consider
here laser beams with an intensity profile that peaks on-axis. The radial inten-
sity distribution causes a variation in index resulting in a wavefront curvature.
Therefore, the nonlinear element can be adequately represented by a lens with an
intensity-dependent focal distance. Self-lensing can be caused either by the Kerr
effect (nonresonant nonlinearity), or by an off-resonance saturation (resonant
nonlinearity). The calculations presented in this section will take as an example
the Kerr nonlinearity. In Chapter 3, Eq. (3.168), we derived an expression for
the radial dependence of the phase in the vicinity of the beam center, assuming
a Gaussian beam profile

ϕ(r, t) = 2πd

λ	


nnl(r, t) = −n̄2
2π

λ	

dI0(t)e−(2r2/w2
0) ≈ −n̄2

2π

λ	

dI0

(
1 − 2

r2

w2
0

)
.

(5.86)

Here I0(t) is the intensity on axis (r = 0) and w0 is the beam waist located at the
input of a thin sample of thickness d. This expression should be compared to the
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phase factor that is introduced by a thin lens of focal length f , for example [34],

T (r) = exp

(
ik	

r2

2f

)
. (5.87)

Obviously the nonlinear element acts like a lens of focal length

f = w2
0

4n̄2dI0
. (5.88)

Note that f = f (t) is controlled by the time dependence of the pulse envelope
I0(t). A similar expression applies to any nonlinear change in index that results
in a parabolic radial phase dependence ϕ(r) = Br2. The generalized expression
for the focal length is

f = k	
2B

. (5.89)

Another example is off-resonance interaction with a saturable absorber or
amplifier.

Let us now consider the transmission of a pulse with a Gaussian beam and
temporal profile,

I(r, t) = Î exp
[
2(t/τG)2

]
exp

[
−2r2/w2

0

]
,

through a sequence of a nonlinear lens element and an aperture of radius R a
distance z away. To explain the time dependence of the transmission analytically
we will make certain restrictive assumptions. One of these assumptions is that
the beam remains Gaussian after the nonlinear element. This requires to consider
the element as a thin lens of certain focal length f . Strictly speaking, the latter is
only true in the vicinity of the beam center. It will be obvious that similar effects
occur in the general case; its treatment, however, requires a numerical approach.
The waist of the incident Gaussian beam with Rayleigh range ρ0 = πw2

0/λ is
placed at the nonlinear element (z = 0). After a lens of focal length f the waist
of the Gaussian beam develops as, see for example [34],

w2(z) = w′2
0

[
1 + (zm − z)2

ρ′2
0

]
(5.90)
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where

w′2
0 = w2

0
f 2

f 2 + ρ2
0

(5.91)

is the beam waist after the lens, which occurs at a distance

z = zm(f ) = f
ρ2

0

f 2 + ρ2
0

. (5.92)

ρ′
0 = πw′2

0 /λ is the Rayleigh range of the beam after the nonlinear element.
By way of Eq. (5.88) we can write the focal length of the nonlinear element

f (t) = f0 exp

[
2

(
t

τG

)2
]

, (5.93)

where f0 = w2
0/(4dn̄2 Î). We will consider the behavior of the lens aperture

sequence in the vicinity of the pulse center, for which we can approximate

f (t) ≈ f0
[
1 + 2(t/τG)2

]
. (5.94)

The aperture is placed in the plane of the beam waist produced by the pulse
center, that is, at z = zm0 = zm(f0). The power transmitted through the aperture
is then

Pout =
∫ R

0
rdr
∫ 2π

0
dφ

w2
0

w2(zm0)
Î exp

[
−2

(
r

w(zm0)

)2
]

=
[
1 − e−2R2/w2(zm0)

]
Pin ≈ 2R2

w′2
0 (zm0)

Pin, (5.95)

where the input power Pin = Îπw2
0/2, and R 	 w(zm0) was assumed to derive the

last equation. Inserting Eqs. (5.90) through (5.92) with f (t) from Eq. (5.94) into
Eq. (5.95) yields for the time-dependent transmission through the lens–aperture
sequence

Pout

Pin
≈ 2R2

(
f 2
0 + ρ2

0

)
w2

0f 2
0

(
1 − 2ρ2

0

f 2
0 + ρ2

0

at2

)
, (5.96)

where, consistent with Eq. (5.94), we have kept expansion terms up to t2 only.
The transmission is time dependent with the maximum at the pulse center.
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This reflects the fact that the shortest focal length is produced at the inten-
sity maximum leading to the smallest beam size at the position of the aperture.
Obviously, such a lens aperture sequence is just another example of a fast element
whose overall transmission is controlled by the pulse intensity.

Laser pulse induced lensing does take place in nearly all ultrashort pulse
mode-locked lasers. In femtosecond pulse lasers, there is always a pulse shaping
mechanism in the cavity, involving a balance of dispersion and temporal SPM.
The latter effect implies necessarily a spatial modulation of the wavefront, hence
self-lensing. As a result of self-lensing, the size of the cavity modes is modi-
fied, leading to an increase or reduction of losses because (a) there is a change
in transmission through an aperture (hard aperture) or (b) there is a change in
spatial overlap between the cavity mode and the pump beam in the gain medium
(soft aperture).

5.4.4. Summary of Compression Mechanisms

Figure 5.16 summarizes the compression mechanisms and the associated pulse
shaping that were discussed in the previous sections.

5.4.5. Dispersion

The effect of dispersion is most simply treated in the frequency domain.
Using the notations of Chapter 2, a dispersive element is characterized by a
frequency dependent phase factor ψ(�). In the particular case where the disper-
sion is because of propagation through a thickness d of a homogeneous medium
of index n(�), the dispersive phase factor is simply ψ(�) = k(�)d. The most
rigorous procedure to model dispersion is to take the temporal Fourier transform
of the pulse, Ẽin(�), and multiply by the dispersion factor, to find the field Ẽout(�)
after the dispersive element:

Ẽout(�) = Ẽin(�)e−iψ(�). (5.97)

An inverse Fourier transform will lead to the field Ẽout(t) in the time domain.
When analytical expressions are sought to model the evolution of a pulse

in a cavity and the dispersion per round-trip is small, one can use an
approximate analytical solution in the time domain. We approximate
ψ(�) ≈ ψ′′∣∣

ω	
(� − ω	)2/2. This is the lowest order of a Taylor expansion

that produces a change in pulse shape. Expanding the exponential function
exp[−i ψ′′∣∣

ω	
(� − ω	)2/2] up to first order and Fourier transform to the time
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Figure 5.16 Various compression mechanisms. (a) Gain saturation: The original pulse and its pulse
width are indicated by the solid line. The leading edge of the pulse is amplified, until the accumulated
energy equals the saturation energy density Wsg at time ts, as indicated by the dashed area. In the
case of the figure, the pulse tail is not amplified, resulting in a shorter amplified pulse (dashed line).
(b) Saturable absorption: The leading edge of the pulse is attenuated, until the saturation energy
density Wsa is reached at ts. (c) Frequency modulation (dotted line) because of saturation peaks at
the time ts when the saturation energy density Wsa is reached. For t > ts, the pulse experiences
a downchirp, if the carrier frequency of the pulse is smaller than the resonance frequency of the
absorber. (d) Frequency modulation (dotted line) produced by the Kerr effect. The central part of
the pulse (intensity profile indicated by the solid line) experiences an upchirp. (e) Self-focusing by a
fast nonlinearity combined with an aperture, leads to a compression by attenuating both leading and
trailing edges. (f) In the case of self-focusing by a slow nonlinearity combined with an aperture, only
the trailing edge is trimmed.
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domain yields

Ẽout(t) = Ẽin(t) − i

2
ψ′′∣∣

ω	

∂2

∂t2
Ẽin(t), (5.98)

which is a special case of Eq. (5.30). Note that this treatment of dispersion is
equivalent to solving the differential equation (1.93) for an incremental step 
z.
There the dispersion was that of an optical material, ψ(�) = k′′

	 (�)
z.

5.5. CAVITIES

Resonators are an essential part of any laser. We will review first the mode
spectrum of a laser cavity and the standard ABCD-matrix cavity analysis. Because
mirrors are used as focusing elements, astigmatism complicates significantly the
calculation and design (optical positioning of the elements) of the resonator.
Finally, we will analyze the effect of a Kerr lens in a laser cavity.

5.5.1. Cavity Modes and ABCD Matrix Analysis

Mode-locked operation requires a well-defined mode structure. It is generally
understood that the longitudinal modes are locked in phase. A transverse mode
structure will generally contribute to amplitude noise (at frequencies correspond-
ing to the differences between mode frequencies). Most fs lasers operate in a
single TEM00 transverse mode. We will see, however, that some multiple trans-
verse mode lasers have the same longitudinal mode structure as the fundamental
TEM00.

This subsection reviews standard ABCD matrix calculations of the stability of
laser resonators. Most fs laser cavities have at least one beam waist (for instance,
one for the gain medium, and possibly one for a passive mode-locking element).

A beam with an electric field amplitude having a Gaussian radial dependence
is uniquely defined by its complex q̃ parameter defined by Eq. (1.186). The
phase variation on axis (r = 0) of the beam is determined by the phase angle
�(z) = arctan z/ρ0 according to Eq. (1.183).

The parameter of the fundamental Gaussian beam that can reproduce itself in
a cavity can be determined by the standard technique using ABCD matrices [35].
Let A, B, C, and D be the elements of the 2×2 system matrix obtained by calcu-
lating the product of the matrices of all cavity components, defining a complete
round-trip from a point P. The complex q̃ parameter of the Gaussian beam at the
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point P is given by:

1

q̃
= −A − D

2B
− i

√
1 − (A + D)2/4

|B| . (5.99)

Using the definition of the q̃ parameter, Eq. (1.186), leads to the beam
characteristics at point P:

R = − 2B

A − D
(5.100)

πw2

λ	

= |B|√
1 − (A + D)2/4

. (5.101)

The modes of a cavity are determined by the condition that, after one round-
trip from point P to point P, the total phase variation is a multiple of 2π. For
the fundamental TEM00 mode, and a simple cavity consisting of two concave
mirrors at distance d1 and d2 from the beam waist (which we will assume here
to be inside the resonator), the phase variation for the half round-trip should be
a multiple of π:

lπ = k(d1 + d2) + �(d1) + �(d2)

= k(d1 + d2) + 
�

= k(d1 + d2) + arctan

(
d1

ρ0

)
+ arctan

(
d2

ρ0

)
, (5.102)

where k = 2πv/c. If d1,2 	 ρ0, the mode spacing frequency 
v = vl+1 − vl =
c/[2(d1 + d2)].

The Fourier transform of the output of a continuously mode-locked laser is a
comb of frequency spikes having a maximum overlap with the longitudinal mode
structure represented by Eq. (5.102). Apertures are often inserted in the cavity of
mode-locked lasers to avoid the complication introduced by a transverse mode
structure. In some lasers, a saturable absorber acts as an aperture. The small
cross section of the inverted region in the gain medium can also act as a mode
limiting aperture.

The fundamental TEM00 Gaussian beam is not necessarily the only existing
mode in a fs laser. Let us consider the influence that the transverse mode structure
can have on the operation of a mode-locked laser. If the laser is multimode,
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the electric field can be expressed as an expansion of Hermite–Gaussian modes
(see, for instance, [35]):

E(x, y, z, t) =
∑

n

∑
m

cnmun(x)um(y)ei(ωt−kz) + c. c. , (5.103)

where

us(x) =
(

2

π

) 1
4

√
exp[i(2s + 1)�(z)]

2ss!w(z)

× Hs

(√
2x

w(z)

)
exp

{
−
[

i
kx2

2R(z)
+ x2

w2(z)

]}
. (5.104)

Here Hs are Hermite–Gaussian polynomials of order s. The subscript m and n
are the transverse mode indices.

For the simple cavity consisting of the two curved mirrors introduced above,
the spacing between transverse modes is:


v = c

2(d1 + d2)
(
n + 
m)

[
arctan

(
d1

ρ0

)
+ arctan

(
d2

ρ0

)]
(5.105)

where 
n and 
m are the difference in transverse mode numbers [35]. If the
various transverse modes oscillate independently with random phase, the output
of the laser will have a noise component corresponding to the beating of the
various transverse modes. This noise component will be periodic if the mode
spacing is equal in the two transverse directions. In some cases, [36] the trans-
verse modes can be locked in phase, resulting in a periodic spatial scanning of
the beam. The noise contribution corresponding to the transverse mode beating
will be low frequency if d1,2 < ρ0.

Calculation of the exact stability diagram, position, and size of the beam
waists, is a tedious but essential task in the design of fs lasers. Because it is not
essentially different from the design of any laser, we will refer to the appropriate
literature for details, for example [35]. A few general criteria to consider in the
design of the laser cavity are:

• minimal losses.
• a flexibility of varying the ratio of beam waists in various resonator ele-

ments in large proportions. The saturation level in the gain medium will
be a factor in determining the intracavity power. In the case of Kerr lens-
ing, it is important to identify the location where the beam size variation
because of self-lensing will be maximum (positioning of an aperture).
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In the case of passive mode-locking, the ratio of beam waists in the
absorber–amplifier is important, because this is the parameter that deter-
mines the relative saturation of the gain and absorber.

• a small spot size in the amplifier may be desirable for efficient pumping and
heat removal.

• a round spot is desirable in the passive mode-locking element (for instance,
the amplifier rod in the case of a Ti:sapphire laser, or the saturable absorber
jet in a dye laser) to have the most uniform possible wavefront across the
beam, because it is a region of the cavity which contributes to the phase
modulation.

Mirrors or lenses can be used to create beam waists in a laser cavity. Because
of the requirement of minimum losses and dispersion, one will generally choose
reflective optics over lenses.

5.5.2. Astigmatism and Its Compensation

It is not always an easy task to create a waist of minimal size with off-axis
reflective optics. Indeed, let us consider the typical focusing geometry sketched
in Figure 5.17. The smaller the focal spot in A, the larger the diameter w of the
incident beam on the mirrors, hence the larger the clearance angle θ required to
have the focal point fall outside of the incident beam cross section. However,
the astigmatism caused by a large angle of incidence θ will make it impossible
to obtain the desired small focal spot with a cylindrically symmetric Gaussian
beam incident from the left.

Because a tight focusing is required in the nonlinear elements of a mode-locked
laser, there is clearly a need for minimizing or reducing the astigmatism. There are

A

B

2	

Figure 5.17 Off-axis focusing of a Gaussian beam leading to astigmatism. In the plane of the
figure the focal distance of the mirror is (R/2) cos θ, where R is the radius of curvature of the mirror.
The first focalization is therefore a line perpendicular to the plane of the figure originating from A.
In the orthogonal plane the focal distance of the mirror is (R/2)/ cos θ. There will therefore be a focal
line in the plane of the figure at B.
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some exceptions. A large astigmatism may sometimes be desirable in the gain
medium. This is the case when it is desirable to take maximum advantage of a
self-lensing effect. Another example of such a need is to match the elongated
shape of the gain region of semiconductor lasers.

Let us choose as transverse coordinate y for the plane of incidence (the plane
of the figure in Fig. 5.17), and x for the orthogonal direction. The locations of
the two focal lines corresponding respectively to the plane of the figure and to
the orthogonal plane are:

fy = f cos θ

fx = f

cos θ
, (5.106)

where θ is the angle of incidence and f = R/2 is the focal length of the mirror
(see for example Kogelnik et al. [37]).

Other elements in a cavity, such as Brewster plates, also have astigmatic
properties that can limit the performance of the system. The gain medium of a
Ti:sapphire laser or of a dye laser is generally a plane parallel element put at
Brewster’s angle. Kogelnik et al. [37] have shown under which condition the
astigmatism can be compensated by such elements.

To analyze the astigmatism of such elements let us consider the propagation
of a Gaussian beam through a plate of thickness d and refractive index n put at
the Brewster angle directly next to the beam waist (size w0) at z = 0, as sketched
in Figure 5.18.

On entering the medium, the beam waist takes the values:

w0x = w0

w0y = w0
cos θr

cos θB
= w0

sin θB

cos θB
= nw0, (5.107)

where θB = arctan n is the Brewster angle, and θr = 90◦ − θB is the angle of
refraction. To a thickness d, there corresponds a propagation distance

χ = d

cos θr
= d

√
1 + n2

n
. (5.108)

Applying the propagation law (1.182) for the beam waist across the thickness d
yields:

wx = w0

√√√√1 +
(

λ	χ

nπw2
0

)2

= w0

√√√√1 +
(

λ	

πw2
0

d
√

1 + n2

n2

)2

(5.109)



330 Ultrashort Sources I: Fundamentals
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Figure 5.18 Brewster plate geometry for the calculation of astigmatism compensation. On the top
right: a Brewster plate of thickness d is placed close to a beam waist (w0). The propagation through
the plate is calculated along z, for the plane of the figure (coordinate y) and orthogonal to the plane
of the figure. Bottom part of the figure: a Brewster cut laser crystal of length Lc inserted in an X or
Z configuration (the Z configuration is shown) between two curved mirrors can be considered to be
made of two halves of thickness d = Lc/2.

wy = nw0

√√√√1 +
(

λ	χ

n3πw2
0

)2

= nw0

√√√√1 +
(

λ	

πw2
0

d
√

1 + n2

n4

)2

. (5.110)

On exiting the crystal, the beam waists take the values wx and wy/n, along x
and y, respectively. Therefore, the Brewster plate can be seen from Eqs. (5.109)
and (5.110) to be equivalent to propagation in free space of distances equal to

dx = d

√
1 + n2

n2
(5.111)

dy = d

√
1 + n2

n4
(5.112)

in the planes xz and yz, respectively. The beam issued from the waist w0 after
passing through the Brewster plate will be again collimated by a mirror of radius R
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at an angle θ if the difference between the two distances dx and dy compensates
the difference in focal distances fx and fy. Using Eqs. (5.106), (5.111), and (5.112),
this condition is equivalent to:

2d

R

√
n4 − 1

n4
= sin2 θ

cos θ
. (5.113)

In the case of a typical Ti:sapphire laser, the crystal of length Lc = 2d is inserted
near the focal point between two curved mirrors. Each half crystal of thickness
d = Lc/2 can compensate the astigmatism of each of the mirrors, provided the
angle of incidence is chosen to be a solution of:

Lc

R

√
n4 − 1

n4
= sin2 θ

cos θ
. (5.114)

For a 9 mm long Ti:sapphire crystal inserted between two mirrors of 10 cm
curvature, Eq. (5.114) indicates that astigmatism compensation occurs at an angle
of θ = 9. 5◦.

In the case of dye lasers, we find that for a typical jet thickness of 200 µm and a
mirror curvature of 5 cm, the compensated angle is less than 2.5◦. Compensation
is impossible for tight focusing in a saturable absorber jet of typical thickness of
50 µm. Two options are available in such a situation:

• insert a glass window at Brewster angle between the two curved mirrors, of a
thickness sufficient to compensate the astigmatism caused by the mirrors, or

• use the astigmatism of another part of the cavity, to obtain a minimum
astigmatism-free spot between the two mirrors.

The latter approach is only possible in situations where there are two or more
waists in the cavity. Calculations show that large angles can actually result in
astigmatism compensation, and, even with angles of incidence on the focusing
mirrors exceeding 10◦, large stability ranges have been found [38]. Resonators
for dye lasers have been designed to provide a round and minimum size spot
in the absorber jet, using the cavity geometry (relative location of the compo-
nents) to compensate the astigmatism, without a need for inserting additional
“compensating elements.” The price to pay for an optimal focusing at one waist
of the cavity, is a large astigmatism at another part of the cavity. Returning to
Fig. 5.17, the beam incident from the left will focus first on a line originating
from A, perpendicular to the plane of the figure, next in a line at B in the plane
of the figure. However, if the beam incident from the left is collimated in the
plane of the figure, but convergent in the orthogonal direction, the focal line B
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will recede towards the focus A. The incident beam parameters can be adjusted
such as to create a tight round focal spot.

To assess the importance of astigmatism, let us consider a simple ring cavity
with two beam waists. We assume that one beam waist is formed by two lenses
of 15 mm focal distance, spaced by 30 mm. The other waist is formed by two
mirrors of focal distance f = 25 mm separated by a distance d. The distances
between the two waists are 1 m and 3 m in a 4 m perimeter ring cavity. From
the expression for the ABCD matrix for this cavity one finds that the stability
range is f < d < 1. 01f . If astigmatism because of an angle of incidence θ on
the two mirrors of f = 25 mm is taken into account, there will be a different
stability condition corresponding to each of the two focal distances fx = f /cos θ
and fy = f cos θ. The cavity is stable if the two stability ranges overlap. For an
angle θ ≥ 5. 7◦, this cavity is no longer stable. In this situation other degrees of
freedom, such as beam propagation out of plane and/or the insertion of additional
elements are options.

5.5.3. Cavity with a Kerr Lens

In this section we will treat the effect of a Kerr lens on the beam parameters
in a laser cavity perturbatively based on Gaussian beam analysis. A simple,
geometrical optics description of a nonlinear lens aperture sequence is presented
in Appendix E.

General Approach

It is convenient to use the ABCD matrix approach to evaluate the intensity-
dependent losses introduced by Kerr lensing in a laser cavity [39, 40]. The ABCD
matrix of the resonator is calculated starting from a reference plane at the position

of the Kerr medium. Let M1 =
(

A1 B1
C1 D1

)
be the ABCD matrix for low intensity

(negligible Kerr effect). At high intensity, the nonlinear lensing effect modifies
this matrix as follows:

M =
(

1 0
− 1

fnl
1

)(
A1 B1
C1 D1

)
=
(

A1 B1
C1 + δC D1 + δD

)

=
(

A B
C D

)
, (5.115)

where δC = −A1/fnl; δD = −B1/fnl, and fnl is the time dependent focal length
of the Kerr medium, cf. Eq. (5.88). A Gaussian beam is uniquely characterized
by its complex beam parameter q̃ (cf. Chapter 1 and [39]). In the absence of
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Kerr lensing, the eigenmode of the empty cavity is characterized by a complex
beam parameter q̃1, at the location the system matrix calculation was started.
The inverse of this beam parameter is:

s̃1 = 1

q̃1
= 1

R1
− i

λ	

πw2
1

= C1 + D1s̃1

A1 + B1s̃1
, (5.116)

Solving the eigenvalue equation (5.116) yields the complex beam parameter at
the location of the nonlinear crystal (Kerr medium):

w2
1 = |B1|λ

π
×
√

1

1 − [(A1 + D1)/2]2
(5.117)

R1 = 2B1

D1 − A1
. (5.118)

In the presence of the Kerr lensing, the eigenvalue s̃ is the solution of the
eigenmode equation for the complete round-trip ABCD matrix:

s̃ = C + Ds̃

A + Bs̃
. (5.119)

For s̃ we can make the ansatz:

s̃ = s̃1 + δs̃ (5.120)

where δs̃ is the small change in s̃ produced by the Kerr lens that we will determine
next. For this we multiply both sides of Eq. (5.119) by A + Bs̃, substitute
Eq. (5.120) for s̃, and replace all four matrix elements X by X1 + δX. Keeping
only terms up to first order we obtain:

A1s̃1 + B1s̃2
1 + (2D1s̃1 + A1)δs̃ = C1 + D1s̃1 + δC + s̃1δD + D1δs̃, (5.121)

where we have made use of the fact that δA = δB = 0, cf. Eq. (5.115). Solving
for δs̃ and using δC and δD from Eq. (5.115), and using Eq. (5.116) yields:

δs̃ = 1

fnl

[ −(A1 + B1s̃1)

A1 + 2B1s̃1 − D1

]
. (5.122)
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The change in δs̃ implies that the lensing effect results in a change in beam size at
any location in the cavity. Typically, an aperture is used at a particular location of
the cavity, where, ideally, the self-lensing results in the largest reduction in beam

size. Let Mm =
(

Am Bm

Cm Dm

)
be the ABCD matrix that connects the reference

point of the cavity (location of the Kerr lens) to the position of the aperture.
The complex parameter s̃m at the aperture is:

s̃m = Cm + Dms̃

Am + Bms̃
. (5.123)

The relative change in beam size at the aperture δwm/wm because of the Kerr
lens is related to the change in s̃m:

δwm

wm
= −1

2

Im(δs̃m)

Im(s̃m)
. (5.124)

The change in beam parameter at the aperture δs̃m can be inferred from the
change in beam parameter δs̃ at the point of reference. Let us make the ansatz
that s̃m = s̃m0 + δs̃m, where s̃m0 is the complex s parameter without the Kerr lens
[s̃m0 is given by Eq. (5.123) for s̃1 = s̃]. Inserting these expressions for s̃m and
s̃ = s̃1 + δs̃ into Eq. (5.123) and keeping only terms up to first order, we find:

δs̃m = Dm − Bmδs̃m0

Am + Bms̃1
δs̃. (5.125)

In this equation, s̃m0 can be substituted from Eq. (5.123) where s̃ has been replaced
by s̃1, yielding:

δs̃m = δs̃

(Am + Bms̃1)2
. (5.126)

Finally we substitute δs̃ with Eq. (5.122) to obtain:

δs̃m = 1

fnl

[ −(A1 + B1s̃1)

(A1 + 2B1s1 − D1)(Am + Bms̃1)2

]
. (5.127)

The last equation (5.127) contains all the information necessary to estimate the
effect of Kerr induced lensing on a cavity. Let us consider an aperture of radius wa.
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Using Eq. (5.95), we can estimate the ratio of the energy loss through the aperture
with Kerr effect (
W) to the loss without Kerr effect (
W0):


W

W0

= exp

{
−2

(
wa

wm + δwm

)2

+ 2

(
wa

wm

)2
}

= exp

{
4

(
wa

wm

)2
δwm

wm

}

(5.128)

where δwm is determined by Eqs. (5.124) and (5.127).

5.6. PROBLEMS

1. By simple energy conservation arguments, find (in the approximation
T1 → ∞) an expression for the energy gained (lost) per unit distance
for an amplifier (absorber) dW

dz as function of the change in population
difference and of the photon energy. Introduce into that expression the
linear gain (absorption) coefficient, and combine with the rate equation
to derive the evolution equation for the pulse energy density:

dW

dz
= −α0Ws

[
1 − e−W /Ws

]
, (5.129)

where α0 is the linear gain (absorption) coefficient, and Ws is the
saturation energy density.

2. Derive an evolution equation for the pulse energy in a mode-locked
laser ring cavity consisting of (a) the sequence output mirror (reflectivity
r)—gain—saturable absorber; (b) the sequence gain—mirror—absorber;
and (c) the sequence absorber—gain—mirror. Neglect reshaping of the
pulse and integrate Eq. (5.129) to yield the energy Wout = WoutAa at the
end of a loss element of thickness da, as a function of the input energy
Win = WinAa. Aa is the cross section of the beam in this particular ele-
ment. Show that the output pulse of energy Wout , after transmission of a
pulse of input energy Win through a saturable absorber is:

Wout = AaWsa ln
[
1 − eαada

(
1 − eWin/AaWsa

)]
. (5.130)

3. Consider the elementary round-trip model of Figure 5.19. Choose a refer-
ence point just after the saturable loss, where the beam cross section is Aa.
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Saturable gain Saturable absorption
(nonlinear loss)

Outcoupling mirror
(linear loss)

out

W3
W4

W2 W1

Figure 5.19 Simplified round-trip model for a passively mode-locked laser, showing the evolution
of the pulse energy density, W .

Show that the energy density W4 at the end of series loss-gain-nonlinear-
loss is related to the energy density W1 entering this sequence by:

1 + e−aa
[
eW4/Wsa − 1

]
=
{

1 + eag
[
eRW1Aa/(WsgAg) − 1

]}WsgAg
WsaAa ,

(5.131)

where R is the output coupler (intensity) reflectivity, Aa and Ag are the
beam cross sections in the absorber and gain elements, respectively;
Wsa and Wsg the saturation energy densities in the absorber and gain
media. Note that in a steady state, W1 = W4, and Eq. (5.131) can be
used to calculate the pulse energy.

Solve Eq. (5.131) in the approximation W4/Wsa 	 1 and W1/Wsg 	 1.
Show that, even for a laser below threshold for cw operation (R =
r2 < exp[−(aa + ag)], two solutions can be found for W1. The first
solution is the minimum intracavity energy required to start mode-
locked oscillation. The second solution is the steady-state intracavity
energy. Discuss the stability of both solutions. Under which condition
can the first solution be small compared to the steady-state intracavity
energy?

4. Derive the equation for the soliton laser, following the procedure sketched
in Fig. 5.9.

5. Calculate the spectrum of a continuously mode-locked Ti:sapphire laser
emitting a continuous train of identical Gaussian pulses, 40 fs FWHM
each, at a repetition rate of 80 MHz. The laser cavity is linear, with two
prisms separated by 60 cm [(dn/dλ)2 = 10−9 nm−2]. Neglecting all other
contributions to the dispersion, calculate the longitudinal mode spectrum
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of the cavity. Is the latter spectrum identical to the Fourier amplitude
(squared) of the train of pulses? If not, explain the difference(s).

6. Three mode-locked lasers generate pulses of 40 fs duration at the wave-
lengths of 620, 700, and 780 nm, respectively. Find under which condition
the output of these lasers could be combined to provide a train of much
shorter pulses. What are the practical problems to be solved? Assuming
perfect technology, how short would these pulses be?

7. Consider a passively mode-locked dye laser consisting of a saturable
absorber, a depletable amplifier, an output coupler and a bandwidth
limiting element. Following the approach described in Section 5.2.4,
write down the equation for the steady-state pulse envelope assuming
both absorber and amplifier are traversed at resonance. The result should
be an integrodifferential equation with differentials up to second order
(d2/dt2) and containing integrals of the type W (t) and [W (t)]2 where
W (t) = ∫ t

−∞ F(t′)dt′.
8. In short cavity and distributed feedback lasers short pulse generation is

possible in the single (longitudinal) mode regime. At first sight this seems
to be in contradiction to the necessity of a broad laser spectrum. Make
a quantitative estimate of the essential laser parameters required for the
generation of a 500 fs pulse (Hint: consult the paragraph on miniature
dye lasers in Section 6.8.1).

9. A Gaussian beam passes through a sequence of a Kerr medium of
thickness d and an aperture of diameter D. The beam waist w0 = 25 µm
is at the position of the Kerr medium (d = 1 mm, n̄2 = 3 ·10−16 cm2/W).
Find the distance from the Kerr medium to the aperture L, and the diam-
eter of the aperture D, such that the overall transmission changes by 1%
if the input illumination is switched from cw (no Kerr lens) to a 25 fs,
10 nJ pulse.

10. Recall Eq. (5.28) that determines the field envelope, E(t) at the output of
a saturable absorber or amplifier, valid for small induced changes. Use
this equation to derive an equation for the output pulse energy in terms
of the input energy, cf. Eq. (5.51).
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6
Ultrashort Sources II: Examples

In the previous chapter the elements of passive mode-locking and their
function for pulse shaping were described in detail. Analytical and numerical
methods of characterizing mode-locked lasers were presented. Passive mode-
locking is indeed the most widely applied and successful technique to produce
pulses whose bandwidth approaches the limits imposed by the gain medium of
dye and solid-state lasers including fiber lasers. Passive mode-locking was the
technique of choice to produce sub 50-fs pulses in dye lasers and, today, is rou-
tinely applied in solid-state and fiber lasers. Sub 5-fs pulses have been obtained
from Ti:sapphire lasers without external pulse compression [1] using this method.

In this chapter we will review additional techniques of mode-locking and
discuss examples of mode-locked lasers. The purely active or synchronous mode-
locking will be covered first, followed by the hybrid passive–active technique.
Other techniques not discussed in the previous chapter are additive mode-locking,
methods based on second-order nonlinearities, and passive negative feedback. For
their important role as saturable absorbers we will review the relevant properties
of semiconductor materials. The later part of this chapter is devoted to specific
examples of popular lasers.

6.1. SYNCHRONOUS MODE-LOCKING

A simple method to generate short pulses is to excite the gain medium at a
repetition rate synchronized with the cavity mode spacing. This can be done by
using a pump that emits pulses at the round-trip rate of the cavity to be pumped.
One of the main advantages of synchronous mode-locking is that a much broader

341
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range of gain media can be used than in the case of passive mode-locking. This
includes semiconductor lasers and, for instance, laser dyes such as styryl 8, 9,
and 14, which have too short a lifetime to be practical in cw operation, but are
quite efficient when pumped with short pulses.

Ideally, the gain medium in a synchronously pumped laser should have a short
lifetime, so that the duration of the inversion is not larger than that of the pump
pulse. An extreme example is the case of optical parametric oscillators (OPO)
where the gain lives only for the time of the pump pulse.

Synchronous pumping is sometimes used in situations that do not meet this
criterion, just as starting mechanism. This is the case in some Ti:sapphire lasers,
where the gain medium has a longer lifetime than the cavity round-trip time, and
therefore synchronous pumping results in only a small modulation of the gain.
The small modulation of the gain coefficient αg(t) is sufficient to start the pulse
formation and compression mechanism by dispersion and SPM [2]. The initial
small gain modulation grows because of gain saturation by the modulated intra-
cavity radiation, resulting in a shortening of the function αg(t), and ultimately
ultrashort pulses.

The simple considerations that follow, neglecting the influence of saturation,
show the importance of cavity synchronism. If the laser cavity is slightly longer
than required for exact synchronism with the pump radiation (train of pulses),
stimulated emission and amplified spontaneous emission will constantly accu-
mulate at the leading edge of the pulse, resulting in pulse durations that could
be even longer than the pump pulse. Therefore, to avoid this situation, the cavity
length should be slightly shorter than that required for exact synchronism with
the pump radiation. Let us assume first perfect synchronism. The net gain factor
per round-trip is

G(t) = e[αg(t)dg−L], (6.1)

where L is the natural logarithm of the loss per cavity round-trip. After n
round-trips, the initial spontaneous emission of intensity Isp has been amplified
sufficiently to saturate the gain αg, and thus the pulse intensity is approximately
I(t) ≈ Isp ×{e[αg0(t)dg−L]}n = Isp ×[G0(t)]n. The pulse is thus

√
n times narrower

than the unsaturated gain function G0(t).
For a cavity shorter than required for exact synchronism, in a frame of refer-

ence synchronous with the pulsed gain αg(t), the intracavity intensity of the jth

round-trip is related to the previous one by:

Ij(t) = Ij−1(t + δ)e[αg(t)dg−L], (6.2)

where δ is the mismatch between cavity round-trip time and the pump pulse
spacing. The net gain for the circulating pulse e[αg(t)dg−L] exists in the cavity for
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Gain

Loss

Time
n�

Net gain

Figure 6.1 Net gain (gain minus loss) temporal profile as it appears at each periodicity of the
pump pulse. If the round-trip time of the laser cavity is slightly shorter (by δ) than the pump period,
radiation emitted at the right edge of the gain profile will reappear shifted to the left by that amount
δ at each successive round-trip. A pulse will experience gain for a maximum of n passages, given by
the ratio of the duration of the net gain to the mismatch δ.

a time nδ only, as can be seen from Figure 6.1. The laser oscillation will start
from a small noise burst Isp(t). The intracavity pulse after n round trips can be
approximated by:

I(t) = Isp(t + nδ)
[
e(αavdg−L)

]n
, (6.3)

where Isp(t + nδ) is the spontaneous emission noise present in the cavity in the
time interval (n−1)δ → nδ, and αav = 1

nδ

∫
αg(t)dt is a gain coefficient averaged

over the n round-trips.
These simple considerations indicate that in the absence of any spectral

filtering mechanism and neglecting the distortion of the gain curve αg(t) by
saturation, the pulse should be roughly

√
n times shorter than the duration of

the gain window. The timing mismatch δ is an essential parameter of the oper-
ation of a synchronously mode-locked laser. The shape of the autocorrelation
(see Chapter 9) is typically a double-sided exponential, which—as pointed out
by Van Stryland [3]—is a signature for a possible random distribution of pulse
duration in the train. The interferometric autocorrelation also indicates a ran-
dom (Gaussian) distribution of pulse frequencies [4]. These fluctuations in pulse
duration and frequency have also been observed in theoretical simulations by
New and Catherall [5] and Stamm [6].
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Gain saturation—neglected in the elementary model discussed so far—does
play an essential role in pulse shaping and compression for synchronously
pumped lasers. We refer to a paper by Nekhaenko et al. [7] for a detailed review of
the various theories of synchronous pumping. In a typical synchronously pumped
laser, the net gain (at each round-trip) is “terminated” by gain depletion at each
passage of the circulating pulse. The shortening of the gain period results in a
laser pulse much shorter than the pump pulse. This mechanism was analyzed in
detail by Frigo et al. [8]. It has been verified experimentally that the shortest
pulse duration is approximately τp ≈ √

τpumpT2g [9]. This result illustrates the

fact that the finite spectral width of the gain profile, δvg ≈ T−1
2g , ultimately limits

the shortest obtained pulse duration. Numerical simulations have been made to
relate the number of round-trips required to reach steady state to the single-pass
gain [10].

Regenerative Feedback

As we have seen at the beginning of the previous section, the laser cavity
should never be longer than the length corresponding to exact synchronism with
the pump radiation to generate pulses shorter than the pump pulse. This implies
strict stability criteria for the pump laser cavity, its mode-locking electronics,
and the laser cavity (invar or quartz rods were generally used for synchronously
pumped dye laser cavities). Considerations of thermal expansion of the support
material and typical cavity lengths clearly shows the need for thermal stability.
Indeed, the thermal expansion coefficient of most rigid materials for the laser
support exceeds 10−5/◦C. Because the cavity length approaches typically 2 m,
even a temperature drift of 0.5◦C would bring the laser out of its stability range.
However, because it is the relative synchronism of the laser cavity with its pump
source that is to be maintained, a simpler and efficient technique is to use the noise
(longitudinal mode beating) of the laser itself, to drive the modulator of the pump
laser [11] if the latter is actively modelocked. This technique, sometimes called
“regenerative feedback,” has been applied to some commercial synchronously
pumped mode-locked lasers, and even to a Ti:sapphire laser [2].

Seeding

Even if somewhat oversimplified, the representation of Fig. 6.1 gives a
clue to an important source of noise in the synchronously pumped dye laser.
The seed Isp(t) has a complex electric field amplitude ε̃(t) with random phase.
As pointed out in Catherall and New [12] and in Stamm [6] it is this spontaneous
emission source that is at the origin of the noise of the laser. Could the noise
be reduced by adding to ε̃ a minimum fraction ηE(t) of the laser output, just
large enough so that the phase of ηE(t) + ε̃(t) is equal to the phase of the output
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Figure 6.2 Typical synchronously pumped dye laser. The length of the dye laser cavity has to be
matched to the repetition rate of the pump pulses. The noise in a synchronously pumped laser can
be reduced by reinjection of a portion of the output ahead of the main intracavity pulse. A thin glass
plate on the output mirror intercepts and reflects part of the beam into the cavity, with the desired
advance. The fraction of energy reflected (of the order of 10−6) is determined by the overlap of the
aperture and the glass plate. (Adapted from Peter et al. [13].)

fields E(t) (which essentially implies ηE(t) � ε̃)? Both calculation and experi-
ment have demonstrated a dramatic noise reduction by seeding the cavity with
a small fraction of the pulse in advance of the main pulse [13]. The emphasis
here is on small; only a fraction of the order of 10−7 (not exceeding 10−5) of
the output power should be reinjected. A possible implementation would consist
of reflecting back a fraction of the output pulse delayed by slightly less than a
cavity round-trip. This amounts to a weakly coupled external cavity. A much
simpler implementation demonstrated by Peter et al. [13] consists in inserting a
thin glass plate (microscope cover glass for instance) in front of the output mirror
(Figure 6.2). The amount of light reinjected is adjusted by translating the glass
plate in front of the beam. The timing of the reinjected signal is determined by
the thickness of the plate.

6.2. HYBRID MODE-LOCKING

Synchronous pumping alone can be considered as a good source of ps rather
than fs pulses. The disadvantages of this technique, as compared to passive
mode-locking, are:

• a longer pulse duration,
• larger amplitude and phase noise,
• the duration of the pulses of the train are often randomly distributed, [3] and
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• when attempting to achieve the shortest pulse durations, the pulse frequen-
cies are randomly distributed [4].

One solution to these problems is to combine the techniques of passive and
active mode-locking in a hybrid system [14,15]. Depending on the optical thick-
ness of the absorber, the hybrid mode-locked laser is either a synchronously
mode-locked laser perturbed by the addition of saturable absorption or a pas-
sively mode-locked laser pumped synchronously. The distinction is obvious to
the user. The laser with little saturable absorption modulation will have the noise
characteristics and cavity length sensitivity typical of synchronously pumped
lasers, but a shorter pulse duration. The laser with a deep passive modulation
(concentrated saturable absorber for a dye, or a large number of MQW for a
semiconductor saturable absorber) shows intensity autocorrelation traces identi-
cal to those of the passively mode-locked laser [16]. The sensitivity of the laser
to cavity detuning decreases. The reduction in noise can be explained as being
related to the additional timing mismatch introduced by the absorber, which par-
tially compensates the pulse advancing influence of the gain and spontaneous
emission [17].

6.3. ADDITIVE PULSE MODE-LOCKING

6.3.1. Generalities

There was in the late 1980s a resurrection of interest in developing additive
pulse mode-locking (APML), a technique involving coupled cavities. One of the
basic ideas—to establish the mode coupling outside the main laser resonator—
was suggested in 1965 by Foster et al. [18] and applied to mode-locking a He-Ne
laser [19]. In that earlier implementation, an acousto-optic modulator is used to
modulate the laser output at half the intermode spacing of the laser. The frequency
shifted beam is reflected back through the modulator, resulting in a first-order
diffracted beam, which is shifted in frequency by the total mode spacing, and
reinjected into the laser cavity through the output mirror. The output mirror of
the laser forms, with the mirror used to reinject the modulated radiation, a cavity
with the same mode spacing as the main laser cavity. If the laser is close to
threshold, a small extracavity modulation fed back into the main cavity can be
sufficient to lock the longitudinal modes.

Unlike this technique more recent APML implementations are based on pas-
sive methods. In the purely dispersive version, pulses from the coupled cavity
are given some phase modulation, such that the first half of the pulse fed back
into the laser adds in phase with the intracavity pulse, while the second half
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Figure 6.3 A typical additive pulse mode-locked laser (a). At the output mirror M0, the pulse of
the main cavity [(b), top left] adds coherently to the pulse of the auxiliary cavity [(b), bottom left],
to result in a shortened pulse [(b), right]. (Courtesy E. Wintner.)

has opposite phase [20]. At each round-trip, the externally injected pulse thus
contributes to compress the intracavity pulse, by adding a contribution to the
leading edge and subtracting a certain amount from the trailing edge, as sketched
in Figure 6.3. This technique has first been applied to shortening pulses gen-
erated through other mode-locking mechanisms. A reduction in pulse duration
by as much as two orders of magnitudes was demonstrated with color-center
lasers [21–24] and with Ti:sapphire lasers [25].

It was subsequently realized that the mechanism of pulse addition through
a nonlinear coupled cavity is sufficient to passively mode-lock a laser. This
technique has been successfully demonstrated in a Ti:sapphire laser, [26]
Nd:YAG [27,28] Nd:YLF [29,30], Nd:glass [31], and KCl color-center
lasers [32]. A detailed description of the coherent addition of pulses from the
main laser and the extended cavity which takes place in the additive pulse mode-
locking has been summarized by Ippen et al. [33].

Coherent field addition is only one aspect of the coupled cavity mode-locked
laser. The nonlinearity from the coupled cavity can be, for example, an amplitude
modulation, as in the “soliton” laser [34], or a resonant nonlinear reflectivity via
a quantum well material [35].
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6.3.2. Analysis of APML

Analysis of APML [23,33] has shown that the coupling between a laser and an
external nonlinear cavity can be modeled as an intensity-dependent reflectivity
of the laser end mirror. Let r be the real (field amplitude) reflection coefficient of
the output mirror. The radiation transmitted through that mirror into the auxiliary
(external) cavity returns to the main cavity having experienced a field amplitude
loss γ (γ < 1) and a total phase shift −[φ + �(t)]. The nonlinear phase shift
�(t) induced by the nonlinearity is conventionally chosen to be zero at the pulse
peak [33] so that the linear phase shift φ includes a bias because of the peak
nonlinear phase shift. Therefore, if rẼ(t) is the field reflected at the mirror, the
field transmitted through the output mirror, the auxiliary cavity (loss γ) and
transmitted a second time through the output mirror is (1 − r2)γe−iφẼ(t)e−i�(t).
If d is the length of the nonlinear medium, and assuming a n̄2 nonlinearity,
according to Eq. (3.149):

�(t) = 2πn̄2

λ	

[Iax(t) − Iax(0)] d (6.4)

where Iax(t) is the intensity of the field in the auxiliary cavity. For a qualitative
discussion we determine the total reflection by adding the contribution of the
reinjected field from the auxiliary cavity to the field reflection r of the output
mirror, which leads to a time-dependent complex “reflection coefficient” �̃:

�̃(t) = r + γ(1 − r2)e−iφ[1 − i�(t)]. (6.5)

In Eq. (6.5), it has been assumed that � is small, allowing us to substitute for
the phase factor e−i� its first-order expansion. There is a differential reflectivity
for different parts of the pulses. If one sets φ = −π/2, then |�̃| has a maximum
value at the pulse center where � = 0, and smaller values at the wings:

�̃(t) = r + γ(1 − r2)�(t) + i[γ(1 − r2)]. (6.6)

The reflection is thus decreasing when � becomes negative in the wings of
the pulse, which is the “coherent field subtraction” sketched in Fig. 6.3. The
compression factor is determined by the ratio of γ(1 − r2) to r, which can be
related to the ratio of energy in the auxiliary cavity to that in the main cavity
[note that γ(1 − r2) is the maximum amount of energy that can be subtracted
from the pulse in the main cavity at each round-trip].

This dynamic reflectivity can be adjusted for pulse shortening at each reflec-
tion, until a steady-state balance is achieved between the pulse shortening and
pulse spreading because of bandwidth limitation and dispersion.
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6.4. MODE-LOCKING BASED ON NONRESONANT
NONLINEARITY

Various techniques of mode-locking using second-order nonlinearities have
been developed. A first method is a direct extension of Kerr lens mode-locking,
which has been analyzed in the previous chapter. A giant third-order susceptibility
can be found near phase matching conditions in SHG, not unlike the situation
encountered with a third-order susceptibility, which is seen to be enhanced near
a two photon resonance [36,37]. In this method, called cascaded second-order
nonlinearity mode-locking, the nonlinear crystal is used in mismatched conditions
with a mirror that reflects totally both the fundamental and SH waves. The cascade
of sum and difference frequency generation induces a transverse focusing of the
fundamental beam in a way similar to Kerr self-focusing. This method has been
applied to solid-state lasers by Cerullo et al. [38] and Danailov et al. [39]. The
resonance condition (the phase matching bandwidth) implied in this method does
not make it applicable to the fs range.

Another technique was introduced by Stankov, [40,41] who demonstrated
passive mode-locking in a Q-switched laser by means of a nonlinear mirror con-
sisting of a second harmonic generating crystal and a dichroic mirror. Dispersion
between the crystal and the dichroic mirror is adjusted so that the reflected SH
is converted back to the fundamental.

A third method, based on polarization rotation occurring with type II second
harmonic generation, is the equivalent of Kerr lens mode locking in fiber lasers.
It has also been applied to some solid-state lasers. The last two methods will be
discussed in more detail in the following subsections.

6.4.1. Nonlinear Mirror

The principle of operation of the nonlinear mirror can be understood with the
sketch of Figure 6.4, showing the end cavity elements that provide the function of
nonlinear reflection. A frequency doubling crystal in phase matched orientation

Laser
Cavity

Nonlinear

crystal

B/2

2�

a b

��

Figure 6.4 End cavity assembly constituting a nonlinear mirror. The end mirror is a total reflector
for the SH and a partial reflector for the fundamental.
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is combined with a dichroic mirror output coupler that totally reflects the SH
beam and only partially reflects the fundamental. These two elements form a
reflector, whose reflectivity at the fundamental wavelength can either increase or
decrease, depending on the phases of the fundamental and SH radiation. These
phase relations between the first and second harmonics can be adjusted inserting
a dispersive element between the nonlinear crystal and the dichroic mirror. The
dispersive element can be either air (the phase adjustable parameter is the distance
between the end mirror and the crystal) or a phase plate (of which the angle can
be adjusted).

At low intensity, the cavity loss is roughly equal to the transmission coefficient
of the output coupler at the fundamental wavelength. At high intensities, more
second harmonic is generated, reflected back and reconverted to the intracavity
fundamental, resulting in an increase in the effective reflection coefficient of the
crystal output coupler combination. The losses are thus decreasing with intensity,
just as is the case with a saturable absorber. Figure 6.5 shows the variation of
intensities of the fundamental and second harmonic in the first (left) and second
(right) passage through the second harmonic generating crystal. Depletion of the
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Figure 6.5 Variation of intensity of the fundamental (F, solid line) and the second harmonic
(SH, dashed line) for two successive passages, A and B, through the nonlinear crystal. The entrance
and exit surfaces a and b are labeled in Fig. 6.4. A fraction R = 10% of the fundamental intensity
is reflected back into the crystal, together with the entire second harmonic. After propagation for a
distance B in air, the phase of the second harmonic with respect to the fundamental has undergone a
shift of π, resulting in a reconversion of second harmonic into fundamental at the second passage.
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fundamental through SHG reduced the intensity to 30% of its initial value. Only
10% of that fundamental is reflected back through the second harmonic generating
crystal. However, because the full SH signal that was generated in the first
passage is reflected back, and because it has reversed phase with respect to the
fundamental, 30% of the initial fundamental is recovered. At the first passage, the
conversion to second harmonic should be sufficient to have a sizeable depletion
of the fundamental. Therefore, this method works best for high-power lasers. The
theoretical framework for the SHG has been set in Chapter 3 (Section 3.4.1) and
can be applied for a theoretical analysis of this type of mode-locking. A frequency
domain analysis of the mode-locking process using a nonlinear mirror can be
found in Stankov [42]. Available software packages, such as—for example—
SNLO software can be used to compute the transmission of fundamental and
second harmonic at each passage [43].

The electronic nonlinearity for harmonic generation responds in less than a
few femtoseconds. However, because of the need to use long crystals to obtain
sufficient conversion, the shortest pulse durations that can be obtained by this
method are limited to the picosecond range by the phase matching bandwidth.
The method has been applied successfully to flashlamp pumped lasers [44] and
diode pumped lasers [45–48]. A review can be found in Kubecek [49].

The same principle has also been applied in a technique of parametric mode-
locking, which can be viewed as a laser hybridly mode-locked by a nonlinear
process [50]. The third-order nonlinearity of a crystal applied to sum and differ-
ence frequency generation is used in the mode-locking process. The nonlinear
mirror can also be used to provide negative feedback instead of positive feedback
by adjusting the phase shift between fundamental and second harmonic by the
dispersive element [51].

6.4.2. Polarization Rotation

Nonlinear polarization rotation because of the nonlinear index associated with
elliptical polarization has been described in Section 5.4.2 as an example of a
third-order nonlinear process. Again, a second-order nonlinearity can also be
used for polarization rotation. As is the case when phase matched SHG is used,
the minimum pulse duration is determined by the inverse of the phase matching
bandwidth.

Under type II phase matching, the orientation of the fundamental field polar-
ization (assumed to be linear) at the output of the nonlinear crystal is directly
dependent on the relative intensity of the two orthogonal polarization compo-
nents. The crystal cut and orientation is assumed to perfectly fulfill the phase
matching conditions for SHG. If the linearly polarized incoming field is split into
two orthogonal components with strongly unbalanced intensity, then the wave of
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smallest initial amplitude may be completely depleted because the SHG process
diminishes each component by the same amount. If the nonlinear propagation
continues beyond that point the SHG is replaced by difference frequency genera-
tion between the generated harmonic and the remaining fundamental component.
The new fundamental field appears on the polarization axis where the fundamen-
tal had disappeared but the phase of the created field is now shifted by π with
respect to the initial field. Difference frequency generation then goes on with
propagation distance until the power of the second harmonic goes to zero. If we
assume that the crystal behaves in the linear regime like a full-wave or half-wave
plate then the output polarization state remains linear in the nonlinear regime,
but the orientation of the output is intensity dependent. Two properly oriented
polarizers placed on either side of the nonlinear crystal permit us to build a device
with an intensity dependent transmission.

Details on the use of nonlinear polarization in a type II SHG for mode-locking
of a cw lamp pumped Nd:YAG laser are given in Kubecek et al. [52].

6.5. NEGATIVE FEEDBACK

In this section we will describe a technique that limits the peak power of
pulses circulating in the cavity. This can be accomplished by a combination of an
element producing nonlinear defocusing and an aperture. Negative feedback has
gained importance in Q-switched and mode-locked solid-state lasers because it
tends to lengthen the pulse train by limiting the peak power and thereby reducing
the gain depletion. Moreover, a longer time for pulse formation usually leads to
shorter output pulses and more stable operation.1

We have seen that the pulse formation—in passively mode-locked lasers—is
associated with a positive feedback element (Kerr lensing, saturable absorber)
which enhances positive intensity fluctuations (generally through a decrease of
losses with increasing intensity). Although a positive feedback leads to pulse
formation, it is inherently an unstable process, because intensity fluctuations
are amplified. Therefore, it is desirable, in particular in high-power lasers, to
have a negative feedback element that sets in at higher intensities than the positive
feedback element.

Pulses of 10, 5, and less than 1 ps have been generated with this technique
with Nd:YAG, Nd:YAP, and Nd:glass lasers, respectively. More importantly for
the fs field, the pulse-to-pulse reproducibility (better than 0.2% [53]) makes these
lasers ideal pump sources for synchronous or hybrid mode-locking. The flashlamp
pumped solid-state laser with negative feedback provides a much higher energy

1Note that in high-power solid-state lasers the typical Q-switched pulse is not much longer than
a few cavity round-trips.
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per pulse, at shorter pulse duration, than the cw mode-locked laser used con-
ventionally as pump for fs systems. The use of negative feedback to effectively
pump a fs dye laser was demonstrated by Angel et al. [10].

In semiconductor laser pumped solid-state lasers, negative feedback can be
used to suppress Q-switched mode-locked operation, in favor of cw mode-locked
operation [54]. The mechanism is the same as for the flashlamp pumped laser;
the energy limiting prevents the total gain depletion that ultimately interrupts the
pulse train.

Electronic Feedback

A typical flashlamp pumped, mode-locked Nd laser generates a train of only
5 to 10 pulses of all different intensities. In the first implementation of “negative
feedback,” an electronic feedback loop increases the cavity losses if the pulse
energy exceeds a well-defined value. Martinez and Spinelli [55] proposed to
use an electro-optic modulator to actively limit the intracavity energy in a pas-
sively mode-locked glass laser. They demonstrated that the pulse train could be
extended. A fast high voltage electronics led to the generation of µs pulse trains
in a passively mode-locked glass lasers [56] and in hybrid Nd:glass lasers [57].

Electronic Q-switching and negative feedback has the advantage that the tim-
ing of the pulses is electronically controlled. This is important in applications
where several laser systems have to be synchronized. However, there is a mini-
mum response time of one cavity round-trip before the feedback can react [57].

Passive Negative Feedback

A passive feedback system can provide immediate response—i.e., on the time
scale of the pulse rather than on the time scale of the cavity round-trip. We will
here restrict our description to the Nd laser using a semiconductor (GaAs) for
passive negative feedback. The semiconductor used in a passive feedback system
produces nonlinear lensing. The analysis of the beam focusing is identical to that
of the Kerr lensing, except that the sign of the lensing is opposite. The nonlinear
index change is initiated by electrons generated by two photon absorption into
the conduction band. Various processes then contribute to the index change. The
index change by free electrons, for example, can be estimated with the Drude
model and is negative:


nd(x, y, t) = − n0e2

2m∗ε0ω
2
	

N(x, y, t), (6.7)

where N is the electron density, m∗ is the electron’s effective mass and n0 is the
linear index. We refer to the literature for additional contributions to 
n such as
the interband contribution [58] and an additional electronic contribution [36,59].
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Other implementations of passive negative feedback have used a SH crystal
near phase matching (“cascaded nonlineary”) to produce a large nonlinear index
required for the energy limiter [60].

A typical laser using passive negative feedback generally includes a saturable
absorber for Q-switching and mode-locking and an energy limiter. An energy
limiter that can be used for passive negative feedback is illustrated in Figure 6.6.
A two photon absorber (typically GaAs) is located near a cavity end mirror.
After double passage through this sample, the beam is defocused by a self-
induced lens originating mainly from the free carriers generated through two
photon absorption. The defocused portion of the beam is truncated by an aperture.
Self-defocusing in the semiconducting two photon absorber sets in at a power
level that should be close to the saturation intensity of the saturable absorber used
for Q-switching and mode-locking. Because the pulse intensity is close to the
pulse saturation intensity, there is optimal pulse compression at the pulse leading
edge by saturable absorption. Because of self-defocusing in GaAs, the pulse
trailing edge is clipped off, resulting in further pulse compression and energy loss.

The stabilization and compression of the individual pulses result from a del-
icate balance of numerous physical mechanisms. Details of the experimental
implementation and theoretical analysis can be found in the literature [61–63].

At the end of this section we will discuss an experiment that illustrates the
saturation and focusing properties of a particular nonlinear element. Often the
nonlinear element is just the substrate of a multiple quantum well [64]. In that
case, one has combined in one element the function of saturable absorber (the
MQW, excited by one photon absorption) and energy limiter (the substrate,
excited by two photon absorption). The properties of the MQW on its substrate are
well demonstrated by the measurement illustrated in Figure. 6.7 and 6.8. A diode
pumped microchip YAG laser is used to focus pulses of 3 µJ energy and 1 ns
duration at a repetition rate of 15.26 kHz into a sample consisting of 100 quantum
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Figure 6.6 Passive negative feedback is typically achieved by inserting in the cavity an energy
limiter, which can consist of a GaAs plate (acting as two photon absorber and subsequent defocusing
element) and an aperture (pinhole).
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Figure 6.7 Experimental setup to observe the saturable absorption, two photon absorption and self-
lensing in a sample of 100 quantum wells on a GaAs substrate located in front of a CCD camera
(from Kubecek et al. [64]).
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Figure 6.8 Spatial beam structure versus longitudinal position of the sample along the axis of the
beam, after the lens. The distances from focus are indicated (in mm). The upper part of the figure
corresponds to the positions left of the focus; the lower part right of the focus. (Adapted from Kubecek
et al. [64].)
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wells on a GaAs substrate. The lens has a focal distance of 50 mm. The output
power from the laser was attenuated not to damage the MQW. The maximum
power density in the focal point was 10 MW/cm2. The spatial profile of the radi-
ation transmitted through the sample was analyzed, using a CCD camera, as a
function of the position of the sample. The various profiles are shown in Fig. 6.8.
From this picture we can see that the initial low power transmission of 23% far
from the focal point increases to 45% close to the focal point. The transmission
of the GaAs plate alone is 52%, indicating that the nonsaturable losses in the
MQW are about 10%. The increase in transmission reflects the saturation of the
quantum wells. Close to the focal point, the transmission drops and significant
defocusing is observed. This is a region of large two photon absorption, creat-
ing an electron plasma sufficiently dense to scatter the beam. Self-defocusing is
observed with the sample positioned to the left of the focus, self-focusing to the
right of the focus.

6.6. SEMICONDUCTOR-BASED SATURABLE
ABSORBERS

Progress in the fabrication of semiconductors and semiconductor based struc-
tures, such as MQWs, has led to the development of compact and efficient
saturable absorbers whose linear and nonlinear optical properties can be cus-
tom tailored. These devices are particularly suited for mode-locking solid-state
lasers, fiber lasers and semiconductor lasers. They can conveniently be designed
as laser mirrors, which makes them attractive for initiating and sustaining mode-
locking in a variety of solid-state lasers and cavity configurations, for a review
see Keller et al. [65].

In semiconductors a transition from the valence to the conduction band is
mostly used. In MQWs an excitonic resonance near the band edge can be
utilized [66], which leads to a lower saturation energy density [67].

As discussed in the previous chapter an important parameter is the relaxation
time of the absorber. The recovery rate is the sum of the carrier relaxation rate
1/T1 and the rate of diffusion out of the excited volume 1/τd :

1

τA
= 1

T1
+ 1

τd
. (6.8)

For a beam waist w0 at the absorber the characteristic diffusion time can be
estimated by

τd = w2
0

8D
,
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where D is the diffusion constant, which is related to the carrier mobility µ

through the Einstein relation D = kBTµ/e. For a beam waist of 2 µm and
D = 10 cm2/s for example, the diffusion time τd ≈ 500 ps.

Typical carrier lifetimes in pure semiconductors are ns and thus too long for
most mode-locking applications, where the cavity round-trip time is of the order
of a few ns. Several methods are available to reduce the effective absorption
recovery rate of bulk semiconductors and MQWs:

1. tight focusing and
2. insertion of defects.

A commonly used technique to insert defects is proton bombardment with
subsequent gentle annealing. For example, the bombardment of a MQW sample
consisting of 80 pairs of 102 Å GaAs and 101 Å Ga0.71Al0.29As wells, with
200-keV protons resulted in recovery times of 560 ps and 150 ps, respec-
tively [67]. Structures with thinner wells (70 to 80 Å) separated by 100 Å barriers
yield broader absorption bands [68], with the same recovery time of 150 ps after
a 1013/cm2 proton bombardment and annealing.

Another technique to introduce defects is to grow the semiconductor at rela-
tively low temperature. This can lead to a relatively large density of deep-level
defects that can quickly trap excited carriers. As an example, Figure 6.9 shows
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Figure 6.9 Carrier lifetime of GaAs versus MBE growth temperature. The inset shows the transient
reflection measured in a pump probe experimental, for a 200◦C grown unannealed sample. (Adapted
from Gupta et al. [69].)
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Table 6.1

Semiconducting materials with carrier lifetimes and
mobilities. (Adapted from Gupta et al. [69].)

Carrier lifetime T1 Mobility µ

Material (ps) (cm2/Vs)

Cr-doped GaAs 50–100 1000
Ion implanted InP 2–4 200
Ion-damaged Si-on-sapphire 0.6 30
Amorphous silicon 0.8–20 1
MOCVD CdTe 0.45 180
GaAs (MBE, 200◦C) 0.3 150
In0.42Al0.48As (MBE, 150◦C) 0.4 5

a plot of the carrier lifetime versus MBE growth temperature. The measurement
is performed by focusing a 100 fs pump pulse onto a 20–30 µm spot on the
semiconductor. A 10 times attenuated (as compared to the pump) probe pulse is
focused into a 10 µm island within the pumped region. Both pump and probe
are at 620 nm. The reflectance of the probe is measured as a function of probe
delay (inset in Fig. 6.9). The carrier lifetime is defined as the initial decay (1/e)
of the reflectance versus delay.

Table 6.1 lists carrier lifetimes and mobilities of some representative semi-
conductor materials.

6.7. SOLID-STATE LASERS

6.7.1. Generalities

Most common solid-state lasers used for ultrashort pulse generation use mate-
rials with a long lifetime (compared to typical cavity round-trip times) as gain
media. The laser efficiency can be high if pumped by other lasers, for example
semiconductor lasers, tuned to the pump transition. This is especially the case
for lasers such as Ytterbium YAG that have a small quantum defect.2

Because these solid-state lasers have small gain cross sections as com-
pared to dye lasers and semiconductor lasers, gain modulation is ineffective

2The quantum defect is the difference in energy of the pump photon and the laser emitting photon.
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for mode-locking. With an upper state lifetime many orders of magnitude longer
than the round-trip time, synchronous pumping is seldom used.3

The relatively low gain calls for longer lasing media, of the order of several
mm, as opposed to the typical 100 µm used with dye and semiconductor lasers.
The long gain crystal in turn supports large SPM. Therefore, mode-locking will
most often occur through Kerr lensing and chirping in the gain medium. Some
exception where saturable absorbers are used are:

• Long pulse generation, tunable in wavelength.
• Mode-locking of LiCAF lasers, where the Kerr effect is small.
• Bidirectional mode-locking of ring lasers (Kerr lensing in the gain medium

favors unidirectionality).

Also because of the longer gain medium, (as compared to dye and semiconductor
lasers), the laser will be sensitive to any parameter that influences the index of
refraction. These are:

• Laser pulse intensity—an effect generally used for passive mode-locking
(Kerr lensing).

• Temperature dependence of the index of refraction, which leads to thermal
lensing and birefringence.

• Change in index of refraction associated with the change in polarizability
of optically pumped active ions.

The latter effect was investigated by Powell et al. [70] in Nd doped lasers, and
found to be of the order of 50% of the thermal change in index.

Pumping of solid-state lasers is done either by another laser (for instance
argon ion laser, or frequency doubled vanadate (YVO4) laser, for Ti:sapphire) or
by a semiconductor laser (Cr:LiSAF, Nd:vanadate) or by flashlamps (Nd:YAG).
Diode laser pumping is the most advantageous from the point-of-view of wall
plug efficiency.

Mode-locked solid-state lasers tend to specialize according to the property
that is desired. So far Ti:sapphire lasers have been the choice for shortest pulse
generation and stabilized frequency combs. Diode pumped Cr:LiSAF lasers can
reach pulse durations in the tens of fs and are the preferred laser when extremely
low power consumption is desired. Nd:YAG lasers are most convenient for gen-
erating high-power Q-switched mode-locked ps pulse trains and are generally
flashlamp pumped. Nd:vanadate is generally used as diode pumped Q-switched
mode-locked source, although it is possible to achieve cw mode locked operation
too. Both Nd:YAG and vanadate have a bandwidth that restricts their operation

3Synchronous pumping has been used with some Ti:sapphire lasers to provide the modulation
necessary to start the Kerr lensing mode-locking, but not as a primary mode-locking mechanism.



360 Ultrashort Sources II: Examples

to a shortest pulse of approximately 10 ps. The laser with the lowest quantum
defect is sought for high power application where efficiency is an issue. Yb:YAG
can be pumped with 940 nm diode lasers, to emit at 1.05 micron. An optical to
optical conversion efficiency of 35% has been obtained [71].

6.7.2. Ti:sapphire Laser

The Ti:sapphire laser is the most popular source of fs pulses. The properties
that make it one of the most attractive source of ultrashort pulses are listed in
Table 6.2. Ti:sapphire is one of the materials with the largest gain bandwidth,
excellent thermal and optical properties, and a reasonably large nonlinear index.

Table 6.2

Room temperature physical properties of Ti:sapphire. The gain cross-section
increases with decreasing temperature, making it desirable to operate the laser rod
at low temperatures. The values for the nonlinear index from Smolorz and Wise [73]

take into account the conversion factor of Eq. (3.140). Some data are given for σ

(perpendicular to the optical axis) and π (parallel to the optical axis) polarization.

Property Value Units Reference

Index of refraction at 800 nm 1.76 [72]
Nonlinear index (electronic) 10. 5 · 10−16 cm2/W [73]

Raman shift 419 cm−1 [73]
Damping time TR 6 ps [73]
Raman contribution to ñ2 1. 7 · 10−17 cm2/W [73]

Raman shift 647 cm−1 [73]
Damping time TR 6 ps [73]
Raman contribution to ñ2 0. 8 · 10−17 cm2/W [73]

Dispersion (k") at 800 nm 612 fs2/cm

Peak absorption at 500 nm
σπ 6.5·10−20 cm2 [74]
σσ 2.5·10−20 cm2 [74]
Number density of Ti3+ 3.3·1019 cm−3

at a concentration of 0.1 wt.% Ti2O3

Peak gain at 795 nm
σπ 5·10−20 cm2 [74]
σσ 1.7·10−20 cm2 [74]

Fluorescence lifetime τF 3.15 µs [74]
dτF /dT −0.0265 µs/K [74]
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Figure 6.10 Typical Ti:sapphire laser cavity consisting (from the right) of an end mirror, an aperture,
a prism pair, folding mirrors at both sides of the laser crystal, and an output coupler. The various
controls that are possible on this laser are indicated.

A typical configuration is sketched in Figure 6.10. The pump laser is typically
either a cw Ar ion laser or a frequency doubled Nd:vanadate laser. The operation
of the Ti:sapphire laser is referred to as “self-mode-locked” [75]. The cavity con-
figuration is usually linear, containing only the active element (the Ti:sapphire
rod), mirrors and dispersive elements. The latter can be a pair of prisms (cf.
Section 2.5.5), or negative dispersion mirrors (cf. Section 2.3.3), or other inter-
ferometric structures. Dispersion control by prisms [76] and by mirrors [77] led
to the generation of pulses shorter than 12 fs in the early 90s. The output power
typically can reach hundreds of mW at pump powers of less than 5 W. Some-
times, to start the pulse evolution and maintain a stable pulse regime, a saturable
absorber, an acousto-optic modulator, a wobbling end mirror, or synchronous
pumping is used.

The mode-locking mechanism most often used in the cavity of Fig. 6.10 is Kerr
lens mode-locking. The cavity mode is adjusted in such a way that the lensing
effect in the Ti:sapphire rod results in a better overlap with the pump beam, hence
an increased gain for high peak power pulses (soft aperture). Another approach
discussed in Section 5.4.3 and Appendix E is to insert an aperture in the cavity, at
a location such that self-lensing results in reduced losses [increased transmission
through the aperture (hard aperture)].

While Kerr lensing in conjunction with a soft or a hard aperture initiates the
amplitude modulation essential to start the mode-locking, the succession of SPM
and quadratic dispersion is responsible for pulse compression. The prism pair
provides a convenient means to tune the dispersion to an optimal value that will
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compensate the SPM, by translating the prism into the path of the beam, as shown
in Fig. 6.10.

The shortest pulse duration that can be achieved is ultimately determined
by higher-order dispersion, which includes a contribution from the prism mate-
rial, from the Ti:sapphire crystal, and the mirror coatings. To minimize the
third-order dispersion from the gain medium, short crystal lengths (2 to 4 mm)
with the maximum doping compatible with an acceptable optical quality of the
Ti:sapphire crystal are generally used. If the shortest pulses are desired, quartz
prisms are generally preferred because of their low third-order dispersion. How-
ever, because the second-order dispersion of quartz is also small, the shortest
pulse is compromised against a long round-trip time, because the intra prism dis-
tance has to be large (>1 m) to achieve negative dispersion. Another choice
of prism material is LaK16, which has a sufficient second-order dispersion
to provide negative dispersion for distances of the order of 40 cm to 60 cm.
Highly dispersive prisms such as SF10 or SF14 are used when a large number
of dispersive intracavity elements has to be compensated with a large negative
dispersion.

Several “control knobs” are indicated on the Ti:sapphire laser sketched in
Fig. 6.10. After traversing the two prism sequence from left to right, the various
wavelengths that constitute the pulse are displaced transversally before hitting
the end mirror. An adjustable aperture located between the last prism and the end
mirror can therefore be used either to narrow the pulse spectrum (hence elongate
the pulse) or tune the central pulse wavelength. A small tilt of the end mirror—
which can be performed with piezoelectric elements)—can by used to tune the
group velocity (hence the cavity round-trip time, or the mode spacing) without
affecting the optical cavity length at the average pulse frequency (no translation
of the modes). The position of the modes—in particular the mode at the average
pulse frequency—can be controlled by translation of the end mirror with piezo-
electric transducers. Such a motion also affects the repetition rate of the cavity.
Ideally, orthogonal control of the repetition rate and mode position requires two
linear combinations of the piezo controls just mentioned.

Cavities with Chirped Mirrors

Instead of intracavity prisms, negative dispersion mirrors are the preferred
solution for the shortest pulses, provided a short Ti:sapphire rod is available,
and there is no other dispersive intracavity element. Continuous tuning of the
dispersion is not possible as was the case with the intracavity prism pair. Dis-
crete tuning however is possible, through the number of multiple reflection at
the dispersive mirrors. The minimum increment of dispersion is the dispersion
associated with a single reflection.

As we saw in Chapter 5, one of the applications of mode-locked lasers is to
generate frequency combs for metrology. We will discuss such examples, and the
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Figure 6.11 Ti:sapphire laser cavity with chirped mirrors for 5-fs pulse generation. Two wedges
of BaF2 are used for continuous dispersion control. The intracavity group velocity is tuned through
the pump intensity. The servo loop takes the signal from the measurement of the CEO, and feeds it
back to an acousto-optic modulator. Adapted from Ell et al. [1].

lasers applied in more detail in Chapter 13. For these applications it is desirable
to have an octave spanning pulse spectrum, which implies pulses as short as 5 fs,
or about two optical cycles [1]. This allows one to mix the second harmonic of
the IR part of the mode comb with a mode from the short wavelength part of
the fundamental spectrum—a technique to determine the carrier to envelope off-
set [78–81]. An example of such a 5-fs laser is sketched in Figure 6.11. Mirrors
with a smooth negative dispersion over the whole spectrum have been developed
(see Section 2.3.3) and double-chirped mirrors have been used for this laser [82].
Both the low and high index layers of these coatings are chirped. The spectral
analysis of the reflectivity of these coatings still shows “phase ripples.” To elimi-
nate these ripples, the mirrors are used in pairs, manufactured in such a way that
the ripples are 180 degrees out of phase.

Continuous dispersion tuning is achieved by the use of thin BaF2 wedges.
BaF2 is the material with a low ratio of third- to second-order dispersion in the
wavelength range from 600 to 1200 nm, and the slope of its dispersion is nearly
identical to that of air. It is therefore possible to scale the cavity to, for instance,
shorter dimensions, and maintain the same dispersion characteristics by adding
the appropriate amount of BaF2.

High Power from Oscillators

For some applications, for example laser micromachining, it is desirable to
increase the pulse energy of the output of fs oscillators without amplification.
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Because the pump power is limited an increase in pulse energy can only be at
the expense of repetition rate. Several different techniques have been developed.

A cavity dumper can be inserted in the Kerr lens mode-locked Ti:sapphire
laser resonator [83,84]. This allows the fs pulse to build up in a high Q cavity
with essentially no outcoupling losses. When a certain energy is reached the
outcoupler (typically based on an acousto-optic modulator) is turned on, and the
pulse is coupled out of the cavity. Repetition rates typically range from a few
100 kHz to a few MHz. Pulse energies of up to the 100-nJ level are possible.

Another method tries to capitalize on the inherent trend in solid-state lasers to
show relaxation oscillations and self Q switching. In such regimes the envelope
of the mode-locked pulse train is modulated. The Q-switched and mode-locked
output can be stabilized by (weakly) amplitude modulating the pump at a fre-
quency of several hundred kHz that is derived from the Q-switched envelope in
a feedback loop [85].

A third technique is based on long laser cavities (up to tens of meters) resulting
in low repetition rates of a few MHz. Careful cavity and dispersion design are
necessary to avoid the multiple pulse lasing and the instabilities that are usually
associated with long cavities [86]. For example, 200 nJ, 30-fs pulses at a repe-
tition rate of 11 MHz were obtained with a chirped mirror cavity and external
pulse compression with prisms [87].

6.7.3. Cr:LiSAF, Cr:LiGAF, Cr:LiSGAF,
and Alexandrite

The chromium ion has maintained its historical importance as a lasing medium.
Ruby is produced by doping a sapphire host with Cr2O3. The ruby laser being a
three-level system, requires high pump intensities to reach population inversion.
It is a high gain, narrow bandwidth, laser, hence not suited for ultrashort pulse
applications.

A broadband lasing medium is alexandrite, consisting of chromium doped
chrysoberyl (BeAl2O4:Cr3+). The alexandrite laser is generally flashlamp
pumped (absorption bands from 380 to 630 nm), with a gain bandwidth rang-
ing from 700 to 820 nm, and is therefore sometimes used as an amplifier
(mostly regenerative amplifier) for pulses from Ti:sapphire lasers. It is one of
rare laser media in which the gain cross section increases with temperature, from
7 · 10−21 cm2 at 300◦K to 2 · 10−20 cm2 at 475◦K [72].

Of importance for femtosecond pulse generation are the Cr3+:LiSrAlF6 or
Cr:LiSAF, Cr3+:LiSrGaF6 or Cr:LiSGAF and Cr3+:LiCaAlF6 or Cr:LiCAF
lasers. These crystals have similar properties as shown in Table 6.3. The gain cross
section is relatively low compared with other diode pumped laser crystals (30×
less than that of Nd:YAG for example). The thermal conductivity is 10 × smaller
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Table 6.3

Room temperature physical properties of Cr:LiSAF, Cr:LiSGAF, and
Cr:LiGAF. The second-order dispersion of LiSAF is indicated for two

different Cr doping concentrations. A, B, C, and D are the parameters of
the Sellmeir formula n2

i
= Ai + Bi /(λ2

�
− Ci ) − Diλ

2
�
. with i = o (ordinary)

or e (extraordinary), and λ� expressed in µm.

Property Cr:LiSAF Cr:LiSGAF Cr:LiCAF Units Ref.

Sellmeir coeff.
Ao 1.95823 1.95733 1.91850
Ae 1.95784 1.95503 1.91408
Bo 0.00253 0.00205 0.00113 µm2

Be 0.00378 0.00252 0.00155 µm2

Co 0.02671 0.03836 0.04553 µm2

Ce 0.01825 0.03413 0.04132 µm2

Do 0.05155 0.04765 0.02525 µm−2

De 0.02768 0.03822 0.01566 µm−2

no (850 nm) 1.38730 1.38776 1.37910
Nonlinear index 3.3 10−16 3.3 10−16 3.7 10−16 cm2/W [73]

Dispersion k′′
(850 nm, 0.8%) 210 280 fs2/cm [91,92]

Dispersion k′′
(850 nm, 2%) 250 fs2/cm [91]

Third-order
dispersion k′′′ 1850 1540 fs3/cm [91,92]

Peak absorption 670 630 nm
Peak gain at 850 835 763 nm

cross section σπ 4.8 10−20 3.3 10−20 1.3 10−20 cm2 [93]
Fluorescence

τF (300◦K) 67 88 170 µs [93]
T1/2 69 75 255 ◦C [88]

Expansion coeff.
along c-axis −10 0 3.6 10−6/K [93]
along a-axis 25 12 22 10−6/K [93]

c-axis thermal
conductivity 3.3 3.6 5.14 W/mK [94]

Thermal index
dependence dn/dT −4.0 −4.6 10−6/K [94]

than for Ti:sapphire. Therefore, thin crystals are generally used for better cool-
ing, which makes the mounting particularly delicate. The gain drops rapidly with
temperature, because of increasing nonradiative decay. Stalder et al. [88] define
a temperature T1/2 at which the lifetime drops to half of the radiative decay time
measured at low temperature. As shown in Table 6.3, this critical temperature
is particularly low for Cr:LiSAF and Cr:LiSCAF (70◦C) which, combined with
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their poor thermal conductivity, makes these crystals unsuitable for high power
applications. Cr:LiCAF is preferred to the other two in applications such as
regenerative amplifiers, because of its slightly larger saturation energy and better
tolerance to a temperature increase.

The Cr3+:LiSrAlF6 is the most popular laser medium for low power, high
efficiency operation. It is generally pumped by high brightness AlGaInP laser
diodes. The emitting cross section of a typical laser diode is rectangular, with a
thickness of only a few micron, and a width equal to that of the diode. A “high
brightness” diode is one for which the width does not exceed 200 µm. The
shorter the diode stripe, the higher the brightness, and the lower the threshold
for laser operation. Pump threshold powers as low as 2 mW have been observed
in diode pumped Cr3+:LiSrAlF6 lasers [89]. Mode-locked operation with 75-fs
pulses was achieved with only 36 mW of pump power [90].

As can be seen from a comparison of Tables 6.2 and 6.3, the nonlinear index in
LiSAF is significantly smaller than in Ti:sapphire. A careful design of the cavity
including astigmatism compensation is required to have tighter focusing in the
LiSAF crystal, leading to the same Kerr lensing than in a typical Ti:sapphire
laser [90]. A pair of BK7 prisms (prism separation 360 mm) was found to be
optimal for second- and third-order dispersion compensation, leading to pulses
as short as 12 fs (200 MHz repetition rate) for a Cr:LiSAF laser, pumped by two
diode lasers of 500 mW and 350 mW output power [95]. The average output
power of the fs laser was 6 mW. Diode laser technology is the limiting factor in
reaching high output powers. Indeed, 70 mW and 100 mW powers (14-fs pulse
duration) are easily obtained by Kr-ion laser pumping of LiSAF and LiGAF,
respectively [96]. One solution to alleviate the drawback of a reduced brightness
for higher power pump diodes, is to pump with a diode laser master oscillator
power amplifier system [97]. An output power of 50 mW was obtained with an
absorbed pump power of 370 mW.

With chirped mirrors for dispersion compensation, the Cr:LiSAF laser should
lend itself to compact structures at high repetition rate, although most lasers were
operated at less than 100 MHz [90–92,96,97]. The 12 fs Cr:LiSAF laser operating
with a BK7 prism pair however had the shortest cavity, with a repetition rate of
200 MHz [95].

Because of the small nonlinear index n̄2, it is often more convenient to use
a single quantum well to initiate and maintain the mode-locking. Mode-locking
with saturable absorber quantum wells was discussed in Section 6.6.

6.7.4. Cr:Forsterite and Cr:Cunyite Lasers

These two lasers use tetravalent chromium Cr4+ as a substitute for Si4+ in
the host Mg2SiO4 (forsterite) [99,100] and as a substitute for Ge in the host
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Table 6.4

Room temperature physical properties of Cr:Forsterite and Cr:Cunyite lasers.

Property Cr:Mg2SiO4 Cr:Ca2GeO4 Units Ref.

Nonlinear index 2 10−16 1.5 10−16 cm2/W [72,105]
Dispersion (k" at 1280 nm) 185 fs2/cm [106]
Peak absorption at 670 nm
Peak gain (1240 nm) 14.4 80 10−20 cm2 [72]
Fluorescence lifetime [101]

τF 2.7 15 µs [102,107]
Tuning range from 1167 1350 nm [72]
to 1345 1500 nm
Thermal conductivity 0.03 W/cm/K

Ca2GeO4 (cunyite) [101,102]. The properties of these two laser materials are
compared in Table 6.4. Forsterite-based lasers have become important because
they operate in the 1.3 µm range (1167 to 1345 nm) and can be pumped with
Nd:YAG lasers. Attempts have also been made at diode pumping [103]. By care-
ful intracavity dispersion compensation with a pair of SF58 prisms complemented
by double-chirped mirrors, a pulse duration of 14 fs was obtained [104]. This
laser, pumped by a Nd:YAG laser, had a threshold of 800 mW for cw operation
and 4 W for mode-locked operation. 100 mW output power could be achieved
with a pump power of 6 W.

The forsterite laser produces pulses short enough to create an octave spanning
spectral broadening in fibers as discussed in Section 13.4.1.4 A prismless compact
ring cavity was designed with combination of chirped mirrors (GDD of −55 fs2

from 1200 to 1415 nm) and Gires–Tournois interferometer mirrors (GDD of
−280 fs2 from 1200 to 1325 nm) as sketched in Figure 6.12. This laser, pumped
by a 10 W fiber laser, combined short pulse output (28 fs) with a high repetition
rate of 420 MHz [98].

6.7.5. YAG Lasers

The crystal Y3Al5O12 or YAG is transparent from 300 nm to beyond 4 µm,
optically isotropic, with a cubic lattice structure characteristic of garnets. It is one
of the preferred laser hosts because of its good optical quality and high thermal
conductivity. Some of the physical–optical properties are listed in Table 6.5. The
two most important lasers using YAG as a host are Nd:YAG and Yb:YAG.

4Germanium doped silica fiber with a small effective area of 14 µm2 nonlinear coefficient of
8.5 W−1km−1, zero dispersion near 1550 nm.
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Figure 6.12 Compact ring cavity of a Cr:forsterite laser used in conjunction with HNLF fibers to
generate an octave spanning continuum in the near IR. (Adapted from Thomann et al. [98].) The
mirrors of 5 cm radius of curvature as well as the first folding mirror (HR) have chirped multilayer
coatings. The second folding mirror is a Gires–Tournois Interferometer (GTI), the third one a standard
high reflector, and the output coupler has a transmission of 1.5%.

Table 6.5

Room temperature physical properties of YAG. The
second-order dispersion is calculated from the derivative of
the Sellmeier equation: n2 = 1 + 2. 2779λ2

�
/(λ2

�
− 0. 01142)

with λ� in µm. The data are compiled
from [70,72,104,108–110]

Property YAG Units

Index of refraction 1.064 µm 1.8169
Index of refraction 1.030 µm 1.8173
Dispersion (k′′) at 1.064 µm 733 fs2/cm
Dispersion (k′′) at 1.030 µm 760 fs2/cm
Nonlinear index 12.4 10−16 cm2/W
Thermal expansion
Ref. [100] 8.2 10−6 K−1

Ref. [110] 7.7 10−6 K−1

Ref. [111] 7.8 10−6 K−1

Thermal conductivity 0.129 W cm−1 K−1

dn/dT 8.9 10−6 K−1
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Nd:YAG

Typical doping concentrations of the Nd3+ ion (substitution of Y3+) range
from 0.2 to 1.4% (atomic). Larger doping degrades the optical quality of the
crystal. Nd:YAG has been the workhorse industrial laser for several decades,
because of its relatively high gain and broad absorption bands that makes it
suitable for flashlamp pumping. It has a UV absorption band from 300 to 400 nm
and absorption lines between 500 and 600 nm. It has also an absorption band
at 808.6 nm which coincides with the emission of GaAlAs diode lasers. Being
a four-level laser, Nd:YAG does not require as high a pump power to create
an inversion as, for instance, the three level ruby laser or the Yb:YAG laser.
The high gain is partly because of the narrow bandwidth of the fluorescence
spectrum, limiting pulse durations to >10 ps. Despite this limitation, Nd:YAG
has still a place as a source of intense femtosecond pulses. Intracavity pulse com-
pression by passive negative feedback (Section 6.5) yields mJ pulses as short as
8 ps directly from the oscillator [63,64]. Efficient conversion to the femtosec-
ond range has been achieved either by harmonic generation [111] or parametric
oscillation [112,113]. The fundamentals of pulse compression associated with
harmonic and parametric processes can be found in Sections 3.4.2 and 3.5.

Yb:YAG

Yb:YAG is a popular crystal for high average power, subpicosecond pulse
generation. Up to 10 atomic percent of doping of the YAG crystal by Yb have been
used. Table 6.6 compares some essential parameters of Nd:YAG and Yb:YAG.
The main difference between the two crystals is that Yb:YAG is a quasi-three-
level system, requiring large pump powers to reach an inversion. It does not have
the broad absorption bands of Nd:YAG that would make it suitable for flashlamp
pumping. The main advantage of Yb:YAG however is the small quantum defect,

Table 6.6

Comparison of Nd:YAG and Yb:YAG (data from [72,117]).

Property Nd:YAG Yb:YAG Units

Lasing wavelength 1064.1 1030 nm
Doping density (1% at.) 1.38 1.38 1020 atoms/cm3

Diode pump band 808.6 942 nm
Absorption bandwidth 2.5 18 nm
Emission cross section 28 2.1 10−20 cm2

Emission bandwidth 0.45 ≈8 nm
Fluorescent lifetime τF 230 951 µs
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when pumped with InGaAs diode lasers at 942 nm. A small quantum defect
implies that a minimum amount of energy is dissipated in the crystal in the form
of heat.

The combination of diode pumping (high wall plug efficiency), broad band-
width and small quantum defect has spurred the development of short pulse, high
average power Yb:YAG sources. The main problem to be overcome in develop-
ing high average output power sources is the removal of the heat produced by
pump intensities of the order of tens of kW/cm2. Two solutions have been imple-
mented, which led to pulse sources at 1.03 µm, subpicosecond pulse duration,
and several tens of watts of average power:

1. A thin disk Yb:YAG laser [114] and
2. Laser rods with undoped endcaps.

The undoped endcaps allow for symmetrical heat extraction on either side
of the beam waist. Typical average powers are between 20 and 30 W [71,115].
Quantum wells are generally used for mode-locking, with the exception of a
21 W, 124 MHz repetition laser using a variation of APML [71] (cf. Section 6.3).

In a thin-disk laser, the laser material has a thickness much smaller than the
diameter of the pump and laser mode. One end face of the disk is coated for high
reflectivity and put in direct contact with a heat sink. The resulting heat flow
is longitudinal and nearly one-dimensional. Typical disks are 100 µm thick, for
10% doping with Yb. An average power of 60 W, for 810 fs pulses at a repetition
rate of 34 MHz has been obtained [116].

6.7.6. Nd:YVO4 and Nd:YLF

Both neodymium doped lithium yttrium fluoride (YLF) and vanadate (YVO4)
have gained importance as diode pumped lasers. The emission bandwidth is only
slightly larger than that of Nd:YAG, hence the shortest pulse durations that are
possible with these lasers are in the range of a few picoseconds (3 ps [118] to
5 ps [119] have been reported). The absorption bandwidth of Nd:vanadate is
roughly 18 nm, as opposed to 2.5 nm for Nd:YAG, making it a preferred crystal
for diode pumping.

Nd:YLF, like Alexandrite, is a long lifetime medium (twice as long as
Nd:YAG), hence an ideal storage medium for regenerative amplifiers. Its nat-
ural birefringence overwhelms the thermal induced birefringence, eliminating
the depolarization problems of optically isotropic hosts like YAG. For example,
a 15 W cw diode array was used to pump a Nd:YLF regenerative amplifier,
amplifying at 1 kHz 15 ps, 20 pJ pulses to 0.5 mJ [120].

The main parameters of Nd:YLF and Nd:YVO4 are summarized in Table 6.7.
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Table 6.7

Properties of Nd:YVO4 and Nd:YLF (data from [72,117]).∗

Property Nd:YVO4 Nd:YLF Units

Lasing wavelength 1064.3 1053 (σ) nm
1047 (π) nm

Index of refraction 1.4481 (no)
1.4704 (ne)

Absorption (1% doping)
σ 9 cm−1

at 809 806 nm
π 31 4.5 cm−1

at 809 797 nm
Absorption bandwidth 15.7 nm

Emission cross section 15
σ 21 12 10−20cm2

π 76 18 10−20cm2

Gain bandwidth 0.96 1.3 nm
Fluorescence lifetime τF 90 480 µs

Thermal conductivity 0.05 0.06 W cm−1 K−1

Thermal expansion in σ 8.5 −2 10−6 K−1

Thermal expansion in π 3 −4.3 10−6 K−1

∗Parameters are listed for the radiation polarized parallel (π) and orthogonal
(σ) to the optical axis of the crystal

6.8. SEMICONDUCTOR AND DYE LASERS

One of the main advantages of semiconductor and dye lasers is that they
can be engineered to cover various regions of the spectrum. As opposed to the
solid-state lasers of the previous sections, the semiconductor and dye lasers are
characterized by a high gain cross section, which implies also a short upper
state lifetime, typically shorter than the cavity round-trip time. Consequently,
mode-locking through gain modulation can be effective.

6.8.1. Dye Lasers

Over the past 15 years fs dye lasers have been replaced by solid-state and fiber
lasers. It was, however, the dye laser that started the revolution of sub 100-fs
laser science and technology. In 1981 Fork et al. [121] introduced the colliding
pulse mode-locked (CPM) dye laser that produced sub 100-fs pulses.
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In this dye laser, the ring configuration allows two counter-propagating trains
of pulses to evolve in the cavity [121].5 The gain medium is an organic dye
in solution (for instance, Rh 6G in ethylene glycol), which, pumped through a
nozzle, forms a thin (≈100 µm) jet stream. Another flowing dye (for instance,
diethyloxadicarbocyanine iodide, or DODCI, in ethylene glycol) acts as saturable
absorber. The two counter-propagating pulses meet in the saturable absorber
(this is the configuration of minimum losses).

A prism sequence (one, two, or four prisms) allows for the tuning of the
resonator GVD. The pulse wavelength is determined by the spectral profiles of
the gain and absorber dyes. Limited tuning is achieved by changing the dye
concentration. Pulses shorter than 25 fs have been observed at output powers
generally not exceeding 10 mW with cw pumping [122], and up to 60 mW with
a pulsed (mode-locked argon laser) pump [123].

The palette of available organic dyes made it possible to cover practically
all the visible to infrared with tunable and mode-locked sources. A table of
gain absorber dye combinations used for passively mode-locked lasers can be
found in Diels [124]. Hybrid mode-locking of dye lasers has extended the palette
of wavelength hitherto available through passive mode-locking, making it pos-
sible to cover a broad spectral range spanning from covering the visible from
the UV to the near infrared. A list of dye combinations for hybrid mode-locking
is given in Table 6.8. Except when noted, the laser cavity is linear, with the
absorber and the gain media at opposite ends. Another frequently used configu-
ration is noted “antiresonant ring.” The saturable absorber jet is located near the
pulse crossing point of a small auxiliary cavity, in which the main pulse is split
into two halves, which are recombined in a standing wave configuration in the
absorber [16,125]. The ring laser appears only once in Table 6.8 [126], because of
the difficulty of adjusting the cavity length independently of all other parameters.

Dye lasers have been particularly successful in the visible part of the spectrum,
where virtually all wavelengths have been covered. The advantage of using an
organic dye in a viscous solvent is that the flowing dye jet allows for extremely
high pump power densities—in excess of 10 MW/cm2—to be concentrated on
the gain spot. The disadvantage of the dye laser lies also in the inconvenience
associated with a circulating liquid system. One alternative for the liquid dye laser
that conserves most of its characteristics is the dye doped, polymer nanoparticle
gain medium. Significant progress has been made in developing a material with
excellent optical quality [127,128]. These laser media have yet to be applied as
a femtosecond source.

5The same ring configuration is sometimes used with a Ti:sapphire gain medium, when a
bidirectional mode of operation is sought.
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Table 6.8

Femtosecond pulse generation by hybrid mode-locking of dye lasers pumped by
an argon ion laser, except as indicated. (Adapted from [124].) (ANR - antiresonant,

p - pump laser)

λ	 τpmin at λ	
Gain dye Absorbera nm Range fs nm Remarks

Disodium RhB 535 575 450 545
fluorescein

Rh 110 RhB 545 585 250 560
Rh6G DODCI 574 611 300 603
Rh6G DODCI 110 620 Ring laser
Rh6G DODCI 60 620 ANR ring
Kiton red S DQOCI 29 615
Rh B Oxazine 720 616 658 190 650
SRh101 DQTCI 652 682 55 675 Doubled

DCCI 652 694 240 650 Nd:YAG p
Pyridine 1b DDI 103 695
Rhodamine 700 DOTCI 710 718 470 713
Pyridine 2 DDI, DOTCI 263 733
Rhodamine 700 HITCI 770 781 550 776
LDS-751 HITCI 790 810 100
Styryl 8 HITCI 70 800
Styryl 9b IR 140c 840 880 65 865 Ring laser
Styryl 14 DaQTeC 228 974

aSee Appendix D for abbreviations.
bSolvent: propylene carbonate and ethylene glycol.
cIn benzylalcohol.

Miniature Dye Lasers

The long (compared to the geometrical length of a fs pulse) cavity of most
mode-locked lasers serves an essential purpose when a sequence of pulses—rather
than a single pulse—is needed. Emission of a short pulse by the long resonator
laser requires—as we have seen at the beginning of the previous chapter—a
coherent superposition of the oscillating cavity modes with fixed phase relation.
If, however, only a single pulse is needed, there is no need for more than one
longitudinal mode within the gain profile. Ultrashort pulses are generated in small
cavity lasers through resonator Q-switching and/or gain switching. Aside from
gain bandwidth limitations, the pulse duration is set by the spectral width of the
longitudinal mode, and hence the resonator lifetime. The latter in turn is limited
by the resonator round-trip time 2L/c. Ideally, the laser cavity should have a free
spectral range c/2L exceeding the gain bandwidth.
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Two methods of short pulse generation that use either ultrashort cavities
(Fabry–Perot dye cells of thickness in the micron range) or no traditional cavity
at all (distributed feedback lasers) have successfully been developed for (but are
not limited to) dye lasers.

In distributed feedback lasers two pump beams create a spatially modulated
excitation that acts as a Bragg grating. This grating serves as the feedback
(resonator) of the laser and is destroyed during the pulse evolution. This short
cavity lifetime together with the small spatial extend of the gain volume can
produce subps pulses whose frequency can be tuned by varying the grating
period [129,130]. The latter is determined by the overlap angle of the two pump
beams.

In a typical “short cavity” laser, the wavelength is tuned by adjusting the
thickness of the dye cell in a 3 to 5 µm range with a transducer bending slightly
the back mirror of the cavity [131]. With a round-trip time of the order of only
10 fs, it is obvious that the pulse duration will not be longer than that of a
ps pump pulse. As with the distributed feedback laser, the dynamics of pump
depletion can result in pulses considerably shorter than the pump pulses. The basic
operational principles of this laser can be found in Kurz et al. [132]. Technical
details are given in Chin et al. [131]. For example, using an excimer laser,
Szatmari and Schaefer [130] produced 500 fs pulses, tunable from 400 to 760 nm,
in a cascade of distributed feedback and short cavity dye lasers. After SPM and
recompression, pulses as short as 30 fs in a spectral range from 425 to 650 nm
were obtained [133].

Another type of miniature laser is the integrated circuit semiconductor laser,
which will be described in the next section.

6.8.2. Semiconductor Lasers

Generalities

Semiconductor lasers are obvious candidates for fs pulse generation, because
of their large bandwidth. A lower limit estimate for the bandwidth of a diode laser
is kBT (where kB is the Boltzmann constant and T the temperature), which at
room temperature is (1/40) eV, corresponding to a 15-nm bandwidth at 850 nm, or
a minimum pulse duration of 50 fs. The main advantage of semiconductor lasers
is that they can be directly electrically pumped. In the conventional diode laser,
the gain medium is a narrow inverted region of a p–n junction. We refer to a pub-
lication of Vasil’ev [134] for a detailed tutorial review on short pulse generation
with diode lasers. We will mainly concentrate here on problems associated with
fs pulse generation in external and internal cavity (integrated) semiconductor
lasers. The main technical challenges associated with laser diodes result from
the small cross section of the active region (typically 1 µm by tens of µm), the



Semiconductor and Dye Lasers 375

large index of refraction of the material (2. 5 < n < 3. 5, typically) and the large
nonlinearities of semiconductors.

The cleaved facets of a laser diode form a Fabry–Perot resonator with a
mode spacing of the order of 1.5 THz. Two options are thus conceivable for
the development of fs lasers: integrate the diode with a waveguide in the semi-
conductor, to construct fs lasers of THz repetition rates, or attempt to “neutralize”
the Fabry–Perot effect of the chip, and couple the gain medium to an external
cavity. We will consider first the latter approach.

External Cavity

Because of the high refractive index of the semiconductor, it is difficult to
eliminate the Fabry–Perot resonances of the short resonator made by the cleaved
facets of the crystal. Antireflection coatings have to be of exceptionally high
quality. Even though reflectivities as low as 10−4 can be achieved, a good
quality antireflection coating with a high optical damage threshold remains a
technical challenge. A solution to this problem is the angled stripe semiconduc-
tor laser [135], which has the gain channel making an angle of typically 5◦ with
the normal to the facets (Figure 6.13). Because of that angle, the Fabry–Perot
resonance of the crystal can easily be decoupled from that of the external cavity.
A standard antireflection coating applied to the semiconductor chip is sufficient
to operate the laser with an external cavity.
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Figure 6.13 Structure of an angled stripe semiconductor laser. (Adapted from [135].)
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Femtosecond pulse operation in a semiconductor laser with an external cavity
is similar to that of a dye laser. The laser can be cw pumped, as in Delfyett
et al. [136]. Best results so far were obtained in hybrid operation, using radio
frequency current modulation for gain modulation (synchronous pumping), and
a saturable absorber. The low intracavity power of the external cavity semi-
conductor laser—as compared to the dye laser—makes the use of conventional
saturable absorbers (i.e., dyes, bulk semiconductors) impractical. It has been
necessary to develop absorbing structures with a low saturation energy density.
These are the MQW absorbers, which were analyzed in Section 6.6. The laser
diode is modulated at the cavity round-trip frequency (0.5 W RF power applied
via a bias tee [68]). Modulation of the index of refraction is associated with
the gain depletion and the saturation of the MQW. Because the gain depletion
results in an increase of the index, a negative dispersion line appears appropriate.
Bandwidth-limited operation is difficult to achieve directly from a mode-locked
semiconductor laser. An external dispersion line with gratings resulted in pulse
durations of 200 fs [137].

The exact phase modulation mechanism of this laser is complex. The index
of refraction of the diode is a function of temperature and free carrier density,
which itself is a function of current, bias, light intensity, etc. As with other high
gain solid-state lasers, changes in the pulse parameters can be as large as 50%
from one element to the next [68].

Current Modulation To take full advantage of the fast lifetime of the gain in a
semiconductor laser, one should have a circuit that drives ultrashort current pulses
into the diode. As mentioned above, a feedback technique—generally referred to
as regenerative feedback—can be used to produce a sine wave driving current
exactly at the cavity repetition rate. The circuit consists essentially in a phase
locked loop, synchronized by the signal of a photodiode monitoring the mode
beat note of the laser, and a passive filter at the cavity round-trip frequency.
A comb generator can be used to transform the sine wave in a train of short
electrical pulses. A comb generator is a passive device which produces, in the
frequency domain, a “comb” of higher harmonics which are integral multiples
of the input frequency. As we had seen in the introduction of Chapter 5, to a
regular frequency comb corresponds a periodic signal in the time domain. This
periodic signal can correspond to ultrashort pulses, if—and only if—the teeth of
the comb are in phase. Commercial comb generators are generally constructed
to create higher harmonics, without being optimized for creating a phased comb.
Therefore a selection should be made among these devices to find a generator
with good temporal properties (shortest pulse generation).

To allow for the injection of a short current pulse into the laser diode, the
latter should be designed with minimal capacitance. To this effect, the p and n
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contacts of the angle striped diode of Fig. 6.13 should not cover the whole area
of the strip, but be limited to a narrow stripe which follows the gain line.

Integrated Devices

Instead of trying to couple the semiconductor chip to a standard laser cavity,
one can integrate the semiconductor into a waveguide cavity. Such devices rang-
ing in length from 0.25 mm to 2 mm have been constructed and demonstrated for
example by Chen and Wang [138]. The end mirrors of the cavity are—as in a
conventional diode laser—the cleaved faces of the crystal (InP) used as substrate.
Wave guiding is provided by graded index confining InGaAsP layers. Gain and
saturable absorber media consist of MQWs of InGaAs. The amount of gain and
saturable absorption is controlled by the current flowing through these parts of
the device (reverse bias for the absorber). As shown in the sketch of Figure 6.14,
the saturable absorber is located at the center of symmetry of the device, sand-
wiched between two gain regions. This configuration is analogous to that of the
ring dye laser, in which the two counter-propagating pulses meet coherently in
the absorber jet. In the case of this symmetric linear cavity, the laser operation of
minimum losses will correspond to two circulating pulses overlapping as standing
waves in the saturable absorber.

These devices are pumped continuously and are thus the solid-state equivalent
of the passively mode-locked dye lasers. The laser parameters can, however, be
significantly different. Although the average output power is only slightly inferior
to that of a dye laser (1 mW), at the much higher repetition rate (up to 350 GHz),
the pulse energy is only in the fW range! For these ultrashort cavity lengths,
there are only a handful of modes sustained by the gain bandwidth.

Ground
(n contact)

Gain section

Saturable absorber

Grin-sch
active region

Fe: InP

n � InP substrate

Figure 6.14 Layout of an integrated semiconductor fs laser. (Adapted from [138].)
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Semi-Integrated Circuit Fs Lasers

Total integration as shown above results in a high duty cycle, at the expense of
a lower energy per pulse. On can seek a compromise between the discrete
elements semiconductor laser and the total integrated laser. For instance, the
integration of the gain and saturable absorber of the integrated laser of Chen and
Wang [138] can be maintained in a single element coupled to an external cavity.
Such a design has been successfully tested by Lin and Tang [139]. The absorber
consists of a 10 µm island in middle of the gain region, with an electrical contact,
isolated from the gain structure by two 10-µm shallow etched regions (without
any electrical contact). The absorption—as in the case of the totally integrated
laser—can be controlled through the bias potential of the central contact. To
prevent lasing action of the 330-µm long gain module, the end facets—after
cleavage—are etched (chemically assisted ion beam etching) at 10◦ from the
cleaved plane. The autocorrelation of the laser pulses from such a structure had
a width of approximately 700 fs [139].

6.9. FIBER LASERS

6.9.1. Introduction

In most lasers discussed so far, the radiation is a free propagating wave in
the gain or other elements of the cavity. The gain length is limited by the vol-
ume that can be pumped. The length of a nonlinear interaction is also limited
by the Rayleigh range (ρ0). By confining the wave in a wave guide, it is possi-
ble to have arbitrarily long gain media and nonlinear effects over arbitrarily long
distances. A fiber is an ideal wave guide for this purpose. Its losses can be as
small as a few dB/km. Yet the pulse confinement is such that substantial phase
modulation can be achieved over distances ranging from cm to m. The fiber is
particularly attractive in the wavelength range of negative dispersion (beyond
1.3 µm), because the combination of phase modulation and dispersion can lead
to pulse (soliton) compression (see Chapter 8). The gain can be provided by
Stimulated Raman Scattering (SRS) in the fiber material. Such “Raman soliton
lasers” are reviewed in the next subsection. In the following subsection, we will
consider the case of doped fibers, where the gain medium is of the same type as
in conventional glass lasers.

Over the past 20 years ultrafast fiber lasers have matured dramatically.
Compact, turn key systems are available commercially today and can deliver
tens of mW of average power at pulse durations of the order of 100 fs. With
amplification the micro Joule level is accessible. These lasers have applications
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as self-standing units or as compact seed sources for high-power fs amplifier
systems.

6.9.2. Raman Soliton Fiber Lasers

SRS is associated with intense pulse propagation in optical fibers. A review of
this topic can be found in Rudolph and Wilhelmi [140] for example. The broad
Raman gain profile for the Stokes pulse extends up to the frequency of the pump
pulse. An overlap region exists because of the broad pump pulse spectrum. The
lower frequency components of the pulse can experience gain at the expense of
attenuation of the higher frequency components. In addition, the amplification of
spontaneously scattered light is possible. Either process leads to the formation
of a Stokes pulse which separates from the pump pulse after the walk-off distance
because of GVD. These processes can be utilized for femtosecond Raman soliton
generation in fibers and fiber lasers [141–143]. An implementation of this idea
is shown in Figure 6.15. The pulses from a cw mode-locked Nd:YAG laser

CW mode-locked
Nd: YAG

Fiber

BS

P

L1
L1

M2 M2

Figure 6.15 Experimental configuration of a synchronously pumped fiber ring Raman laser.
(Adapted from Gouveia-Neto [143].)
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(100 MHz, 100 ps, 1.32 µm) are coupled through a beam splitter BS into a
ring laser containing an optical fiber. The fiber was tailored to have a negative
dispersion for λ	 > 1. 46 µm. While traveling through the fiber the pump pulses
at 1.319 µm produce Stokes pulses at λ1 = 1. 41 µm. This first Stokes pulse in
turn can act as pump source for the generation of a second Stokes pulse (λ2 =
1. 495 µm), which is in the dispersion region that enables soliton formation. Of
course, for efficient synchronous pumping, the length of the ring laser had to
be matched to the repetition rate of the pump. Second Stokes pulses as short as
200 fs were obtained.

6.9.3. Doped Fiber Lasers

Fibers can be doped with any of the rare earth ions used for glass lasers.
Whether pumped through the fiber end, or transversely, these amplifying media
can have an exceptionally large optical thickness (ag = αgdg � 1). An initial
demonstration of this device was made by Duling [144,145]. Passively mode
locked rare earth doped fiber lasers have since evolved into compact, convenient,
and reliable sources of pulses shorter than 100 fs. The gain media generally used
are Nd3+ operating at 1050 nm and Er3+ at 1550 nm. The erbium doped fiber
is sometimes codoped with ytterbium, because of the broad absorption band of
the latter centered at ≈ 980 nm and extending well beyond 1000 nm. Pump light
at 1. 06 µm can be absorbed by ytterbium, which then transfers the absorbed
energy to the Er ions. High gain and signal powers can thus be obtained by
using, for example, diode laser pumped miniature Nd:YAG lasers.

Because of the high gain in a typical fiber laser, it may include bulk optic
components, e.g., mirror cavities, dispersion compensating prisms, or saturable
absorbers. Obviously, the preferred configuration is that of an all-fiber laser, using
a variety of pigtailed optical components and fused tapered couplers for output
and pumping.

As compared to conventional solid-state lasers, fibers have the advantage of
a large surface to volume ratio (hence efficient cooling is possible). The specific
advantages of the single mode fiber geometry over bulk solid-state (rare earth)
media for mode-locking are:

• Efficient conversion of the pump to the signal wavelength. Erbium, for
example, is a three-level system and the tight mode confinement of the
pump in a fiber allows for efficient depopulation of the ground state and
thus high efficiency.

• Nonradiative ion–ion transitions that deplete the upper laser level are
minimized. Such interactions are especially egregious in silica because
of its high phonon energy, and because the trivalent dopants do not mix
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well into the tetravalent silica matrix, tending instead to form strongly
interacting clusters at the high concentrations necessary for practical bulk
glass lasers [146]. The confinement of both the laser and pump modes allows
the gain dopant to be distributed along greater lengths of fiber at lower con-
centration, obviating the need for high concentrations and so eliminating
the interactions cited previously.

• Diode laser pumping is practicable (due in large part to the previous two
points). Single mode laser diodes have been developed at 980 nm and
1480 nm for erbium fiber amplifiers in telecommunications applications.
The four-level structure of neodymium allows for pumping even by multi-
mode lasers, such as high-power laser diode arrays, by using fibers designed
to guide the pump light in the cladding [147].

• Tight mode confinement and long propagation lengths maximize the SPM
by the weak nonlinear index of silica (n̄2 = 3 10−16 cm2/W).

• The dispersion k" of fibers (including the sign) can be tailored to the
application.

One drawback of the fiber laser is that the confinement limits the pulse energies
that can be produced. In bulk-solid state lasers, the problem of material damage
can be overcome by beam expansion.

A number of techniques have been developed to mode-lock fiber lasers.
The most successful methods are:

1. nonlinear polarization rotation [148],
2. nonlinear loop mirrors [149],
3. mode-locking with semiconductor saturable absorbers [150].

Femtosecond pulse output with durations of 100 fs and below has been observed
with a variety of gain media—Nd, Yb, Er, Er/Yb, Pr, and Tm. For a detailed
overview on such lasers we refer the reader to a review paper by Fermann
et al. [151].

6.9.4. Mode-Locking through Polarization Rotation

Because of its central importance in today’s fs fiber lasers we will describe one
of the mode-locking techniques—nonlinear polarization rotation—in more detail.
As explained in Section 5.4.2 nonlinear polarization rotation in combination with
polarizers can act as a fast saturable absorber, cf. Eq. (5.81). In a fiber laser
using nonlinear polarization rotation, the differential accumulated phase yields
an intensity-dependent state of polarization across the pulse. This polarization
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state is then converted into an intensity-dependent transmission by inserting a
polarizer at the output of the birefringent element, oriented, for example, to
transmit the high intensity central portion of the pulse and reject the wings. This
approach is the fiber equivalent of the Kerr lens mode-locked Ti:sapphire laser.
Pulses as short as 36 fs have been obtained from an Yb fiber laser that used
nonlinear polarization rotation [152], to name just one example.

A standard single mode fiber serves as nonlinear element. Such a fiber has
generally a weak birefringence. The degree of birefringence is defined by the
parameter:

B = |kx − ky|
2π/λ	

= |nx − ny|, (6.9)

where nx and ny are the effective refractive indices in the two orthogonal polar-
ization states. For a given value of B, the power between the two modes (field
components along x̂ and ŷ) is exchanged periodically, with a period LB called the
“beat length” given by [153]:

LB = λ	

B
. (6.10)

The axis with the larger mode index is called the slow axis. In a typical single
mode fiber, the beat length is around 2 to 10 m at 1.55 µm [154]. As shown
by Winful [155], nonlinear polarization effects can be observed at reasonably
low power in weakly birefringent fibers (as opposed to polarization preserving
fibers).

In a typical fiber ring cavity a first polarization controller produces an ellipti-
cal polarization, whose major axis makes a small angle θ with the slow axis of
the portion of fiber that follows. As shown in Section 5.4.2 the induced phase
difference between two orthogonal polarization components depends on the prop-
agation distance d and the pulse intensity. It can be adjusted such that after a
distance dm the polarization becomes linear. A polarizer can be used to maximize
the loss for the lower intensities as compared to the higher intensities, as sketched
in Figure 6.16.

We have derived in Section 5.4.2 the essential equations relating to nonlinear
polarization rotation. To describe a fiber laser we need to track the evolution
of two polarization components. This can conveniently be done using a column
vector for the electric field at a certain point in the cavity

(
Ẽx

Ẽy

)
, (6.11)
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Figure 6.16 Sketch of the nonlinear polarization rotation in a fiber. The elliptically polarized input
can be converted into linearly polarized light at the peak of the pulse for example.

and 2 × 2 matrices (M) for the resonator elements [156,157]. The effect of the
nonlinear birefringent fiber of length L is the combination of a linear propagation
problem and nonlinear phase modulation. The resulting matrix is thus a product
of two matrices, and the field vector is given by:

(
Ẽx(L)
Ẽy(L)

)
=
(

e−i�NL,x 0
0 e−i�NL,y

)
·
(

e−ikxL 0
0 e−ikyL

)
·
(

Ẽx(0)
Ẽy(0)

)

=
(

e−i�x 0
0 e−i�y

)
·
(

Ẽx(0)
Ẽy(0)

)
, (6.12)

where

�x,y = 2πn2L

λ	

[
|Ẽx,y|2 + 2

3
|Ẽy, x|2

]
− 2πnx,yL

λ	

.

We have used here the same approximations for the nonlinear phase as in
Section 5.4.2. The linear propagation constants kx,y = ω	nx,y/c. Matrices of
common polarizing elements like wave plates and polarizers known from Jones
calculus can easily be incorporated into this analysis.

Other components of the round-trip model like gain, saturable absorption,
mirrors, etc., usually do not distinguish between the two polarization components.
The transfer functions T are those introduced in Chapter 5. For implementing
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these elements in a way consistent with the matrix approach we define a transfer
matrix

(M) = T
(

1 0
0 1

)
. (6.13)

Fiber lasers have typically high gain and losses. The laser operates in a regime
of strong saturation, with pulses much shorter than the energy relaxation time of
the lasing transition. The gain transition is generally sufficiently broad for phase
modulation because of saturation to be negligible. Therefore the T factor in the
transfer matrix describing gain is real and can be obtained from Eq. (3.55):

Tg =
[

eW0(t)/Ws

e−a − 1 + eW0(t)/Ws

]1/2

. (6.14)

An alternative approach is to consider the fiber laser as a continuous medium,
which leads to a coupled system of differential equations for the components
Ẽx and Ẽy. This is essentially a two-field component extension of Eq. (3.190)
without the transverse differential operators. We refer to the literature for a deriva-
tion of this system of equations and for their application to the modeling of a
mode-locked fiber ring laser using nonlinear polarization rotation, Chang and
Chi [157], Chi et al. [158], Agrawal [159], and Spaulding et al. [160].

6.9.5. Figure-Eight Laser

A widely studied fiber laser implementation of the nonlinear mirror is the
figure-eight laser [144], so named for the schematic layout of its component fibers
(Figure 6.17), with a nonlinear amplifying loop mirror [161]. In the example
shown in Fig. 6.17, the laser consists of a nonlinear amplifying mirror (left
loop) and an optical isolator with outcoupler (right loop). The two loops of the
“figure-eight” are connected by a 50% beam splitter.

Let us follow a pulse that propagates counter clockwise in the right loop
through the isolator (optical diode), through a polarization controller (to com-
pensate for the natural birefringence of the fiber) and a 20% output coupler. The
remaining part of the circulating pulse is equally split into the two directions
of the left loop (nonlinear mirror). The counter-propagating pulses experience
the same gain in the Er-doped fiber section of about 2 to 3 dB. The switch-
ing fiber introduces a phase shift through SPM. Being amplified before entering
this fiber section, the counterclockwise circulating pulse experiences a larger
phase shift than its replica propagating in the opposite direction. The two pulses
arrive simultaneously at the beam splitter and recombine. The variation of the
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Figure 6.17 Schematic representation of the figure eight laser. The pump radiation at 980 nm
is injected via the directional coupler WDM in the gain fiber (erbium doped). (Adapted from
Duling [144].)

accumulated differential phase across the combined pulse will cause different
parts of the pulse injected clockwise and counterclockwise into the left loop.
From the point of view of the counterclockwise circulating pulse in the right
loop, the left loop acts as a nonlinear mirror whose reflection varies sinusoidally
as a function of intensity. Thus, the loop mirror behaves as a fast saturable
absorber from low intensity to intensities corresponding to the first transmission
maximum.

Fiber lasers operating on the 1050 nm transition of Nd3+ in silica require
bulk optic elements (prism sequences) for compensating the substantial normal
dispersion (30 ps/nm · km) of the gain fiber at the operating wavelength, and so
are generally constructed as a bulk optic external cavity around the gain fiber.
Passive mode-locking is obtained via nonlinear polarization rotation in the gain
fiber, and the Brewster angled prisms serve as the polarizer. Pulses as short as
100 fs have been demonstrated [162].

Femtosecond fiber lasers operating in the 1530–1570 nm gain band of erbium
are of obvious interest for their potential application in telecommunications.
This wavelength range is in the low loss window of silica fibers, and such a
source is obviously compatible with erbium fiber amplifiers. Of particular inter-
est also is the anomalous dispersion exhibited by silica at this wavelength. The
precise value of the dispersion may be tailored through the exact fiber design.
This implies that a mode-locked laser with Er gain may be constructed entirely
from fibers, with no need for dispersion compensating prisms as in the Nd fiber
lasers or most other ultrafast sources. Indeed, subpicosecond erbium lasers have
been demonstrated with all-fiber figure-eight, linear, and ring cavities, using both
nonlinear mirrors and nonlinear polarization rotation. In addition, systems using
semiconductor saturable absorbers have been demonstrated.
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While soliton-like models have been used to describe a number of ultrafast
laser systems as discussed in Chapter 5, the nonlinear dynamics of soliton prop-
agation plays a more direct role in the erbium fiber laser than is seen in any
other. The generated pulses are typically transform limited with a sech2 intensity
profile—the shape expected from the soliton solution of the nonlinear Schrödinger
equation. The average intracavity energy per pulse corresponds reasonably well
to the energy of a soliton of the same length propagating in fiber with dispersion
equal to the average cavity dispersion.

It has been demonstrated that the minimum pulse length obtainable in erbium
fiber lasers is approximately proportional to the total dispersion inside the
cavity [163]. This is to some degree surprising: As the pulse propagation is
soliton-like, the fiber dispersion is continuously balanced by the SPM of the
fiber. In principle, solitons of any length will form as long as the amplitude of
the input pulse exceeds the threshold value of Eq. (8.35) (cf. soliton description in
Chapter 8). However, the coupling of energy into the dispersive wave increases
exponentially as the pulse shortens, thus limiting the minimum obtainable pulse
width [164]. This loss becomes important only when the cavity length is of the
order of the characteristic soliton length defined in Eq. (8.37) . This is also why
dispersive wave dynamics do not play an important role in other mode-locked
lasers, that can be described by a soliton model. In such systems the soliton length
corresponds to many cavity round-trips, much longer than the cavity lifetime of
the dispersive wave. To obtain short pulses, then, it is necessary to minimize
the total cavity dispersion, either by using dispersion shifted fiber components,
or short cavities, or by including lengths of dispersion compensating fiber spe-
cially designed to have normal dispersion at 1550 nm. Pulse widths of less than
100 fs [165] have been achieved. With such short pulses, third-order dispersion
plays an important role in limiting the pulse width and may impose a nonlinear
chirp on the pulse [166].
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7
Femtosecond Pulse Amplification

7.1. INTRODUCTION

As discussed in Chapters 5 and 6, femtosecond pulse oscillators typically
generate pulse trains with repetition rates of about 100 MHz at mean output
powers which range from several mW (passively mode-locked dye laser) to sev-
eral hundred mW (Ti:sapphire laser). Corresponding pulse energies are between
several tens of pJ and several nJ. Femtosecond pulses with larger energies are
needed for a variety of practical applications. Therefore a number of different
amplifier configurations have been developed (for a review see Heist et al. [1],
Simon [2], and Knox [3]). These amplifiers differ in the repetition rate and energy
gain factor that can be achieved, ranging from 0.1 Hz to several MHz, and from
10 to 1010, respectively. Both parameters cannot be chosen independently of
each other. Instead, in present amplifiers the product of repetition rate and pulse
energy usually does not exceed several hundred mW, i.e., it remains in the order
of magnitude of the mean output power of the oscillator. The power of a single
amplified pulse, however, can be in the terawatt range [4, 5]. It is not necessary
for many applications to reach this power level. The specific function of the fs
pulse will dictate a compromise between single pulse energy and repetition rate.
It should also be noted that it is mostly the intensity of the focused pulse that
matters, rather than the pulse power. Therefore, a clean beam profile provid-
ing the possibility of diffraction limited focusing is desired, eventually at the
expense of a reduction in pulse energy. For some applications in spectroscopy, it
is desirable to generate a white light continuum in short bulk materials. Typical
threshold intensities that have to be reached for this purpose are on the order
of 1012 W/cm2.

395
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The basic design principles of amplifiers have already been established for ps
and ns pulse amplification. The pulses to be increased in energy are sent through
a medium which provides the required gain factor (Figure 7.1). However, on a
femtosecond time scale, new design methods are required to (a) keep the pulse
duration short and (b) prevent undesired nonlinear effects caused by the extremely
high intensities of amplified fs pulses. A popular technique to circumvent the
problems associated with high peak powers is to use dispersive elements to stretch
the pulse duration to the ps scale, prior to amplification.

Femtosecond pulse amplification is a complex issue because of the interplay
of linear and nonlinear optical processes. The basic physical phenomena relevant
to fs amplification are discussed individually in the next sections.

7.2. FUNDAMENTALS

7.2.1. Gain Factor and Saturation

It is usually desired to optimize the amplifier to achieve the highest possi-
ble gain coefficient for a given pump energy. To simplify our discussion let us
assume that the pump inverts uniformly the part of the gain medium (Fig. 7.1)
that is traversed by the pulse to be amplified (single pulse). A longitudinal geom-
etry is often used when pumping the gain medium with a laser of good beam
quality. Transverse pumping is used for high gain amplifiers such as dyes, or
when pumping with low coherence sources such as semiconductor laser bars.
We discuss next the case of transverse pumping. To achieve uniform inversion
with transverse optical pumping, we have to choose a certain concentration N̄
of the (amplifying) particles which absorb the pump light and a certain focusing
of the pump. The focusing not only determines the transverse dimensions of the
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Figure 7.1 Light pulse amplification.
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pumped volume, 
x = a, but also controls the saturation coefficient sp and the
depth 
y = b of the inverted region. The saturation parameter sp = Wp0/Ws was
defined as the ratio of incident pump pulse density and saturation energy density
[see Eq. (3.59)].

In practice, the pump energy is set by equipment availability and other exper-
imental considerations. Therefore, to change sp, we have to change the focusing.
Note that here the total number of excited particles corresponding to the num-
ber of absorbed pump photons remains constant. To illustrate the effect of the
pump focusing for transverse pumping let us determine the depth distribution
of the gain coefficient for various pump conditions. For simplicity, we assume
a three-level system for the amplifier where |0〉 → |2〉 is the pump transition
and |1〉 → |0〉 is the amplifying transition. The relaxation between |2〉 and |1〉
is to be much shorter than the pumping rate. Starting from the rate equations
for a two-level system Eqs. (3.51) and (3.52), it can easily be shown that the
system of rate equations for the photon flux density of the pump pulse Fp and
the occupation number densities Ni = N̄ρii (i = 0, 1, 2) reads now:

∂

∂t
N0(y, t) = −σ02N0(y, t)Fp(y, t) (7.1)

∂

∂y
Fp(y, t) = −σ02N0(y, t)Fp(y, t) (7.2)

and

N1(y, t) = N̄ − N0(y, t) (7.3)

where σ02 is the interaction (absorption) cross-section of the transition |0〉 → |2〉.
The coefficient of the small signal gain, ag, is proportional to the occupation
number difference of levels |1〉 and |0〉:

ag = σ10(N1 − N0)L = σ10
N10L (7.4)

where L is the amplifier length. With the initial conditions N0(y, 0) = N (e)
0 (y) = N̄

(all particles are in the ground state) we find from Eqs. (7.1), (7.2), and (7.3) for
the inversion density 
N10 after interaction with the pump:


N10(y) = N̄

{
1 − 2

1 − ea (1 − esp)

}
(7.5)
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Figure 7.2 Inversion density 
N10 as a function of normalized depth y/	a, where 	a = |σ02N̄ |−1,
for different saturation parameters sp = Wp0/Ws.

where a = −σ02N̄y is the coefficient of the small signal absorption for the
pump. Figure 7.2 shows some examples of the population inversion distribution
for different intensities of the pump pulse.

In the limit of zero saturation the penetration depth is roughly given by the
absorption length 	a = |σ02N̄ |−1 defined as the propagation length at which the
pulse intensity drops to 1/e of its original value. If the pump density is large
enough to saturate the transition 0 → 2 the penetration depth becomes larger
and, moreover, a region of almost constant inversion (gain) is built.

Given a uniformly pumped volume, the system needs to be optimized for
maximum energy amplification of the signal pulse. Using Eq. (3.57) the energy
gain factor achieved at the end of the amplifier can be written as:1

Ge = W (L)

W0
= �ω	

2σ10W0
ln
[
1 − eag

(
1 − e2σ10W0

)]

= 1

s
ln
[
1 − eag

(
1 − es)] . (7.6)

1Note that for the amplification, the relations found for the two-level system hold if we assume
that during the amplification process no other transitions occur. This is justified in most practical
situations.
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Figure 7.3 (a) Energy gain factor Ge and (b) damping of input fluctuations DF as function of the
coefficient of the small signal gain, ag, for different saturation parameters s′ = 2s.

Figure 7.3(a) shows this gain factor (on a logarithmic scale) as a function of the
small signal gain ag for different values of s. The saturation parameter s can
be controlled by adjusting the beam cross section of the pulse to be amplified.
As expected from Eq. (7.6), as long as saturation is negligible, the energy gain
varies exponentially with ag (linear slope for the logarithm of the gain Ge versus
gain coefficient). The total gain is drastically reduced by saturation. It should be
noted, however, that for the sake of high energy extraction from the system, the
amplifier has to be operated near saturation. Active media with larger saturation
energy densities (smaller gain cross sections) are therefore clearly favored if high
pulse energies are to be reached. Table 7.1 shows some important parameters of

Table 7.1

Optical parameters of gain media.

Medium λ	 (µm) 
λ (nm) σ10 (cm2) Lifetime (s) Typical pump

Organic dyes 0.3...1 ≥ 50 ≥ 10−16 10−8. . . 10−12 Laser
Color centers 1. . . 4 ≈ 200 ≥ 10−16 ≤ 10−6 Laser
XeCl 0. 308 1. 5 7 × 10−16 ≈ 10−8 Discharge
XeF 0. 351 ≤ 2 3 × 10−16 ≈ 10−8 Discharge
KrF 0. 249 ≈ 2 3 × 10−16 ≤ 10−8 Discharge
ArF 0. 193 ≈ 2 3 × 10−16 ≤ 10−8 Discharge
Alexandrite ≈ 0. 75 ≈ 100 7 × 10−21 2. 6 × 10−4 Flashlamp
Cr:LiSAF ≈ 0. 83 ≈ 250 5 × 10−20 6 × 10−5 Diode laser
Ti:sapphire ≈ 0. 78 ≈ 400 3 × 10−19 3 × 10−6 Laser
Nd:glass 1. 05 ≈ 21 3 × 10−20 3 × 10−4 Flashlamp
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gain media used in fs pulse amplification. The small σ10 (large saturation energy
density Ws) in connection with the long energy storage time (∼ fluorescence life
time) make solid-state materials mostly attractive for high-energy amplification.

How close to saturation should an amplifier operate? If chirped pulse ampli-
fication is used (as discussed in Section 7.4), it is essential that the amplifier
operates in the linear regime. In other cases, it is advantageous to have at least one
stage of amplification totally saturated. The reason is that the saturated output of
an amplifier is relatively insensitive to fluctuations of pulse energy. A quantitative
assessment of the relative fluctuations of the amplified pulses 
W (L)/W (L) in
terms of the input fluctuations 
W0/W0 can be found by differentiating Eq. (7.6)
and defining a damping factor:

DF = 
W (L)/W (L)


W0/W0
= eag es

[1 − eag (1 − es)]

1

Ge
. (7.7)

For large saturation the output can be expected to be smoothed by a factor of
Ge

−1 (Fig. 7.3b). This reduction in energy fluctuation is at the expense of a
reduction of the amplification factor.

From the preceding discussion we may want to optimize the amplifier
geometry as follows. From the given pump energy and the known absorption
cross section we can estimate the focusing conditions for the pump pulse to
achieve a uniformly pumped volume. For maximum amplification, the cross sec-
tion of the signal beam has to be matched to this inverted region. If the saturation
is too large or too small with respect to the overall design criteria, readjustment
of either signal or pump focusing can correct the error. However, there are a num-
ber of additional effects that need to be considered in designing the amplification
geometry, which are discussed in the following sections.

7.2.2. Shaping in Amplifiers

Saturation

Saturation has a direct and indirect pulse shaping influence. The direct impact
of saturation arises from the time-dependent amplification. As the gain saturates,
the dispersion associated with the amplifying transition changes, resulting in a
phase modulation of the pulse. Although the phase modulation does not affect
the pulse envelope directly, it does modify the propagation of the pulse through
the dispersive components of the amplifier (glass, solvent, isolators).

The mathematical framework to deal with the effect of saturation on both the
pulse shape and its phase was given in Chapters 3 and 4. We present here a few
examples to illustrate the importance of these shaping mechanisms in specific
configurations.
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The change in the pulse intensity profile resulting from saturation—excluding
dispersive effects—is found by evaluating Eq. (3.55), describing the intensity of
a pulse at the output of an absorbing or amplifying medium as a function of the
integrated intensity at the input W0(t) = ∫ t

∞ I0(t′)dt′:

I(z, t) = I0(t)
eW0(t)/Ws

e−ag − 1 + eW0(t)/Ws
. (7.8)

Figure 7.4 shows the normalized shape of the amplified pulse for different
input pulse shapes and saturation. As expected, saturation in the amplification
process favors the leading edge of the pulse. Thus the pulse center shifts toward
earlier times whereby the actual change in pulse shape critically depends on the
shape of the input pulse. In particular the wings of the amplified pulses are a
sensitive function of the initial slope. To minimize pulse broadening or even to
obtain shortening during amplification, it is recommended to have pulses with
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Figure 7.4 Behavior of the pulse shape in an amplifier for different shapes of the input pulse and
different saturation parameters s = W0/Ws for a small signal gain eag = 104. 2s varies from 10−4 to
1 (increment factor 10) in the order of increasing shift of the pulse maximum. The initial pulse shapes
are a Gaussian I(t) ∝ exp(−2t2) (a) (t being the normalized time); a sech pulse I(t) ∝ sech2(t) (b),
and an asymmetric pulse, Gaussian in the wings exp(−t2) + 1

2 exp[−(t − 1)2] (c).
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a steep leading edge. For reasons to be discussed later high power amplifiers
usually consist of several stages isolated by saturable absorbers. These absorbers
can also serve to steepen the pulses.

If the pulse is detuned from resonance, we have seen how saturation can also
result in a chirp in Chapter 3. This effect will be discussed in Section 7.3.

Group Velocity Dispersion

While being amplified, the pulses travel through a certain length of material
and are thus influenced by dispersion. In the case of linear gain, the pulse shaping
is only because of GVD. Shortest amplified pulses will be obtained either by
sending up- (down-)chirped pulses through the amplifier if its net GVD is positive
(negative). Alternatively (the only appropriate procedure if the input pulses were
bandwidth-limited) the broadened and chirped pulse at the end of the amplifier
can be sent through a dispersive device, for example a prism or grating sequence,
for recompression. For unchirped input pulses, the magnitude of the broadening
that occurs depends on the length of the amplifier and the dispersive length
(for the pulse being amplified) defined in Chapter 1 [cf. Eq. (1.128)]. Some
dispersion parameters for typical materials relevant to fs amplification are shown
in Table 7.2.

Gain Narrowing

In the preceding discussion we assumed the bandwidth of the gain medium
to be larger than the spectral width of the pulse to be amplified. Depend-
ing on the active medium (Table 7.1) this assumption becomes questionable
when the spectral width of the input pulse approaches a certain value. Now
we have to take into account that different spectral components of the pulse
experience different gain. Because typical gain curves of active media have a
finite bandwidth, the amplification is accompanied by a narrowing of the pulse
spectrum. Thus, in the linear regime (no saturation), an unchirped pulse broad-
ens while being amplified. This behavior can easily be verified assuming an
unchirped Gaussian pulse at the amplifier input, with a field spectrum vary-
ing as Ẽ0(�) = A0 exp[−(�τG/2)2] [cf. Eq. (1.35)], and a small signal gain
G(�) = eag(�) where ag = a0 exp[−(�Tg)2/2]. For simplicity we expand the
Gaussian distribution and use ag � a0[1−(�Tg)2/2]. The spectral field amplitude
behind the amplifier, neglecting saturation, is:

Ẽ(�) = Ẽ0(�)eag(�)/2

� A0e−(�τG)2/4ea0/2[1−(�Tg)2/2]

= A0ea0/2e−�2(τ2
G + a0T2

g )/4 (7.9)
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Table 7.2

Optical parameters for typical materials used in fs pulse amplifiers. The dispersion
length LD is given for a pulse duration of 100 fs. 1λ� = 1. 06 µm, 2λ� = 1. 06 µm,

and SF6.

λ	 k′′
	 LD n̄2

Material (µm) (fs2/cm) (cm) (cm2/W)

water 0. 6 480 21 0. 67 × 10−16

methanol 0. 6 400 25
benzene 0. 6 1700 6 8. 8 × 10−15

ethylene glycol 0. 6 840 12 3 × 10−16

fused SiO2 0. 6 590 17 13 × 10−16

fused SiO2 [6] 1.06 4. 7 × 10−16

SF10 0. 6 2530 4 21. 3 × 10−15

SF14 0. 6 3900 2. 5
phosphate glass 1. 06 330 30 1 × 10−15

Ti:sapphire [6] 0. 78 610 16 10. 5 × 10−16

diamond 0. 6 1131 8. 8 6. 7 × 10−15

diamond 0. 25 3542 2. 8 −8 × 10−15

air (1 atm) 800 0. 14 8. 3 × 104 2. 8 × 10−19

air [7] 0. 8 0. 21 5. 5 × 104 5. 57 × 10−19

air [8] 0. 8 4 × 10−19

air [9] 0.308 2. 2 × 10−18

air [10] 0. 25 0. 96 1. 04 × 104 2. 4 × 10−18

where τG is a measure of the input pulse duration τp = √
2 ln 2τG � 1. 177τG

(Table 1.1) and 
ωg � 2. 36/Tg is the FWHM of the gain curve. As can be
seen from Eq. (7.9) the spectrum of the amplified pulse becomes narrower; the

FWHM is given by � 2. 36/
√
τ2

G + a0T2
g . The corresponding pulse duration at

the amplifier output is

τ′
p � τp

√
1 + a0(Tg/τG)2. (7.10)

If saturation occurs, the whole set of density matrix and Maxwell’s equations has
to be analyzed, as outlined in Chapters 3 and 4, to describe the behavior of the
pulse on passing through the amplifier.

The situation is somewhat different in inhomogeneously broadened amplifiers
if they are operated in the saturation regime. Roughly speaking, because field
components that see the highest gain saturate the corresponding transitions first,
those amplified independently by the wings of the gain curve can also reach the
saturation level if the amplifier is sufficiently long. Therefore a net gain that is
almost constant over a region exceeding the spectral FWHM of the small signal
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gain can be reached and thus correspondingly shorter pulses can be amplified.
This was demonstrated by Glownia et al. [11] and Szatmari et al. [12] who
succeeded in amplifying 150–200 fs pulses in XeCl.

7.2.3. Amplified Spontaneous Emission (ASE)

So far we have neglected one severe problem in (fs) pulse amplification,
namely amplified spontaneous emission (ASE), which mainly results from the
pump pulses being much longer than the fs pulses to be amplified. As a conse-
quence of the medium being inverted before (and after) the actual amplification
process, spontaneous emission traveling through the pumped volume can con-
tinuously be amplified and can therefore reach high energies. ASE reduces the
available gain and decreases the ratio of signal (amplified fs pulse) to background
(ASE), or even can cause lasing of the amplifier, preventing amplification of the
seed pulse. For these reasons the evolution of ASE and its suppression has to be
considered thoroughly in constructing fs pulse amplifiers. Here we shall illus-
trate the essential effects on basis of a simple model (illustrated in Fig. 7.5), and
compare the small signal gain (for the signal pulse) with and without ASE [1].
For simplicity, let us assume that the ASE starts at z = 0 and propagates toward
the exit of the amplifier while being amplified. The photon flux of the ASE is
thus given by:

FASE(z, t) = FASE(0) exp

[∫ z

0
σASE

(
N1(z′, t) − N0(z′, t)

)
dz′
]

(7.11)
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Figure 7.5 (a) Geometry of unidirectional ASE evolution. (b) Temporal behavior of pump pulse,
ASE, signal pulse and inversion. (Adapted from [1].)
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where σASE is the emission cross section which, with reference to Fig. 7.1,
describes the transition between levels |1〉 and |0〉. With strong pumping the
ASE will follow the pump intensity almost instantaneously, and after a cer-
tain time a stationary state is reached in which the population numbers do not
change. This means that additional pump photons are transferred exclusively to
ASE while leaving the population inversion unchanged. Under these conditions
the rate equations for the occupation numbers read:

dN0(z, t)

dt
= −σ02N0(z)Fp(t) + σ10N1(z)FASE(z, t) = 0 (7.12)

and

N0(z) + N1(z) = N̄ . (7.13)

Combination of Eq. (7.11) with Eqs. (7.12) and (7.13) yields an integral equation
for the gain coefficient a(z) for a signal pulse that has propagated a length z in
the amplifier:

a(z) =
∫ z

0
σ10N̄

Fp/FASE(0) − ea(z′)

Fp/FASE(0) + ea(z′) dz′. (7.14)

In the absence of ASE the gain coefficient is:

a = σ10N̄z. (7.15)

The actual gain in the presence of ASE is reduced to Ga = exp[a(z)] from the
larger small signal gain in the ideal condition (without ASE) of Gi = exp(σ10N̄z).
The ASE at z = 0 can be estimated from:

FASE(0) = ηF
��ωASE

4σASET10
(7.16)

where 
� = d2/4L2 is the solid angle spanning the exit area of the amplifier from
the entrance, T10 is the fluorescence life time, and ηF is the fluorescence quan-
tum yield. Figure 7.6 shows the result of a numerical evaluation of Eq. (7.14).
Note that a change in small signal gain at constant Fp can be achieved by chang-
ing either the amplifier length or the concentration N̄ . As can be seen at high
small signal gain the ASE drastically reduces the gain available to the signal
pulse. In this region a substantial part of the pump energy contributes to the
build up of ASE.
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Figure 7.6 Comparison of small signal gain with and without ASE for different values of the
normalized pump intensity Fp/FASE (0).

One solution to the problem of gain reduction because of ASE is the seg-
mentation of the amplifier in multiple stages. To understand the nature of this
improvement, let us compare a single- and a two-stage amplifier. With a nor-
malized pump power Fp/FASE(0) = 104 and Gi = 106, we expect a small signal
amplification of about 104 in the single-stage amplifier (Fig. 7.6). In contrast, we
obtain a gain of about 103 in one cell and thus 106 in the whole device when we
pump two cells by the same intensity, and each has half the length of the original
cell. Another advantage of multistage amplifiers is the possibility to place filters
between the individual stages and thus to reduce further the influence of ASE.
If saturable absorbers are used this may also lead to a favorable steepening of
the leading pulse edge. Moreover, in multistage arrangements the beam size and
pump power can be adjusted to control the saturation, taking into account the
increasing pulse energy. For a more quantitative discussion of the interplay of
ASE and signal pulse amplification as well as for the amplifier design, see, for
example, Penzkofer and Falkenstein [13] and Hnilo and Martinez [14].

7.3. NONLINEAR REFRACTIVE INDEX EFFECTS

7.3.1. General

As discussed in previous chapters, the propagation and amplification of an
intense pulse will induce changes of the index of refraction in the traversed
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medium. As a result, the optical pathlength through the amplifier varies along
the beam and pulse profile, leading possibly to SPM and self-lensing. The origins
of this pulse induced change in refractive index can be

(a) saturation in combination with off-resonant amplification (absorption) or
(b) nonresonant nonlinear refractive index effects in the host material.

The nonlinearity is somewhat more complex in semiconductor amplifiers,
because it is related to the dependence of the index of refraction on the car-
rier density (which is a function of current, light intensity, and wavelength). The
nonlinearities are nevertheless large and can contribute to significant spectral
broadening in semiconductor amplifiers [15].

While SPM leads to changes in the pulse spectrum, self-lensing modifies the
beam profile. Being caused by the same change in index, both effects occur simul-
taneously, unless the intensity of the input beam does not vary transversely to the
propagation direction. Such a “flat” beam profile can be obtained by expanding
the beam and filtering out the central part with an almost constant intensity.

It will often be desirable to exploit SPM in the amplifier chain for pulse
compression, while self-focusing should be avoided. There are a number of
successful attempts to achieve spectral broadening (to be exploited in subsequent
pulse compression) through SPM in a dye amplifier [16, 17] and semiconductor
amplifier [15]. We will elaborate on this technique toward the end of this chapter.
At the same time, self-focusing should be avoided, because it leads to instabilities
in the beam parameters such as filamentation or even to material damage.

We proceed with some estimates of the SPM that occurs in amplifiers. We
derived in Chapter 3 an expression [Eq. (3.68)] for the change in instantaneous
frequency with time because of gain depletion:

δω(t) = − (ω	 − ω10)T2

2

e−a − 1

e−a − 1 + eW (t)/Ws

I(t)

Ws
. (7.17)

The contribution from the nonlinear refractive index n̄2 of the host material is
given by:

δω(t) = −k	n̄2

∫ z

0

∂

∂t
I(z′, t)dz′ (7.18)

A comparison of the functional behavior of the frequency modulation because
of saturation [Eq. (7.17)] and because of the nonlinear index [Eq. (7.18)] is
shown in Figure 7.7. The nonresonant refractive index change always results in
up-chirp at the pulse center while the sign of the chirp because of gain saturation
depends on the sign of the detuning (ω	−ω10). The corresponding refractive index
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Figure 7.7 Comparison of the frequency modulation or chirp induced by saturation of an amplifier
above resonance (a) and by Kerr effect (b). The frequency modulation (a) peaks at a time such
that the integrated intensity equals the saturation energy density Ws. The Kerr effect induced phase
modulation is proportional to minus the time derivative of the intensity.

variation transverse to the propagation direction can lead to self-focusing as well
as to self-defocusing. Chirp because of saturation may play a role in dye as well
as in solid-state amplifiers if they are highly saturated. Figure 7.8 illustrates the
pulse shaping and chirping that arises for high values of the saturation parameter
(s ≥ 0. 0001 at the amplifier input and ea = 104).

Shape of amplified pulse
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Figure 7.8 Chirp because of amplification of a Gaussian input pulse for different saturation param-
eters s (s = 0. 0001; 0. 01; 1 in the order of increasing chirp). The shape of the amplified pulse
(solid lines) and incident pulse (dashed line) are also indicated. The other parameters are detuning
(ω	 − ω10) = 0. 5 and small signal gain ea = 104.
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In amplifier chains operating up to high saturation parameters, saturable
absorbers will generally be used to isolate stages of high gain, reducing the
effect of ASE. In addition the saturable absorber can counteract the broadening
effect of the amplifier because of:

• pulse shaping (steepening of the leading edge) by saturable absorption
and thus elimination of subsequent broadening by the saturable gain
(cf. Fig. 7.4); and

• pulse compression because of the combination of downchirping (if the pulse
has a longer wavelength than that of the peak of the absorption band) by the
absorber and propagation in a gain medium of normal (linear) dispersion.

7.3.2. Self-Focusing

The situation of pulse amplification is more complex if we consider self-
focusing effects which were introduced in Chapter 3. In this section, to obtain
some order of magnitude estimations, we will use the relations derived for cw
Gaussian beams. If the instantaneous peak power of the amplified pulse exceeds
the critical power for self-focusing defined in Eq. (3.171)

Pcr = (1. 22λ	)2π

32 n0 n̄2
, (7.19)

particular attention has to be given to the beam profile. Even weak ripples in the
transverse beam profile may get strongly amplified, and lead to breaking up of the
beam in filaments. The critical transverse dimension of these beam fluctuations,
wcr , below which a beam of intensity I (and power P >Pcr) becomes unstable
against transverse intensity irregularities can be estimated from:

Pcr = πw2
cr

2
I . (7.20)

If a smooth transverse beam profile is used, the amplifier may be operated above
the critical power, provided the optical path through the amplifier L does not
exceed the self-focusing length LSF :

LSF(t) = ρ0√
P/Pcr − 1

, (7.21)

where P = P(t) refers to the instantaneous power on axis of the Gaussian beam,
and the beam waist is at the sample input (cf. Eq. [3.189]).
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Values of n̄2 are listed for various transparent materials in Table 7.2.2 To a
typical value of n̄2 ≈ 5×10−16 cm2/W at 0.6 µm corresponds a critical power of
Pcr ≈ 700 kW, or only 70 nJ for a 100 fs pulse. Much higher energies are readily
obtained in fs amplifiers. To estimate the self-focusing length, let us consider a
saturated amplifier. The pulse energy W = Pτp is of the order of the saturation
energy density �ω	/2σ01 times the beam area S ≈ 0. 5πw2

0. For a dye amplifier
operating around 600 nm (σ01 ≈ 10−16 cm2), the saturation energy density is of
the order of 3 mJ/cm2; hence the peak power for a 100 fs pulse in a beam of
1 cm2 cross section is 3 × 1010 W/cm2. Inserting this peak power in Eq. (7.21)
leads to a self-focusing length of about 2 m.

Self-focusing is therefore generally not a problem in dye amplifiers, because
the gain medium saturates before LSF is reduced to dimensions of the order of the
amplifier. Solid-state media have a much lower cross section σ01, hence a much
higher saturation energy density. For instance, if a Ti:sapphire laser amplifier
(σ01 = 3 × 10−19 cm2, or a saturation energy density of 0.66 J/cm2) were driven
to full saturation as in the previous example, the peak power would be 0. 66 ×
1013 W/cm2. At λ = 1 µm, the corresponding self-focusing length is only 4 cm.

The smaller the interaction cross section the shorter is LSF and thus the more
critical is self-focusing in a saturated amplifier. This problem has been a major
obstacle in the construction of high power amplifier sources. The solution is to
stretch the pulse prior to amplification, to reduce its peak power, and recompress
it thereafter. This solution, known as chirped pulse amplification [5], is outlined
in Section 7.4.

7.3.3. Thermal Noise

As the efficiency of an amplifier medium never approaches 100%, part of
the pump energy is wasted in heat. In amplifiers as well as in lasers, thermally
induced changes in index of refraction will result from a non-uniform heating.
In most materials, all nonlinear lensing mechanisms are dwarfed by the thermal
effects. A “z-scan” experiment can be performed to appreciate the size of this
nonlinearity, for example [19].

Average power levels of a few mW are sufficient to detect a thermal nonlinear
index. The problem of thermal lensing is much more severe in amplifiers than in
lasers, because of the larger pump energies and larger volumes involved. For
instance, the heat dissipated by the pump can easily be carried away by the
transverse flow in a typical dye laser jet, with a spot size of the order of µm.
The larger cross section of the amplifier calls generally for the use of cells.

2The values are often expressed in Gaussian units (such as for instance the values for air [9]), or
have to be derived from values of the third order susceptibility. A detailed discussion of the conversion
factors can be found in [18].
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Non-uniform heating results in convection, turbulence, and a random noise in
the beam profile and amplification. In the case of dye laser amplifiers, a simple
but effective solution consists of using aqueous dye solutions cooled near 4◦C,
because (dn/dT )|4◦C ≈ 0 at that temperature (or 11. 7◦C for heavy water). Pulse-
to-pulse fluctuations in the output of a Cu vapor laser pumped amplifier have
been considerably reduced by this technique [20].

In the case of solid-state amplifiers, a careful design of a cylindrically sym-
metric pump (and cooling) geometry is required to prevent thermal lensing from
causing beam distortion.

7.3.4. Combined Pulse Amplification and Chirping

The preceding section has established that self focusing sets a limit to the
maximum power that can be extracted from an amplifier chain. Within that limit,
SPM and subsequent compression can be combined with pulse amplification
[15, 17]. In the implementation of the process by Heist et al. [17] the pulse is
self-phase modulated through the nonlinear index of the solvent in the last stage
of the amplifier, for the purpose of subsequent pulse compression (Figure 7.9). If
the gain medium is not used at resonance, saturation can result in an even larger
phase modulation, which can be calculated with Eq. (7.17).

With the constraints set above for the absence of self-focusing, the pulse
propagation equation (1.194) is basically one-dimensional:

∂

∂z
Ẽ = 1

2
ik′′

	

∂2

∂t2
Ẽ + B1 + B2; (7.22)

Gain
SPM Compression

Chirp

Figure 7.9 Block diagram showing the combination of pulse amplification, SPM, and compression.
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where

B1 = −ω2
	µ0

2k	
Pgain(t, z) (7.23)

and

B2 = −ik	n2|Ẽ |2Ẽ (7.24)

are nonlinear source terms (nonlinear polarization) responsible for the time-
dependent gain and the nonlinear refractive index, respectively. The polarization
for the time-dependent gain can be determined with Eq. (3.39), or with Eq. (3.43)
if the rate equation approximation can be applied. We outlined in Chapter 1 the
basic procedure to study the propagation of a given input pulse through such an
amplifier. Saturated amplification and GVD will affect mainly the pulse temporal
amplitude, while SPM will affect the pulse spectrum.

Figure 7.10(a) shows an example of pulse shape evolution, in amplitude and
phase, through such an amplifier. The broadening and the development of a time-
dependent frequency can be clearly seen. As for the case of optical fibers, the
interplay of SPM and GVD leads to an almost linear chirp at the pulse center. The
temporal broadening increases with the input pulse energy as a result of stronger
saturation and larger SPM leading to a larger impact of GVD [Fig. 7.10(b)].
It is also evident that the chirped and amplified pulses can be compressed in a
quadratic compressor following the amplifier. Detailed numerical and experimen-
tal studies show that an overall pulse compression by a factor of two is feasible
for typical parameters of dye amplifiers [17].

7.4. CHIRPED PULSE AMPLIFICATION (CPA)

As mentioned earlier, the smaller the gain cross section σ10, the larger the
saturation energy density �ω	

/
2σ10, which is a measure of the largest energy

density that can be extracted from an amplifier. Because the maximum peak
power is limited by self-focusing effects (the amplifier length has to be smaller
than the self-focusing length), one solution is to limit the power by stretching
the pulse in time. Dispersion lines with either positive or negative GVD can be
made with combinations of gratings and lenses (cf. Chapter 2). This concept of
chirped pulse amplification (CPA) was introduced by Strickland and Mourou [21]
in 1985. Since then it has revolutionized ultrafast science and technology. CPA
has facilitated the broad introduction of tabletop fs oscillator-amplifier systems,
the generation of ultrafast pulses at the PW level, and continues to extend the
frontiers of ultrahigh field science.

The idea is to stretch (and chirp) a fs pulse from an oscillator (up to 10,000
times) with a linear dispersion line, increase the energy by linear amplification,
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Figure 7.10 (a) Evolution of pulse shape and chirp in an amplifier with GVD and SPM, (b) broad-
ening of pulses in an amplifier with GVD and SPM (left) and pulse duration normalized to that of
the input pulse after an optimum quadratic compressor (right). The initial pulse shape is Gaussian,
applied at resonance with the gain medium. Parameters: small signal gain 2 × 104, τp0 = 100 fs,

k′′
	 = 6×10−26 s2m−1, n2 = 4×10−23 m2V−2, σ10 = 10−16 cm2. (Adapted from Heist et al. [17].)

and thereafter recompress the pulse to the original pulse duration and shape with
the conjugate dispersion line (dispersion line with opposite GVD).

A block diagram illustrating the CPA concept is shown in Figure. 7.11. Stretch-
ing of a pulse up to 10,000 times can be achieved with a combination of gratings
and a telescope, as discussed in Chapter 2. Such a combination of linear elements
does not modify the original pulse spectrum. For the amplification to be truly
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Stretcher Amplifier Compressor

Figure 7.11 Block diagram of chirped pulse amplification.

linear, two essential conditions have to be met by the amplifier:

• the amplifier bandwidth exceeds that of the pulse to be amplified; and
• the amplifier is not saturated.

It is only if these two conditions are met that the original pulse duration can
be restored by the conjugated dispersion line. It is not unusual to operate an
amplifier in the wings of its gain profile, where the first condition is best met.
For instance, Ti:sapphire, with its peak amplification factor close to 800 nm,
is used as an amplifier for 1.06 µm, because of its flat gain profile in that
wavelength range. A pulse energy of 1 mJ has been obtained in such a Ti:sapphire
amplifier chain, corresponding to a gain of 107. Further linear amplification
with Ti:sapphire requires rods of too large a diameter to be economical. With
Nd:glass as a gain medium pulse energies as large as 20 J were obtained [5].
Because of the bandwidth limitation in the last 104 factor of amplification,
the recompressed pulse has a duration of 400 fs, a fivefold stretch from the
original 80 fs.

7.5. AMPLIFIER DESIGN

7.5.1. Gain Media and Pump Pulses

Parameters of gain media crucial for the amplification of fs pulses are:

• The interaction cross section. For a given amplifier volume (inverted vol-
ume) this parameter determines the small signal gain and the maximum
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possible energy per unit area that can be extracted from the system. The
latter is limited by gain saturation.

• The energy storage time of the active medium. If there is no ASE, this time
is determined by the lifetime of the upper laser level T10 and indicates (a)
how long gain is available after pump pulse excitation for τpump < (<)Tg or
(b) how fast a stationary gain is reached if τpump > (>)Tg. The corresponding
response time can be significantly shorter if ASE occurs, it is then roughly
given by:

TASE = �ωASE

IASE(L)σASE
. (7.25)

When short pump pulses are used, the latter quantity provides a measure
of the maximum jitter allowable between pump and signal pulse without
perturbing the reproducibility of amplification.

• The spectral width of the gain profile 
ωg = (ωg/λg)
λg and the nature
of the line broadening. The minimum pulse duration (or maximum pulse
bandwidth) that can be maintained by the amplification process is of the
order of 2π/
ωg (or 
ωg).

These parameters were given in Table 7.1 for typical materials used as gain
media in fs amplifiers. The wavelength and bandwidth of the seed pulse dic-
tates the choice of the gain medium. Presently, it is only in the near infrared
that a selection can be made among various types of gain media, dyes, and
solid-state materials for fs pulse amplification. At pulse durations of the order
of 10−14 s gain narrowing effects of single dyes dominate [3] leading to pulse
broadening. These difficulties can be overcome by using a mixture of several
dyes with different transition frequencies providing optimum amplification for
a broad input spectrum [22]. The achievable energies with dye amplifiers are
on the order of 1 mJ. This value is determined by the saturation energy den-
sity and the dye volume that can be uniformly pumped with available pump
lasers.

Shorter pulses and higher energies can, in principle, be extracted from cer-
tain solid-state amplifiers. With the additional advantage of compactness, such
systems are attractive candidates for producing pulses in the TW and PW range.
These systems are typically limited to the red and near infrared spectral range.

At certain wavelengths in the UV (Table 7.1) excimer gases can be used for
fs pulse amplification (see for example, Glownia et al. [11], Szatmari et al. [12],
Watanabe et al. [23], Taylor et al. [24], Heist et al. [25], and Mossavi
et al. [26]). The interaction cross-section being similar to that of dyes, the satura-
tion energy density of excimer gain media is also of the order of millijoules/cm2.
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Table 7.3

Typical parameters of pump lasers for fs pulse amplifiers.

Pulse energy Duration Repetition rate λ

Laser (mJ) (ns) (Hz) (nm)

Ar+(cavity dumped) 10−3 15 3 × 106 514
Nd:YAG

Q-switched 300 5 10 532
Regenerative amplified 2 0. 07 103 532
Diode pumped 0. 05 10 800 532

Nd:YLF (Q-switched) 10 400 104 523. 5
Copper-vapor 2 15 5000 510, 578
Excimer 100 20 10 308

Much larger spulse energies however—ranging from millijoules to the Joule
range—can be extracted, because the active volume that can be pumped is much
larger than in dye amplifiers. As compared to solid-state or liquid materials,
another advantage of excimer gases is the smaller susceptibilities associated with
undesired nonlinear effects (such as self-focusing). Unfortunately, the relatively
narrow gain bandwidth of excimers limits the shortest pulse duration that can be
amplified and the tunability.

Essential pulse parameters, such as the achievable energy range and repeti-
tion rate, that can be reached are determined by the pump laser of the amplifier.
Table 7.3 summarizes data on lasers that have successfully been used for pump-
ing fs amplifiers. Usually these pump lasers have to be synchronized to the
high repetition rate oscillators for reproducible amplification. On a nanosecond
time scale this synchronization can be achieved electronically. With picosecond
pump pulses, satisfactory synchronism requires generally that the pump pulses
for the femtosecond oscillator and amplifier be derived from a single master
oscillator.

7.5.2. Amplifier Configurations

Usually the amplifier is expected to satisfy certain requirements for the output
radiation, which can be achieved by a suitable design and choice of the compo-
nents. Table 7.4 shows some examples. Different applications of amplified pulses
have different requirements, and subsequently various amplifier configurations
have been developed. In particular, trade-off between pulse energy and repeti-
tion rate will call for a particular choice of amplifier design and pump source.
A feature common to nearly all femtosecond amplifiers is that they are terminated
by a linear optical element to recompress the pulses.
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Table 7.4

Design requirements of a fs pulse amplifier.

Requirements Realization

(a) Clean beam profile Homogeneously inverted gain region, no self-focusing, proper
(linear) optical design

(b) High peak power Same as above, CPA
(c) High energy amplification High pump power, amplification reaches saturation level
(d) Low background ASE suppression through spatial and/or spectral filtering, filtering

through saturable absorption
(e) Certain repetition rate Repetition rate of pump, suitable gain medium
(f) No temporal broadening GVD adjustment
(g) No spectral narrowing Gain medium with broad band-width

Multistage Amplifiers

Low repetition rate systems (<500 Hz) used for high gain amplification consist
mostly of several stages traversed in sequence by the signal pulse. A typical con-
figuration is sketched in Figure 7.12. This concept, introduced by Fork et al. [27]
for the amplification of fs pulses in a dye amplifier, has the following advantages.
(a) Each stage can be adjusted separately for maximum gain, considering the par-
ticular signal pulse energy at that stage. The splitting of the pump energy among
the various stages has to be optimized, as well as the pump focalization to match
the volume to be pumped. Typically, only a few percent of the pump pulse is
tightly focused into the first stage, resulting in a gain of several thousands. More
than 50% of the pump energy is reserved for the last stage (to pump a much
larger volume) resulting in a gain factor of about 10. (b) The unavoidable ASE
can be suppressed with filters inserted between successive stages. Ideally, these
filters are linear attenuators for the ASE, but are saturated by the signal pulse.

Pump

Filter

~5% ~25% ~70%

Filter

Stage 1 Stage 2 Stage 3

Figure 7.12 Sketch of a multistage amplifier.
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Of course, the filter remains “open” after passage of the signal pulse for a time
interval given by the energy relaxation time, and subsequently ASE within this
temporal range cannot be suppressed. Edge filters, such as semiconductors and
semiconductor doped glasses, can be used for ASE reduction whenever the ASE
and the signal pulse are spectrally separated. Finally, because the beam charac-
teristics of ASE and signal pulse are quite different, a spatial filter (for example
a pinhole in the focal plane between two lenses) can enhance the signal-to-ASE
ratio. Typical pump lasers for multistage dye amplifiers are Q-switched Nd:YAG
lasers [27] and excimer lasers [28,29] with pulse durations of about 5 ns and 20
ns, respectively. Typically the repetition rates are below 100 Hz, and pulse ener-
gies of a few hundred milliJoules have been reported. In the last decade many
modifications of the setup shown in Figure 7.12 have been made. For example,
multiple passages through one and the same stage to extract more energy or/and
to use smaller pump lasers were implemented. To increase the homogeneity of the
gain region longitudinal pumping is frequently used in the last amplifier stage(s).

An example for a fs multistage amplifier pumped by a XeCl excimer laser is
shown in Figure 7.13. The excimer laser, consisting of two separate discharge
channels, serves to pump the dye cells and to amplify the frequency doubled fs
output at 308 nm. Another option is to generate a fs white light continuum and
to amplify a certain spectral component. With the UV pump pulses and different
dyes a wavelength range from the NIR to the UV can be covered.

7.5.3. Single-Stage, Multipass Amplifiers

For larger repetition rates one has to use pump lasers working at higher fre-
quencies. Because the mean output power of tabletop pump lasers cannot be
increased arbitrarily, higher repetition rates are achieved at the expense of energy
per pulse. To obtain still reasonable gain factors one has to increase the efficiency
of converting pump energy into signal energy as compared to the configurations
described previously. In this respect the basic disadvantage of single-pass ampli-
fiers is that only a fraction of the energy pumped into the gain media is used for
the actual amplification. The main reason is that the pump process is often much
longer than the recovery time of the gain medium; hence, a considerable part of
the pump energy is converted into ASE. The overall efficiency can be enhanced
by sending the pulse to be amplified several times through the amplifier. The
time interval between successive passages should be of the order of the recovery
time of the gain medium Tg. The number of passages should not exceed the ratio
of pump pulse duration to Tg.

In a first attempt to amplify femtosecond pulses at high repetition rates,
Downer et al. [30] used a cavity-dumped Ar+-laser to pump a dye amplifier.
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Figure 7.13 A fs dye amplifier pumped by an excimer laser. The amplification stages are decoupled
by saturable absorbers (semiconductor doped glasses) or k-space filters. The prism sequence serves
to compress the phase modulated, amplified pulses. To extend the wavelength range of available fs
pulses, the frequency doubled output can be amplified in the second discharge channel of the excimer
laser. Another option is to amplify the spectrally filtered white light continuum. (Adapted from Heist
et al. [25].)

Despite the high repetition rate (3 MHz), this approach did not find broad appli-
cation because of the relatively small net gain (∼100) resulting from the low
energy of the pump pulses. The use of copper-vapor lasers, working at repetition
rates from 5 to 15 kHz, turned out to be a more practicable concept to pump dye
amplifiers [31]. Knox et al. [32] used such a laser to pump a single dye jet and
to amplify 100 fs pulses to microjoule energies. The dye jet was passed 6 times
to match the pump pulse duration (∼25 ns) where the reported small signal
gain per pass was 5 to 8. The disadvantage of such a configuration, as sketched
in Figure 7.14, is its complexity and large number of optical elements. Two
saturable absorbers were implemented to suppress ASE. Higher output powers
could be reached using a dye cell for the gain medium [33]. Other concepts dis-
tinguish themselves by a minimum number of optical components and simplicity
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Figure 7.14 Sketch of a single-stage, multipass amplifier (after Knox et al. [32]).

of adjustment [20,34]. The gain medium is inserted in a resonator-like structure.
A convenient structure for uniform transverse illumination of a cylindrical vol-
ume is the “Bethune cell” [35]. The volume to be pumped is inserted in a total
reflection prism, at a location such that adjacent sections of the pump beam are
reflected to all four quadrants of the cylinder (Figure 7.15). In the arrangement
of Lai et al. [20], the beam to be amplified is sent 11 times through the gain
cell. A series of apertures on a circular pattern (Fig. 7.15) are a guide for the
alignment and prevent oscillation in the stable resonator configuration. The latter
being close to concentric, the first 11 paths are focused to a small beam waist in
the gain medium. This amplifier is intentionally operating at saturation for the

Mirror Mirror

a b c

Bethune cell

Figure 7.15 Schematic diagram of a multipass (copper-vapor laser pumped) amplifier and view on
the beam geometry at the focusing mirrors and the Bethune cell. (Adapted from Lai et al. [20].)



Amplifier Design 421

last few passes, to reduce its sensitivity to fluctuations of the input. The beam is
sent back for 2 more passes through the center of the 2 mm diameter amplifying
cell, providing unsaturated amplification to 15 µJ. Copper-vapor laser pumped
amplifiers have also been successfully applied to generate powerful femtosecond
pulses in the near infrared [36]. Multipass amplifiers are also common for solid-
state fs systems, for example based on Ti:sapphire, if moderate output energies
(typically not exceeding several mJ) are desired.

7.5.4. Regenerative Amplifiers

As previously discussed, a broad gain bandwidth and high saturation energy
density make some solid state materials (cf. Table 7.1) prime candidates for
the generation of powerful femtosecond light pulses. A large energy storage
time (10−6 s) is generally associated with the small gain cross section of these
amplifying media. Regenerative amplification is the most efficient method to
transfer efficiently energy to a fs pulse from an amplifier with a long storage
time. The concept of regenerative amplification is illustrated in Figure 7.16.

The gain medium is placed in a resonator built by the high-reflecting mirrors
M1 and M2. After the seed pulse is coupled into the resonator through a polarizer
P1, the Pockels cell PC1 is switched to rotate the polarization of the seed pulse and
Q-switches the resonator. The pulse circulates in the resonator and is continuously
amplified. After a certain number of round-trips (determined by the energy storage
time and/or the time needed to reach saturation) a quarter-wave voltage is applied
to the cavity-dumping Pockels cell PC2 and the amplified pulse is coupled out
by reflection from the second polarizer P2.

Regenerative amplifiers were originally developed to amplify the output of cw
mode-locked solid-state (e.g., Nd:YAG, Nd:YLF) lasers at repetition rates up to
2 kHz and energies up to the milliJoule level (e.g., [37–39]), to obtain ps pulses
at microjoule energies. These pulses served as pump for dye amplifiers [40].
Because the pump pulse duration is on the order of 100 ps the amplification

PC1 PC2Gain

P1 P2

M1 M2

Figure 7.16 Principle of regenerative amplification.
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process can be much more efficient than with ns pump lasers. Synchronization
between pump and fs signal is achieved by pumping the dye laser synchronously
with the same master oscillator used to provide the seed pulses for the regener-
ative amplifier. More recently regenerative solid-state amplifiers have been used
to amplify fs light pulses directly in alexandrite and Ti:sapphire utilizing chirped
pulse amplification [41, 42]. Using a Q-switched Nd:YLF laser as pump for the
Ti:sapphire crystal in the regenerative amplifier a repetition rate as high as 7 kHz
could be reached [43].

A multiterawatt, 30 fs, Ti:sapphire laser system based on a combination of a
regenerative amplifier and a multipass amplifier, operating at 10 Hz, was reported
by Barty et al. [44]. A sketch of the system is shown in Figure 7.17. The 20-fs
(5 nJ, 800 nm) pulses from a mode-locked Ti:sapphire laser are stretched to
300 ps. Amplification in a 14-pass regenerative amplifier (50 mJ pump pulse at
532 nm) yielded 9 mJ output pulses. A 4-pass amplifier (235 mJ pump pulse at
532 nm) increases the pulse energy to 125 mJ. Finally, after recompression, 30-fs
pulses were obtained. To reduce the effect of gain narrowing the spectrum of the
pulse prior to amplification was flattened. This was accomplished by spectral
filtering (element M in Fig. 7.17, see also Chapter 8).

7.5.5. Traveling Wave Amplification

Amplified stimulated emission limits strongly the overall efficiency of the
amplification process, in particular at shorter wavelengths where the ratio of
spontaneous emission to stimulated emission is larger. One of the causes of a large
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Figure 7.17 Multiterawatt fs laser system. (Adapted from Barty et al. [44].)
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ASE-to-signal ratio is that the duration of the pump—and hence that of the gain—
generally exceeds that of the pulse to be amplified by several orders of magnitude.
Considerably higher conversion from pump energy into signal pulse energy is
therefore expected when using femtosecond pump pulses. It may seem ludicrous
to use a powerful fs light pulse, that is, a fs pulse already amplified, to amplify
another fs pulse. However, such schemes offer the prospect of efficient frequency
conversion with continuous tunability. A first implementation is the traveling
wave amplifier (TWA) introduced by Polland et al. [45] and Klebniczki et al. [46]
in a transverse pumping arrangement with ps light pulses. The TWA tech-
nique was successfully extended to the fs time scale by Hebling and Kuhl [47].
A theoretical analysis of TWA can be found in Klebniczki [46,48], Chernev and
Petrov [48], and Werner et al. [49]. An example of implementation of TWA is
sketched in Figure 7.18. The active medium can be a dye cell. The tilt of the pulse
front of the pump with respect to the propagation direction of the signal pulse
is chosen so as to invert the gain medium in synchronism with the propagating
signal light. This TWA leaves practically no time for ASE in front of the signal
pulse to develop.

It would seem that a tunable fs source—such as that provided by a spectrally
filtered white light continuum—is required as seed pulse to produce fs light pulses
at new frequencies by TWA. Such a sophisticated seed is fortunately not required,
because the output pulse duration of the TWA amplifier does not depend on the
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Figure 7.18 Transverse traveling wave amplification. A fs pulse, a spectrally filtered fs continuum
or suitable (quasi-) cw radiation (for example, ASE) can serve as seed light.
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input pulse duration. Hebling and Kuhl [50], for example, simply selected a cer-
tain spectral component from the ASE excited in the active medium as amplifier
input. With three different dyes and pump pulses at 620 nm a spectral range
between 660 nm and 785 nm could continuously be covered. In the absence of
external seeding, the ASE excited in the first part of the amplifier serves as seed
signal. The pulse evolution is similar to that in a synchronously pumped laser.
The propagation from one TWA amplifier slice to the next compares to succes-
sive passages through the gain jet in a synchronously pumped laser. In view of
the short pump pulse, the output will also be a fs light pulse with a mean wave-
length given roughly by the maximum of the net gain profile of the amplifier. In
a synchronously pumped laser the pulse evolution starts from noise (spontaneous
emission) and a certain number of round trips are needed for the pulse to form
(cf. Chapter 5). In the TWA the number of round-trips translates into a mini-
mum number of “slices,” which corresponds to a minimum amplification length.
This analogy leads to conclude that the output pulse duration is shorter than the
pump pulse and is a sensitive function of the tilt angle (the latter determines the
timing mismatch of signal and pump pulse at any given location in the amplifier).

The general approach introduced in Chapter 1 can be applied to a quantita-
tive study of TWA. The complex electric field amplitude of the signal pulse at
position z + 
z, Ẽs(t, z + 
z) is related to the amplitude at z through:

Ẽs(t, z + 
z) = Ẽs(t, z) + δgẼs(t, z) + δnlẼs(t, z) + δk′′ Ẽs(t, z) (7.26)

where 
z is the slice width, and δgẼs, δnlẼs, and δk′′ Ẽs describe the amplitude
change because of gain, nonlinear refractive index effects, and GVD, respectively.
These changes can easily be calculated by means of Eqs. (7.8), (5.29), (3.146),
and (1.198). Neglecting GVD, for the photon flux density and phase of the signal
pulse we find:

Fs(t, z + 
z) = Fs(t, z) + |L̃(ω10 − ωs)|2σ(0)
10 (N1 − N0)Fs(t, z)
z (7.27)

φs(t, z + 
z) = φs(t, z) − 1

2
Im
[
L̃(ω10 − ωs)

]
σ

(0)
10 (N1 − N0)
z (7.28)

− i

(
2ωm

c2n0ε0

)
n2[Fs(t, z) + Fp(t, z)]
z (7.29)

where, for the sake of simplicity, we have introduced a mean frequency of signal
and pump pulse, ωm, and the linear refractive index n0 at this frequency. Fp

denotes the photon flux density of the pump pulse. As indicated in these equations,
the phase modulation originates from (near) resonant (saturation) and nonresonant
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(host medium) contributions to the changes in index of refraction. The inversion
density 
N10(t, z) = N1 − N0 is obtained by solving a system of rate equations
for the population numbers in each slice. Assuming a three-level system as shown
in Fig. 7.1:

d

dt
N0(t, z) = −σ02N0Fp(t, z) + σ

(0)
10 |L̃(ω10 − ωs)|2N1Fs(t, z) (7.30)

d

dt
N1(t, z) = −σ

(0)
10 |L̃(ω10 − ωs)|2N1Fs(t, z) + N2

T21
(7.31)

N̄ = N0 + N1 + N2. (7.32)

Because of the short pump pulse duration, we cannot neglect the population in
level 2 and have to consider a nonzero relaxation time T21. Starting either with
the photon flux of a small seed pulse or with cw light at z = 0 the succes-
sive application of Eq. (7.26) yields the signal pulse for an amplifier length z.
Figure 7.19 shows corresponding results for the evolution of pulse duration and
pulse energy as a function of the propagation length [49]. Region I is character-
ized by a decrease of signal pulse duration and an almost exponential increase
in energy. This is because of the fast rise of the gain (short pump pulse duration)
resulting in a rapid buildup of a steep leading edge of the signal pulse, and the
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propagation length for typical parameters of a traveling wave dye amplifier. The dashed line describes
the behavior of the pulse duration when GVD plays a role. (Adapted from Werner et al. [49].)
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fact that the gain is essentially unsaturated until the pumping process stops. The
latter is responsible for the shaping of the trailing edge of the signal pulse. With
the onset of saturation (Region II) the pulse duration increases, a tendency which
becomes more pronounced with significant GVD.

7.6. OPTICAL PARAMETRIC CHIRPED PULSE
AMPLIFICATION (OPCPA)

The idea of optical parametric chirped pulse amplification (OPCPA) is to
replace the laser gain media of a CPA system [21], (cf. Section 7.4), by a non-
linear crystal. Amplification by stimulated emission is substituted by parametric
amplification of the signal pulse in the presence of a pump pulse. The appara-
tus is sketched in Figure 7.20. Since the introduction of the concept of chirped
parametric amplification by Dubietis et al. [51] in 1992 and an analysis of the
prospects for high-power amplification by Ross et al. [52] several amplifier sys-
tems have been developed producing sub-ps pulses in the TW range. A summary
of various concepts and recent progress can be found in Ross et al. [52] and
Butkus et al. [53].

The OPCPA concept relies on the fact that a chirped pulse can be parametri-
cally amplified without significant distortion of the phase if the OPA bandwidth
is large enough. Note that the bandwidth is determined by material parame-
ters, the pump and signal wavelength, and the geometry favoring noncollinear

Signal

Stretcher Compressor
Nonlinear

crystal

P
um

p

Figure 7.20 Schematic diagram of an OPCPA device. The pulse to be amplified is stretched and
chirped and combined with a pump pulse in a nonlinear optical crystal. The parametrically amplified
chirped output is subsequently compressed.
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schemes (see for example DiTrapani et al. [54] and Wilhelm et al. [55]). Using
a noncollinear geometry extremely large amplification bandwidths have been
achieved, resulting in pulses as short as 4 fs after compression of the amplified
spectrum (continuum) [56].

Because optical parametric amplification is a nonresonant nonlinear optical
process the material does not absorb energy, and the heat load is considerably
smaller than in ordinary laser gain media. High gain factors can be achieved
at relatively small interaction lengths (single pass) which reduces the effect
of dispersion and nonlinear phase modulation on the pulse and beam profile.
Provided the gain bandwidth is large enough, gain narrowing, which limits
the bandwidth of pulses from ordinary amplifiers, is absent. Another positive
aspect of OPCPA is the greatly reduced background radiation, that usually results
from ASE.

As discussed in Chapter 3, the parametric gain for the signal intensity is
proportional to the pump intensity

Is ∝ Ip, (7.33)

which is a manifestation of the instantaneous character of this nonlinear optical
process. Therefore, for efficient energy conversion, the OPCPA requires a pump
pulse whose duration matches that of the signal pulse. In addition, the fact that
gain is present only during the pump pulse puts stringent requirements on the
relative timing of signal and pump pulse. To achieve a large and homogeneous
(over the beam profile) conversion bandwidth certain requirements on the beam
profile and focusing of the pump exist.

The first OPCPA systems produced promising results. Pulse powers in the
TW range have been reported [57, 58] and OPCPA and CPA were combined in
a hybrid system to improve efficiency [59]. It has been experimentally verified
that the (CEO) defined in Chapter 5, Section 5.1.3, is preserved throughout
the stretching, amplification, and subsequent compression process [60]. To
avoid phase-disturbing influences of diffraction gratings, the pump pulse was
a regeneratively amplified picosecond pulse, and the stretching of the seed pulse
(12 fs, 1 nJ) was achieved via an acousto-optic programmable dispersive filter or
DAZZLER [61]. The output pulse was locked in CEO, with a duration of 17 fs,
85 µJ energy at a repetition rate of 1 kHz [60].

7.7. PROBLEMS

1. An important parameter of a gain medium is the energy storage time.
Consider a one-stage amplifier of 5 mm length transversely pumped by a
pulse of 20 ns duration and 5 mJ energy. A (fs) pulse with an energy of
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100 pJ is to be amplified. The gain medium consists of a three-level system
(cf. Fig. 7.1). The relaxation time from level 2 to level 1 is assumed to be
extremely fast. Calculate and compare the energy amplification achievable
in a single-pass configuration for a gain medium with a lifetime of the
upper gain level, T10, of (a) 100 ps, (b) 1 µs. For simplification you may
assume a rectangular temporal and spatial profile for both pump and pulse
to be amplified. Perform your calculation for a beam size of 50 × 50 µm2.
Assume homogeneous gain and equal cross sections for absorption and
amplification, σ ≈ 10−17 cm2.

2. Explain the different effect of gain saturation on the shaping of the wings
of a Gaussian and a sech pulse (cf. Fig. 7.4).

3. By means of Fig. 7.6 design a three-stage dye amplifier to amplify the
output of a fs dye laser (100 fs, 100 pJ) to > 0. 5 mJ. The second harmonic
of a Nd:Yag (50 mJ, 10 ns) is to be used as pump. For the absorption and
emission cross section use a value of 10−16 cm2. Specify the split of the
pump energy among the three stages and make an estimate for the focusing
conditions.

4. Let us consider a 2 cm long cuvette filled with a solution of Rhodamine
6g. The dye solution is pumped longitudinally by a Nd:Yag laser beam
of uniform intensity I = 10 MW/cm2. The dye has an absorption coef-
ficient of 5 cm−1 at the pump laser wavelength. The absorption cross
section of the solution is 5 10−16 cm2. Approximate the dye solution by
a three-level system, with the upper level being common to the pump
and lasing transition. The pump transition is from the ground state to the
upper level. The lasing transition (cross section σg = 5 × 10−17 cm2) is
from the upper level (lifetime of 2.5 ns) to an intermediate level which
relaxes to the ground state with a characteristic energy relaxation time
of 1 ps.

(a) Find the gain distribution αg(z) along the propagation direction (z) of
the pump beam.

(b) A 50 fs pulse, with an energy density of 100 µJ/cm2 is sent through
the medium along the same z direction. Calculate the energy of the
pulse exiting the gain cell. Solve the problem for a 100 µJ/cm2

pulse sent in the direction opposite to the pump. How do the results
differ?

(c) Assume next that the pump beam diameter decreases linearly from
1 cm at the cell entrance down to 1 mm at z = 2 cm. The pump power
at the cell entrance is 1 MW. The beam to be amplified has the same
geometry, the initial pulse energy being 5 µJ. Find the amplified pulse
energy for co- and counter-propagating pump pulse and pulse to be
amplified.
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8
Pulse Shaping

On a fs time scale, many interactions depend on the particular temporal
shape of the waveform being applied. For many applications it is desirable and
necessary to modify the pulses from the source in a well-defined manner. A com-
pression of the intensity profile leads to shorter pulses and higher peak powers.
Closely spaced femtosecond pulses with controllable phase relations are needed
for coherent multiphoton excitation and the selective excitation of, for example,
certain molecular vibrations as detailed in Chapter 4.

The distortion of the complex pulse envelope caused by most linear and
nonlinear optical processes was discussed in previous chapters. In this chapter
we shall concentrate on techniques applied to compress or shape pulses in ampli-
tude and phase. A comprehensive review on pulse compression can also be
found in Rudolph and Wilhelmi [1]. While shaping of ns and ps pulses can
be achieved by electronically driven pulse shapers, such as electro-optic modula-
tors [2], all-optical techniques have to be applied for fs pulse shaping. Dispersion
leads to pulse shortening or lengthening depending on the input chirp. Saturable
absorption tends to steepen the leading edge of the pulse.

8.1. PULSE COMPRESSION

8.1.1. General

Optical pulse compression is the optical analogue of a well-established
technique for the shaping of radar pulses [3]. Its implementation into optics
was in the late 1960s for compression of ps pulses [4–7].
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Figure 8.1 Sketch of optical pulse compression through SPM and chirp compensation.

Optical pulse compression is generally achieved by the two-step process
sketched in Figure 8.1. Let us assume a bandwidth-limited input pulse. In the first
step a phase modulation ϕ(t) is impressed on the pulse, which for example can
be obtained by SPM in a nonlinear refractive index material. The pulse is spec-
trally broadened, or, in the time domain, a chirped pulse. The temporal intensity
profile I(t) (or |Ẽ(t)|2) is generally unchanged by this first step, which modifies
only the phase function of the pulse. As we saw in Chapter 3, for an instantaneous
purely dispersive nonlinearity (n2 real, no two photon absorption), SPM in an n2
medium does not change the pulse shape. Only the spectral phase is modified by
the nonlinear interaction.

The second step can be seen as the Fourier transform analog of the first one:
The phase function φ(�) of the pulse spectral field Ẽ(�) is modified, with-
out affecting the spectral intensity (∝ |Ẽ(�)|2). The spectrally broadened,
nonbandwidth-limited pulse is transformed into a bandwidth-limited pulse. This
process is sometimes referred to as “chirp compensation.” Because the spectrum
does not change in the second step, the new pulse has to be shorter than the input
pulse. The compression factor Kc is given roughly by the ratio of the spectral
width before (
ωin) and after (
ωout) the nonlinear element (step 1):

Kc ∼ 
ωout


ωin
. (8.1)

To analyze the second step, the amplitude at the output of the phase modulator
is written in the frequency domain:

Ẽ(�) = |Ẽ(�)|ei�(�). (8.2)

As discussed in Chapter 1, the action of a linear optical element is described
by its optical transfer function H̃(�) = R(�)e−i�(�). The amplitude of the pulse
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transmitted by such an element is the inverse Fourier transform of H̃(�)Ẽ(�):

Ẽ(t) = 1

2π

∫ ∞

−∞
R(�)|Ẽ(�)|ei[�(�)−�(�)]e−i�td�. (8.3)

Let us consider a rather common situation where the amplitude response R is
constant in the spectral range of interest. The peak amplitude will be highest if all
spectral components add up in phase, which occurs if �(�) = �(�). The linear
element with the corresponding phase factor �(�) is called an ideal compressor.
Its phase response matches exactly the spectral phase of the chirped pulse. It was
shown in Chapter 1 that the output pulse remains unchanged if the difference
(� − �) is a nonzero constant or a linear function of �. Possible techniques
to synthesize the ideal compressor through spectral filtering are presented in
Section 8.2 [8].

If a pulse is linearly chirped, its spectral phase varies quadratically with
frequency. An ideal compressor is then simply an element with adjustable GVD,
for example a prism or grating sequence, provided higher-order dispersion can
be neglected. A piece of glass of suitable length can also compress a linearly
chirped pulse, as discussed previously. If the spectral phase of the pulse devi-
ates from a parabola by a term b3�

3, we can use two different linear elements
in series to construct the corresponding phase response, provided their ratio of
third- and second-order phase response is different. This can be a grating and a
prism pair, which allows us to tune the overall GVD and third-order dispersion
independently. To illustrate this procedure let us formally write the phase of the
transfer function of a prism (P) and a grating (G) sequence as:

�P,G = LP,G

(
b(P,G)

2 �2 + b(P,G)
3 �3

)
(8.4)

where LP,G is the prism (grating) separation and b(P,G)
i are device constants

(cf. Chapter 2). To fit a spectral phase

� = a2�
2 + a3�

3 (8.5)

we need to solve a simple system of algebraic equations to find the required
prism and grating separation

a2 = LPb(P)
2 + LGb(G)

2 (8.6)

a3 = LPb(P)
3 + LGb(G)

3 (8.7)

A third element would be needed to compensate for the next term in the Taylor
expansion of �(�). Only one GVD element will be required if the phase behavior
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of the pulse to be compressed is sufficiently simple. However, even though the
second-order dispersion dominates, higher-order dispersion terms are unavoid-
able in all linear elements. These terms become more important as broader pulse
spectra have to be handled. If pure GVD is desired, two elements are needed to
eliminate third-order dispersion.

As we saw in Chapter 3, focusing a pulse in a medium with a nonlinear
index leads to a spectral broadening where the frequency is a complicated func-
tion of time. A comparison of the compression of such a pulse in an ideal and a
quadratic compressor is made in Figure 8.2. Owing to the strong nonlinear behav-
ior of the frequency modulation (upchirp in the center, downchirp in the wings),
cf. Fig. 3.17, the spectral phase is far from being a parabola. Hence, a quadratic
compressor cannot compensate the chirp well. We can, for example, adjust for
compression in the pulse center but then encounter broadening of the wings.
Much better results can be obtained using an ideal compressor. However,
the compressed pulse exhibits also satellites in this “ideal” case, because of the
particular shape imparted to the spectrum |Ẽ(�)|2 by SPM. Because all frequency

Chirped
pulse

Spectral
phase

Spectrum

Intensity

Ideal
compressor

Quadratic
compressor

Figure 8.2 Gaussian pulse chirped in a nonlinear index medium and after compression. Note: The
spectral phase is shown in the interval (−π/2, +π/2).
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components are in phase after passage through the ideal compressor, the temporal
shape is that with the highest peak power, corresponding to the particular pulse
spectrum.

For some applications, it may be more important to achieve a smooth, narrow
temporal profile, rather than a maximum peak intensity. In this section we shall
focus mostly on simple and practical devices, such as quadratic compressors.

The drawback of using bulk materials as a nonlinear medium is the strong
nonlinear behavior of the frequency modulation and the poor pulse quality after
compression. Moreover, as discussed in Chapters 3 and 5, SPM is associated
with self-lensing if the transverse beam profile is not uniform. Therefore, the
achievable spectral broadening is limited.

An approach other than Gaussian optics is needed to achieve larger frequency
modulations. Of these, the most widely used for pulse compression is the optical
single-mode fiber. As discussed next, it leads to the production of almost linearly
chirped output pulses [9].

8.1.2. The Fiber Compressor

Pulse Propagation in Single Mode Fibers

An optical field can travel in single-mode fibers over long distances while
remaining confined to a few microns in the transverse direction. This is a typical
property of a guided wave; see, for example Marcuse [10]. Figure 8.3 summarizes
some properties of single-mode fibers made from fused silica. To support only
a single-mode, the core radius must satisfy the relation R < λ	/(π

√
n2 − n2

c).
Modes of higher order are generally undesired in guiding ultrashort light pulses
because of mode dispersion. The core diameters are therefore not larger than
a few microns in the VIS. This implies a limit for the pulse power to avoid

Cladding

Core

r

n

nc nc�n

R

rR0

Mode
profile

Figure 8.3 Cross section of a single-mode fiber and corresponding mode profile.



438 Pulse Shaping

material damage. Typical damage intensities are in the order of µJ/µm2. With the
focus on chirping for pulse compression, the only nonlinearity to be considered
is the nonlinear refractive index effect. To describe fiber propagation under such
conditions we have to use the three-dimensional wave equation supplemented
by a nonlinear source term according to Eq. (3.143). A perturbative approach
is used to study nonlinear pulse propagation in the fiber [11]. Assuming linear
polarization the electric field in the fiber can be written:

E(x, y, z, t) = 1

2
ũ(x, y)Ẽ(t, z)ei(ω	t−k	z) + c. c. (8.8)

The quantity ũ determines the mode profile which, to first order, is not affected
by the nonlinear index change. Using the same procedure as in Chapters 1 and 3
to deal with the dispersion and the nonlinearity, respectively, the equation for the
complex envelope is found to be:

∂

∂z
Ẽ − i

k′′
	

2

∂2

∂t2
Ẽ = −iγ|Ẽ |2Ẽ , (8.9)

where γ = neff
2 ω	/c. The differences as compared to the bulk medium can be

roughly explained in terms of the refractive index, which we now write:

neff
NL = neff + neff

2 |Ẽ |2. (8.10)

The notation effective is to indicate that

(a) the refractive index which determines the dispersion is given not only by
the material properties of the fiber core, but also by that of the cladding,
as well as by the core shape and size, and

(b) the action of the nonlinearity must be averaged over the fiber cross section
which means neff

2 = n2/Aeff where the effective fiber area is given by

Aeff = (∫ |u|2dA
)2

/
∫ |u|4dA.

Also, the propagation constant k′′
	 differs slightly from its value in the bulk

material, a small deviation that only becomes important in the vicinity of the
zero dispersion wavelength λD where k′′

	 = 0 (Figure 8.4). This zero dispersion
wavelength can be shifted by suitable dopants and shaping of the core cross
section. The effective area, which depends on the fiber geometry and the refractive
indices n, nc, can be somewhat smaller or larger than the core cross section.
Its value ranges from 10 to 25 µm2 in the visible and can be larger in the
infrared because of the usually larger core radii.
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	 and k′′

	 of fused silica. For comparison, the zero dispersion
wavelength λD of a typical single-mode fiber made from SQ1 is also shown. Frequently, the dispersion
of fibers is expressed in terms of D = dk′

	/dλ = −(2πc/λ2)k′′
	 in units of ps/nm·km. It describes the

group delay in ps per nm wavelength difference and per km propagation length.

It is sometimes useful to express Eq. (8.10) in terms of normalized quantities,
as for example in Mollenauer et al. [12]. Dimensionless coordinates which are
particularly convenient for the description of soliton propagation in the spectral
region where k′′

	 < 0 (see the next section) are s = t/tc and ξ = z/zc, the two
normalization constants satisfying the relation:

k′′
	 = −t2

c /zc. (8.11)

Using a normalized amplitude û = √
γzcẼ , the propagation equation becomes:

∂

∂ξ
û + i

1

2

∂2

∂s2
û = −iγzc|û|2û. (8.12)

This equation governing the pulse propagation in fibers with GVD and a non-
linear refractive index resembles the Schrödinger equation known from quantum
mechanics. This analogy becomes most obvious after associating the nonlin-
ear term with a potential, and interchanging position and time coordinates in
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Eq. (8.12). For this reason, this equation is often called the nonlinear Schrödinger
equation (NLSE).

The propagation of ultrashort pulses in single-mode fibers is affected by dis-
persion and an n2 (often referred to as Kerr type) nonlinearity. These effects
were studied independently from each other in Chapters 1 and 3. For their
characterization we introduced a dispersion length LD = τ2

p0/k′′
	 and a non-

linear interaction length LNL = (γ|Ẽ0m|2)−1. Both quantities contain material
parameters and properties of the input pulse. In terms of the two characteristic
lengths, the limiting cases in which one effect dominates are valid for propa-
gation lengths L ≈ LD 	 LNL and for L ≈ LNL 	 LD, respectively. It is the
intermediate situation characterized by the interplay of GVD and n2 effect which
shall be of interest now.

The behavior of pulses propagating through single-mode fibers is substan-
tially different in the spectral range where k′′

	 > 0 and k′′
	 < 0. For wavelengths

λ	 < λD envelope and phase shaping appropriate for subsequent compression is
achieved. For longer wavelengths λ	 > λD, soliton shaping may occur.

Compression of Pulses Chirped in the Normal
Dispersion Regime (k′′

�
> 0)

Grischkowsky and Balant [9] recognized the possibility of shaping optical
pulses in single-mode fibers for subsequent pulse compression. To obtain the
characteristics of a pulse as it travels through an optical single-mode fiber, we
need to solve Eq. (8.10). The general case can only be solved numerically, for
instance through the procedure outlined in Chapter 1. An example of such a
calculation is shown in Figure 8.5.
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Figure 8.5 Development of spectrum and envelope of a pulse propagating through an optical fiber
in the normal dispersion regime (z0 = 0. 5LD). (a) Spectral intensity versus frequency. (b) Intensity
versus normalized time. (Adapted from Tomlinson et al. [13].)
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These results can easily be interpreted as follows. GVD broadens the
initially unchirped pulse. Because k′′

	 > 0, longer wavelength components travel
faster and accumulate along the leading edge of the pulse. SPM produces new
frequency components; longer (shorter) wavelength components arise in the lead-
ing (trailing) edge. These new frequency components induce an even faster pulse
broadening. Owing to GVD and the fact that new frequency components are
preferably produced in the pulse edges, where the derivative of the intensity is
large, the frequency develops an almost linear behavior over the main part of
the pulse and the envelope approaches a rectangular shape. The broadening is
associated with a decrease of the pulse intensity, and thus the SPM becomes less
important for larger propagation lengths. Eventually a regime is reached where
the spectrum remains almost unchanged, and the fiber acts like an element with
linear GVD only.

Before discussing some quantitative results of the numerical evaluation of
the nonlinear Schrödinger equation, we shall analyze the fiber propagation by
means of a simple, heuristic model, describing temporal and spectral broadening
under the simultaneous action of GVD and a nonlinearity. We will establish two
ordinary differential equations. For simplicity and to exploit previously derived
results, we make the approximation that the pulse is linearly chirped and Gaussian
over the entire propagation length:

Ẽ(z, t) = Em(z)e−[1+ia(z)][t/τG(z)]2
(8.13)

with

τG(z) = √
2 ln 2 τp(z) (8.14)

and

τp(z)
ωp(z) = 4 ln 2
√

1 + a2(z) (8.15)

E2
m(z)τp(z) = Em(0)2τp(0) = E2

0mτp0. (8.16)

The latter relations simply follow from the pulse duration-bandwidth product,
cf. Eq. (1.39), and from the requirement of energy conservation. From Eqs. (1.123)
and (8.15) we find for the change in pulse duration:

d

dz
τp(z) = 4 ln 2

τp(z)
k′′
	

√
τ2

p (z)
ω2
p(z)

(4 ln 2)2
− 1 + 
ω2

p(z)k′′2
	

τp(z)
z. (8.17)
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Next we need an equation for the change of the pulse spectrum because of SPM.
Let us estimate the chirp coefficient as a ≈ 0. 5δωpτp/(4 ln 2) with δωpτp given
by Eq. (3.152). We introduced the factor 0. 5 here to account for the fact that the
actual chirp from SPM is not monotonous over the entire pulse. Together with
Eqs. (8.15) and (8.16) this chirp parameter a yields for the change of the spectral
width

d

dz

ωp(z) = ln 2

τ3
p (z)

(
τp0

LNL

)2 z√
1 + [τp0/4τp(z)]2(z/LNL)2

(8.18)

where LNL = (γ Ẽ2
0m)−1 as introduced earlier. In normalized quantities α =

τp(z)/τp0 for the temporal broadening, β=
ωp(z)/
ωp0 [where, from Eq. (8.15),

ω0 = 4 ln 2/τp0] for the spectral broadening, and ξ = z/LD, the system of
differential equations can be written as

d

dξ
α = 4 ln 2

α

√
α2β2 − 1 + (4 ln 2)2 β

2

α
ξ

ξ�1→ 4 ln 2β

(
1 + 4 ln 2β

α
ξ

)
, (8.19)

d

dξ
β = 1

4α3
ξ

(
LD

LNL

)[
1 + 1

4

(
ξ

α

)2 ( LD

LNL

)2
]− 1

2
ξ�1→ LD

LNL

1

α2
, (8.20)

with the initial conditions α(ξ = 0) = 1 and β(ξ = 0) = 1. It is interesting to
note here that the parameters of the input pulse and the fiber enter this equation
only as LD/LNL if we measure the propagation length in units of LD. This set of
ordinary differential equations can easily be integrated numerically. The results
for LD/LNL = 1600 are depicted in Figure 8.6.

For fused silica (k′′
	 ≈ 6 × 10−26 s2/m, n̄2 ≈ 3. 2 × 10−16 cm2/W), an effec-

tive fiber area of 10 µm2 and 500 fs input pulses at 600 nm, LD/LNL = 1600
corresponds to a peak power of 12 kW where LD ≈ 4. 2 m and LNL ≈ 2. 6 mm.
The figure illustrates the properties discussed previously, in particular the satura-
tion of the spectral broadening and the linear behavior of the temporal broadening
for large propagation length. In our example the spectral broadening reaches a
value of about 20, which sets a limit to the compression factor.

For the purpose of pulse compression, a large spectral broadening is desir-
able. Figure 8.6 suggests that long fibers are not essential, because most of the
spectral broadening occurs within a finite length LF (which, however, is still
larger than LNL). To obtain an approximate relationship between the maximum
spectral broadening β̄ and the fiber length LF at which a certain percentage
m of β̄ is achieved, one can proceed as follows. Equations (8.19) and (8.20)
are solved asymptotically in a perturbative approach. Substituting β = β̄ into
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Eq. (8.19) gives as solution for the temporal broadening α = 2(
√

5 + 1) ln 2β̄ξ.
This solution can be inserted into Eq. (8.20), which yields after integration from
ξF to ∞:

β̄ − β(ξF) ≈ LD

LNL

1

20β̄

1

ξF
. (8.21)

If we chose ξF = LF /LD so that at this length m% of the maximum spectral
broadening occurs, we obtain:

β̄3LF

(
LNL

L2
D

)
≈ 1

20(1 − m/100)
. (8.22)

The numerical evaluation of Eqs. (8.19) and (8.20) shown in Fig. 8.6 revealed
that β̄ varies as:

Kc ≈ β̄ ≈ 0. 5

√
LD

LNL
. (8.23)

β̄ is also a rough measure of the compression that can be achieved. To satisfy
relation (8.22), the fiber length at which a certain spectral broadening can be
expected must be proportional to:

LF ∝ √LDLNL . (8.24)
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In our example, the propagation length at which 95% of the maximum broadening
occurs is LF ≈ 2. 9

√
LDLNL ≈ 0. 1z/LD ≈ 43 cm, which is in good agreement

with Fig. 8.6.
Using the inverse scattering technique, Meinel [15] found an approximate

analytical solution for the pulse after a long propagation length L [14]:

Ẽ(t) =
{

Emeia(t/τp)2 |t| ≤ τp/2
0 |t| > τp/2

(8.25)

where

a ≈ 0. 7
τp

τp0

√
LD

LNL
(8.26)

and

τp ≈ 2. 9
L√

LDLNL
τp0. (8.27)

A linear element must be found for optimum pulse compression. For this par-
ticular pulse, to produce a chirp-free output, the b2 parameter of a quadratic
compressor should be chosen as [16]:

b2 ≈ τ2
p

4a(1 + 22. 5/τ2
p )

. (8.28)

For the actual analysis of the compression step, one can favorably use the Poisson
integral Eq. (1.108) to calculate the pulse behind the linear element and to
determine its duration. The compression factor is found to be [15]:

Kc ≈ 0. 5

√
LD

LNL
. (8.29)

As mentioned previously the requirements for producing chirp-free output
pulses of the shortest achievable duration and best quality cannot be satisfied
simultaneously. Tomlinson et al. [13] solved the nonlinear Schrödinger equation
numerically and varied b2 in the compression step to obtain pulses with the high-
est peak intensity. They found this to be a reasonable compromise between pulse
duration and pulse quality (small satellites). Figure 8.7 shows this optimum com-
pression factor as a function of the fiber length for various values of

√
LD/LNL .

Depending on the parameters of the input pulse, there is an optimum fiber length
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at which pulse compression is most effective. Numerical simulations lead to an
estimate for this optimum length:

Lopt ≈ 1. 4
√

LDLNL . (8.30)

It was found that the corresponding compression factor, using such a fiber length,
can be approximated by:

Kc ≈ 0. 37

√
LD

LNL
. (8.31)

Figure 8.8(a) shows a typical experimental setup for pulse compression. The input
pulse is focused by a microscope objective into a single-mode optical fiber of
suitable length. After recollimation, the chirped and temporally broadened pulse
is sent through the linear element which, typically, is a grating or prism pair or
a sequence of them. To achieve a substantial compression factor input pulses of
certain power are necessary, as shown in Figs. 8.6 and 8.7. For compression of
fs pulses, peak powers in the kW range are needed. Therefore, to apply the fiber
compressor, pulses from most fs oscillators must be amplified first. For ps pulses
LD/LNL takes on large values for peak powers even below 1 kW. It has been
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Figure 8.8 Sketch of a fiber-grating compressor (a) and interferometric autocorrelation of a com-
pressed 6 fs pulse (b). For the compression a sequence of prism and gratings was used as linear
element. (Adapted from Fork et al. [19].)

therefore possible to compress pulses from a cw Nd:YAG laser (Pm ≈ 100 W)
from 100 ps to 2 ps [17]. The fiber length used in this experiment was 2 km.
Starting with 100 kW pulses of 65 fs duration Fujimoto et al. [18] succeeded in
generating 16 fs pulses where the fiber length was only 8 mm.

Fork et al. [19] obtained 6 fs pulses with 65 fs, 300 kW pulses at the input of
a 9-mm long fiber. At a wavelength of 620 nm this pulse duration corresponds to
only three optical cycles. A corresponding interferometric autocorrelation func-
tion is shown in Fig. 8.8(b). As mentioned previously, the broader the pulse
spectrum to be handled, the more important it becomes to match the third-order
dispersion of the linear element. Therefore, in this experiment, the authors used
a combination of a grating and a prism pair for the independent adjustment of
GVD and third-order dispersion.

A practical limit for the achievable compression factor and pulse duration is
of course given by the maximum power that can be propagated through the fiber
without causing damage. However, before this limit is reached, other nonlinear
and linear effects have to be considered. These include third-order material dis-
persion, Raman processes, the |Ẽ |4 dependence of the refractive index, and the
effect of a shock term in the wave equation. A detailed discussion can be found,
for example, in Rudolph and Wilhelmi [1], Vysloukh and Matveyeva [20], and
Bourkhoff et al. [21].

The limitation on the fs pulse energy that can be handled by single mode fibers
can be overcome by hollow fibers as demonstrated by Nisoli et al. [22]. Hollow
cylindrical fibers were made from fused silica with bore diameters of the order
of 2a ≈ 100 µm, filled with a noble gas. This provides the additional advantage
of controlling the (n2) nonlinearity by adjustment of the gas pressure. The EH11
hybrid mode with an intensity profile I(r) ∝ J2

0 (2. 4r/a), where J0 being the
Bessel function of order zero, is the lowest order mode that can be supported
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by these fused silica hollow fibers. The dispersion includes a contribution from
the waveguide and from the gas. Pulses as short as 5 fs with an energy of 70 µJ
were obtained using Ar-filled hollow fibers (pressure of 3.3 bar) [23]. A prism
sequence and a chirped mirror were used to compress the spectrally broadband
pulse at the fiber output.

A modification of this technique is to operate in conditions of intensity and
pulse duration such that self-wave guiding or filamentation of the pulse takes
place in the gaseous nonlinear medium, hence eliminating the need for a capillary.
This technique was successfully implemented by Hauri et al. [24], using 43 fs,
0.84 mJ pulses at 800 nm, sent successively through gas cells at pressures of
840 mbar and 700 mbar of argon. Pairs of chirped mirrors were used after each
cell, resulting in an output pulse of 5.7 fs duration, 0.38 mJ at a repetition rate of
1 kHz. With the CEO introduced in Section 5.1.3 locked, the output pulses had
also their CEO locked.

Soliton Compression in the Anomalous Dispersion Regime (k′′
�

< 0)

In the spectral region where the nonlinearity (n2) and dispersion (k′′
	 ) have

opposite sign, the pulse propagation may have completely different properties
than have been discussed so far. Theoretical studies of the NLSE for this case
predicted the existence of pulses either with a constant, or with a periodically
reproducing shape [25, 26]. The existence of these solutions, designated as soli-
tons, can be explained simply as follows. The nonlinearity (n2 > 0) is responsible
for spectral broadening and up-chirp. Because of the anomalous dispersion,
k′′
	 < 0, which in fused silica single-mode fibers occurs for λ > 1. 31 µm, the

lower frequency components produced in the trailing part travel faster than the
long wavelength components of the pulse leading edge. Therefore, the tendency
of pulse broadening owing to the exclusive action of GVD can be counterbal-
anced. Of course, the exact balance of the two effects is expected only for certain
pulse and fiber parameters. For a rough estimate let us require that the chirp pro-
duced in the pulse center by the nonlinearity and the dispersion are of equal
magnitude (but of opposite sign). Under this condition the pulse propagates
through the fiber without developing a frequency modulation and spectral broad-
ening. Let us use this requirement to estimate the parameters for form-stable
pulse propagation. The effect of GVD is to create a pulse broadening and a
down-chirp, with the change of the second derivative of the phase versus time
equal to:




(
∂2

∂t2
ϕ(t)

)
= 4k′′

	

τ4
G0


z (8.32)
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where we have used the characteristics of Gaussian pulse propagation
(cf. Table 1.2 ). The chirp induced by SPM is [see Eq. (3.146)]:




(
∂2

∂t2
ϕ(t)

)
= −2π

λ	

n̄2
∂2I

∂t2

z (8.33)

Equating both relations for the chirp in the pulse center, we find as condition for
the pulse parameters:

Iomτ2
G0 = λ	k′′

	

πn̄2
(8.34)

where Iom is the peak intensity.
The exact (analytical) solution of the nonlinear Schrödinger equation (8.11)

shows that solitons occur if the pulse amplitude at the fiber input obeys the
relation

|Ẽ(s)| = N√
zcγ

sech(s), (8.35)

where N is an integer and refers to the soliton order, and zc ≈ τ2
p0/(1. 76k′′

	 )2 =
LD/1. 762. For N = 1 the pulse propagates with a constant, stable shape through
the fiber. The action of nonlinearity and GVD exactly compensate each other.
The shape of the fundamental soliton is:

Ẽ(ξ, s) = 1√
zcγ

sech(s)e−iξ/2. (8.36)

The solution (8.36) can be verified by substitution of relation (8.36) into
Eq. (8.11). Higher-order solitons (N ≥ 2) periodically reproduce their shape
after a distance given by:

Lp = πzc/2. (8.37)

Optical solitons in fibers were observed by Mollenauer et al. [27,28]. The poten-
tial application in digital pulse-coded communication, has spurred the interest in
solitons, which offer the possibility of propagating ultrashort light pulses over
thousands of km, while preserving their duration [12].

In relation to pulse compression, it is interesting to note that an arbitrary
unchirped input pulse of sufficiently large energy will eventually develop into a
soliton. The soliton order N depends on the power of the input pulse. The soliton
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formation will always lead first to a substantial narrowing of the central pulse
peak at a certain propagation length LS . This narrowing is independent of how
complex the following behavior is, provided the amplitude of the input pulse
corresponds to N > 1. The pulse narrowing was studied experimentally and
theoretically in Mollenauer et al. [29]; see Fig. 8.9. It follows that pulses become
shorter, the higher their input intensity, i.e., the higher the order of the soliton
in which they finally develop. Narrowing factors up to 30 were measured. A
disadvantage of this method as a compression technique is the relatively poor
pulse quality, which manifests itself in broad wings and side lobes.

Soliton narrowing has successfully been applied in connection with a fiber
grating setup in two-step compression experiments [17, 30]. By means of this
technique, Gouveia-Neto et al. [30] succeeded in compressing 90 ps pulses from
a Nd:YAG laser at λ = 1. 32 µm to 33 fs. In the first stage the pulses were
compressed to 1. 5 ps by using a fiber-grating configuration. Because normal
dispersion was required here, a fiber with a zero dispersion wavelength λD =
1. 5 µm was chosen. Subsequent propagation of these pulses through 20 m of
single-mode fiber with λD ≈ 1. 27 µm led to a pulse width of 33 fs through soliton
narrowing where N was estimated to be 12. One drawback of fiber compressors
and, in particular, of multistage configurations is the relatively high loss factor.
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Figure 8.9 Pulse narrowing through soliton shaping. (a) Calculated parameters of the first
optimum narrowing and related experimental data (◦, ×). (b) Pulse shape at optimal narrowing as a
function of the soliton order. (Adapted from Mollenauer et al. [29].)
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These losses are mainly associated with the coupling of the pulses into the fiber
and diffraction at the gratings. The overall transmission in the experiment cited
was about 7%.

8.1.3. Pulse Compression Using Bulk Materials

One drawback of fiber compressors is that only pulses of relatively small
energy can be handled. With fs input pulses the possible energies do not exceed
several tens of nJ. One possible solution is to spectrally broaden the pulse in
the fiber before amplification and subsequent compression as demonstrated by
Damm et al. [31] with pulses from a Nd:glass laser.

Previous attempts to use bulk materials for the chirping of high energy ps
pulses resulted in a relatively poor pulse quality at the compressor output owing
to the nonlinear chirp behavior. As discussed before, to obtain an almost linear
chirp across the main part of the pulse, a certain ratio of LD and LNL is necessary.
This could be achieved by utilizing pulse propagation in single-mode fibers.
The fiber lengths needed become smaller with shorter durations of the input
pulse and, for fs pulses, are of the order of several millimeters. From Eq. (8.30)
it can easily be seen that Lopt ∝ τp0 if the peak intensity is kept constant. Over
such propagation distances suitably focused Gaussian beams do not change their
beam diameter much in bulk materials provided self-focusing can be neglected.
The latter limits the possible propagation lengths to those shorter than the self-
focusing length. The latter in turn can be adjusted by choosing an appropriate
spot size of the focused beam, which sets an upper limit for the maximum pulse
intensity. The maximum compression factor that can be achieved under such
conditions can be estimated to be:

Kc ≈ 0. 3

√
n0n̄2P0

λ2
	

(8.38)

where P0 is the peak power of the input pulse (cf. [32]). Figure 8.10 shows results
of a numerical evaluation of pulse compression using bulk SQ1 fused silica, and
60 fs input pulses of various energies.

Rolland and Corkum [33] demonstrated experimentally the compression of
high-power fs light pulses in bulk materials. Starting from 500 µJ, 92 fs pulses
from a dye amplifier, they obtained ≈20 fs compressed pulses at an energy of
≈100 µJ. The nonlinear sample was a 1. 2 cm piece of quartz and the pulses
were focused to a beam waist of 0. 7 mm.

At high intensities a white light continuum pulse can be generated [34] as
was discussed in Section 3.7. With fs pulses, SPM is expected to contribute
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Figure 8.10 Plot of compression parameters after chirping in bulk SQ1 (fused silica) for different
pulse energies and τP0 = 60 fs as a function of the beam cross section at the sample input (location of
the beam waist). −·−·: Compression factor, —- parameter of the optimum quadratic compressor (a ≈
3b2/τ2

P0), −−− normalized optimum sample length (LD ≈ 3cm). (Adapted from Petrov et al. [32].)

substantially to the continuum generation. There have been successful experi-
ments to compress continuum pulses produced by high-power fs pulses [35].

8.2. SHAPING THROUGH SPECTRAL
FILTERING

On a ps and longer time scale optical pulses can be shaped directly by elements
of which the transmission is controlled externally. An example is a Pockels cell
placed between crossed polarizers and driven by an electrical pulse. The transients
of this pulse determine the time scale on which the optical pulse can be shaped.
The advantage of this technique is the possibility of producing a desired optical
transmission by synthesizing a certain electrical pulse, as demonstrated in the
picosecond scale by Haner and Warren [2]. The speed limitations of electronics
have so far prevented the application of this technique to the fs scale.

A technique best suited for the shortest pulses consists of manipulating the
pulse spectrum in amplitude and phase. This technique was originally introduced
for ps light pulses [36–38] and later successfully applied and improved for fs
optical pulses by Thurston et al. [39] and Weiner et al. [8]. The corresponding
experimental arrangement is shown in Figure 8.11.

The pulse to be shaped is spectrally dispersed using a grating or a pair of
prisms. The spectrum is propagated through a mask which spectrally filters
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Figure 8.11 Spectral filtering in a dispersion-free grating-lens combination. (Adapted from
Weiner et al. [8].)

the pulse. The spectral components are recollimated into a beam by a second
grating or pair of prisms. In the arrangement of Fig. 8.11, the two-grating–two-
lens combination has zero GVD, as can be verified easily by setting z′ = z = 0
in Eq. (2.124). Each spectral component is focused at the position of the mask
(the usual criterion for resolution applies). Because, to a good approximation,
the frequency varies linearly in the focal plane of the lens, a variation of the
complex transmission across the mask causes a transfer function of the form:

H̃(�) = R(�)e−i�(�) (8.39)

where R(�) represents the amplitude transmission and �(�) the phase change
experienced by a spectral component at frequency �. These masks can be
produced by microlithographic techniques.1 A pure phase filter, for example,
could consist of a transparent material of variable thickness. If we neglect the
effects caused by the finite resolution, the field at the device output is:

Ẽout(t) = F−1{Ẽout(�)}, (8.40)

1Another option is to use pixelated liquid-crystal arrays whose complex transmission can be
controlled by applying voltages individually to each pixel.
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where

Ẽout(�) = Ẽin(�)R(�)e−i�(�), (8.41)

and Ẽin(�) is the field spectrum of the input pulse. In principle, to achieve a
certain output Ẽ(t), we need to determine Ẽout by a Fourier transform and divide
it by the input spectrum Ẽin. This ratio gives the transmission function required
for the mask. The mask can be a sequence of an amplitude only and a phase only
filter to generate the desired R(�) exp[−i�(�)].

A simple slit as mask acts as spectral window. Such spectral windowing can
be used to enhance the pulse quality, in particular to reduce small satellites, in
fiber grating compressors [40]. One aligns the window so that the wings of the
spectrum, which are caused by the nonlinear chirp in the pulse edges, are blocked.
The remaining linear chirp can then be compensated by a grating pair.

Many different output fields can be realized by using different mask functions.
Of course, the shortest temporal structures that can be obtained are limited by
the finite width of the input pulse spectrum. The narrowest spectral features
that can be impressed on the spectrum are determined by the grating dispersion,
mask structure, and size of the focal spot. Generally, amplitude masks introduce
linear losses. For higher overall transmission pure phase masks are advantageous.
Figure 8.12 shows some examples of intensity profiles obtained through spectral
filtering of 75 fs pulses from a mode-locked dye laser.

Note that the action of any linear element can be interpreted as spectral
filtering. If, for instance, the mirror separation d of a Fabry–Perot interferom-
eter is larger than the original pulse width, the output will be a sequence of
pulses, separated by 2d. As explained in the chapter on coherent processes,

Time (psec) Time (psec) Time (psec)

�1.0 �2 �1�0.5 0 00.5 1 2 0 1 2 3 41.0

(b) (c)(a)

Figure 8.12 Cross-correlation measurements of intensity profiles generated by spectral filtering of
75 fs pulses. (a) Half of an originally symmetric spectrum was shifted by π resulting in a zero area
pulse. (b) Square pulse produced by an amplitude mask resembling a sinc-function. (c) THz pulse
train produced by a pure phase mask. (Adapted from Weiner et al. [8].)
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pulse trains with well-defined phase relations are particularly interesting for
coherent excitation in optical spectroscopy and coherent (quantum) control of
photo induced processes in general.

8.3. PROBLEMS

1. A self-phase modulated pulse exhibits a spectrum that shows characteristic
modulations, cf. Fig. 8.2. Assume a Gaussian pulse of duration τp and
peak intensity I0 which is propagated through a material of length L and
nonlinear refractive index coefficient n2. Explain why for large SPM the
number of peaks in the spectrum is roughly given by φmax/π. (φmax is the
maximum induced phase shift which occurs in the pulse center.)

2. SPM of Gaussian beams is associated with self-focusing in a bulk material
with positive n2. Estimate the achievable spectral broadening of a Gaussian
pulse. Neglect dispersion and require that the beam diameter does not
reduce to less than half of its original value.

3. Design a compressor for the pulses of a synchronously pumped and cavity-
dumped dye laser (τp = 5 ps, W = 5 nJ, λ	 = 600 nm). A fiber made
from fused silica (core diameter 4 µm) and a pair of gratings (grating
constant = 2000 mm−1) are to be used. Find a convenient fiber length,
the required grating separation, and estimate the achievable compression
factor.

4. Find an approximate expression that describes the pulse duration at the
output of an n-stage compression unit. Each compression step introduces
an energy loss of p. Use the pulse parameters from the previous problem
and p = 0. 5 to argue about the efficiency of such devices.

5. Compare the peak intensity of the fundamental soliton in an optical single-
mode fiber as estimated in Eq. (8.34) with the exact value from Eq. (8.35).
Explain the difference.

6. It is often desirable to generate a square-shaped pulse. One can think of
a large number of methods to generate such a signal. The best solution
depends often on the initial condition (pulse duration available) and the
desired length of the square pulse. A square pulse can be obtained by
linear and nonlinear optical processes. The process could be nonlinear
absorption (for instance four photon absorption), self-defocusing through
a n4I4 process followed by spatial filtering, pulse splitting-sequencing by
interferometric delay lines, or spectral filtering as described at the end of
this chapter. Compare these methods in terms of energy loss and residual
modulation of the “flat” part of the pulse. Assume you have initially a 1 mJ
Gaussian pulse of 50 fs duration and want to approximate a square pulse
of (a) 40 fs duration; (b) 150 fs duration; and (c) 900 fs duration.
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7. How would one generate a train of identical pulses, each being 180◦ out
of phase with the previous one?

8. Consider a bandwidth-limited pulse of duration τp. Is it possible to generate
a temporal substructure with transients shorter than τp with spectral
filtering? Explain your answer.
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9
Diagnostic Techniques

The femtosecond time scale is beyond the reach of standard electronic display
instruments. New methods have to be designed to freeze and time resolve events
as short as a few optical cycles. Any measurement technique introduces some
perturbation on the parameter to be measured. This problem is particularly acute
in attempting to time resolve fs signals. As we have seen in the chapter on fs
optics, reflection and transmission through most optical elements will modify the
signal to be measured. In addition, most diagnostic schemes involve nonlinear
elements, which may also have an influence on the amplitude and phase of the
pulse to be measured. A careful analysis of the diagnostic instrument is required
to find its exact transfer function. The inverse of this instrument transfer function
should be applied to the result of the measurement, to obtain the parameters of
the signal prior to entering the measuring device.

We will start this chapter with the description of simple, coarse meth-
ods that provide some estimate of the pulse duration and a description of
some measurement techniques commonly used for recording pulse correlations
(Sections 9.1–9.3). Many of these techniques were developed with the emergence
of ns and ps laser technology; for a review see Shapiro [1]. In the second part
of this chapter, Section 9.4, we will describe techniques that lead to a complete
characterization of the pulse amplitude and phase.
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9.1. INTENSITY CORRELATIONS

9.1.1. General Properties

The temporal profile Is(t) of an optical signal can be easily determined, if
a shorter (reference) pulse of known shape Ir(t) is available. The method is to
measure the intensity cross correlation:

Ac(τ) =
∫ ∞

−∞
Is(t)Ir(t − τ) dt. (9.1)

Let us define the Fourier transforms of the intensity profiles as:

Ij(�) =
∫ ∞

−∞
Ij(t)e

−i�tdt, (9.2)

where the subscript j indicates either the reference (r) or signal (s) pulse.
The Fourier transform of Eq. (9.2) should not be confused with the spectral
intensity (proportional to |Ẽ(�)|2). The Fourier transform of the correlation (9.1)
is Ac(�), related to the Fourier transforms of the intensities by:

Ac(�) = Ir(�)I∗
s (�). (9.3)

The shape of the signal Is(t) can be determined by first taking the Fourier
transform Ac(�) of the measured cross correlation and dividing by the Fourier
transform Ir(�) of the known reference pulse Ir(t). The inverse Fourier trans-
form of the complex conjugate of the ratio Ac(�)/Ir(�) is the temporal profile
Is(t). In presence of noise, this operation leads to large errors unless the ref-
erence function is the (temporally) shorter of the two pulses being correlated
(or the function with the broadest spectrum). The ideal limit is of course that of
the reference being a delta function. In the frequency domain, we are dividing
by a constant. In the time domain, the shape of the correlation Ac(τ) is identical
to that of the signal Is(t). Even in that ideal case, the intensity cross-correlation
has an important limitation: It does not provide any information on the phase
content (frequency or phase modulation) of the pulse being analyzed.

9.1.2. The Intensity Autocorrelation

In most practical situations, a reference pulse much shorter than the signal
cannot be generated. In the ideal cases where such a pulse is available, there
is still a need for a technique to determine the shape of the reference signal.
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It is therefore important to consider the limit where the signal itself has to be
used as reference. The expression (9.1) with Is(t) = Ir(t) = I(t) is called an
intensity autocorrelation. An autocorrelation is always a symmetric function—
this property can be understood from a comparison of the overlap integral for
positive and negative arguments τ. According to Eq. (9.3), the Fourier transform
of the autocorrelation is a real function, consistent with a symmetric function in
the time domain. As a result, the autocorrelation provides only little information
on the pulse shape, because an infinity of symmetric and asymmetric pulse shapes
can have similar autocorrelations. Nevertheless, the intensity autocorrelation is a
widely used diagnostic technique, because it can be easily implemented, and is the
first tool used to determine whether a laser is producing short pulses rather than
intensity fluctuations of a continuous background. Typical examples are given in
Section 9.3. The intensity autocorrelation is also used to quote a “pulse duration.”
The most widely used procedure is to assume a pulse shape (generally a sech2 or
a Gaussian shape), and to “determine” the pulse duration from the known ratio
between the FWHM of the autocorrelation and that of the pulse. The parameters
pertaining to the various shapes are listed in Table 9.1 in Section 9.4.

9.1.3. Intensity Correlations of Higher Order

Let us look at an intensity correlation of a higher order, defined as:

An(τ) =
∫ ∞

−∞
I(t)In(t − τ)dt. (9.4)

For n > 1, the function defined by Eq. (9.4) has the same symmetry as the pulse.
In fact, for a reasonably peaked function I(t), limn→∞ In(t) ∝ δ(t), and the
shape of the correlation An(τ) approaches the pulse shape I(t). Such higher-order
correlations are convenient and powerful tools to determine intensity profiles.

9.2. INTERFEROMETRIC CORRELATIONS

9.2.1. General Expression

We have analyzed in Chapter 2 the Michelson interferometer and defined the
field1 correlation measured by that instrument as:

G1(τ) = Ã+
12(τ) + c. c = 1

4

∫ ∞

−∞
Ẽ1(t)Ẽ∗

2 (t − τ)eiω	τdt + c. c. (9.5)

1The field correlation is often referred to as a first-order correlation.
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We have seen also that the Fourier transform of A+
12(τ) is equal to Ẽ∗

1 (�)Ẽ2(�)
[Eq. (2.6)]. Hence, the Fourier transform of the autocorrelation (identical fields)
is proportional to the spectral intensity of the pulse. Therefore, a first-order field
autocorrelation does not carry any other information than that provided by a
spectrometer.

In a Michelson interferometer, let us add to the detector a second harmonic
generating crystal (type I) and a filter to eliminate the fundamental. Instead of the
expression (9.5), the detected signal is a second-order interferometric correlation,
proportional to the function:

G2(τ) =
∫ ∞

−∞

〈∣∣∣[E1(t − τ) + E2(t)]2
∣∣∣2
〉

dt. (9.6)

Here 〈〉 denotes averaging over the fast oscillations of the electric field and
the integral stands for integration over the pulse envelope. A Mach–Zehnder
interferometer can also be substituted for a Michelson interferometer for such a
measurement [2]. Replacing the fields by the usual envelope and phase functions,
E1,2 = (E1,2eiω	teiϕ1,2 + c. c. )/2 and performing the 〈〉 average yields for the
correlation apart from a constant factor:

G2(τ) = A(τ) = A0(τ) + Re
[
A1(τ)e−iω	τ

]+ Re
[
A2(τ)e−2iω	τ

]
, (9.7)

where

A0(τ) =
∫ ∞

−∞

[
E4

1 (t − τ) + E4
2 (t) + 4E2

1 (t − τ)E2
2 (t)
]

dt (9.8)

A1(τ) = 4
∫ ∞

−∞
E1(t − τ)E2(t)

[
E2

1 (t − τ) + E2
2 (t)
]

ei[ϕ1(t−τ)−ϕ2(t)]dt (9.9)

A2(τ) = 2
∫ ∞

−∞
E2

1 (t − τ)E2
2 (t)e2i[ϕ1(t−τ)−ϕ2(t)]dt. (9.10)

The purpose of the decomposition (9.7) is to show that the correlation has three
frequency components2 centered respectively around zero frequency, around ω	

and 2ω	. Most often, the detection system of the correlator will act as a low
pass filter, eliminating all but the first term of the expansion. The interferomet-
ric correlation reduces then to A0(τ)—the sum of a background term and the

2Here “frequency” refers to the variation of the function G2(τ) as a function of its argument τ.
The latter argument τ is the delay parameter, which is continuously tuned in the correlation
measurement.
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(background-free) intensity correlation [labeled Ac(τ) in Eq. (9.1)]. The terms
A0, A1, and A2 of the expansion (9.7) can be extracted from a measurement
by taking the Fourier transform of the data, identifying the cluster of data near
the three characteristic frequencies, and recovering them by successive inverse
Fourier transforms. Fast data acquisition and processing can also perform this
task in real time when working with fs oscillators [3]. The components A1 and A2
contain phase terms [ϕ1(t − τ) − ϕ2(t)], and thus carry information about pulse
chirp.

Similarly the third-order interferometric correlation

G3(τ) = B(τ) =
∫ 〈∣∣∣[E1(t − τ) + E2(t)]3

∣∣∣2
〉

dt (9.11)

has four frequency components. In terms of pulse envelopes and phases it can
be written as

B(τ) = B0(τ) + Re
[
B1(τ)e−iω	τ

]+ Re
[
B2(τ)e−2iω	τ

]
+ Re

[
B3(τ)e−3iω	τ

]
,

(9.12)

where

B0(τ) =
∫ {

E6
1 (t − τ) + E6

2 (t) + 9E2
1 (t − τ)E2

2 (t)
[
E2

1 (t − τ) + E2
2 (t)
]}

dt

(9.13)

B1(τ) = 6
∫ [

E4
1 (t − τ) + E4

2 (t) + 3E2
1 (t − τ)E2

2 (t)
]

× E1(t − τ)E2(t) ei[ϕ1(t−τ)−ϕ2(t)]dt (9.14)

B2(τ) = 6
∫ [

E2
1 (t − τ) + E2

2 (t)
]
E2

1 (t − τ)E2
2 (t) e2i[ϕ1(t−τ)−ϕ2(t)]dt (9.15)

B3(τ) = 2
∫

E3
1 (t − τ)E3

2 (t) e3i[ϕ1(t−τ)−ϕ2(t)]dt. (9.16)

Again we have omitted a constant factor. The zero frequency component of
this interferometric correlation, B0(τ), corresponds to the third-order intensity
correlation with background.



462 Diagnostic Techniques

9.2.2. Interferometric Autocorrelation

9.2.2.1. General Properties

Let us consider in more detail the particular case of the previous expressions
for the cross correlation (9.6) through (9.10) where the two fields E1 = E2 = E.
At τ = 0, the peak value of the function A(τ = 0) = 16

∫
E4(t)dt. For large delays

compared to the pulse duration, cross products containing terms with E(t − τ)E(t)
vanish, leaving a background of A(τ = ∞) = 2

∫
E4(t)dt. The peak to back-

ground ratio for the interferometric autocorrelation is thus 8 to 1. The “d.c.”
term of the interferometric autocorrelation, A0(τ),—which is in fact an intensity
autocorrelation—has a peak to background of 3 to 1. The measurement leading
to A0(τ) is generally referred to as the intensity autocorrelation with background,
as opposed to the background free autocorrelation leading to the expression
Ac(τ) (9.1).

The fourth term of the expansion of Eq. (9.7) can be regarded as a correla-
tion of the second harmonic fields. In the absence of phase modulation—i.e., for
bandwidth-limited pulses—this function is identical to the intensity autocorrela-
tion. This property has been exploited to determine if a pulse is phase modulated
or not [4].

As any autocorrelation, the interferometric autocorrelation is a symmetric
function. However, as opposed to the intensity autocorrelation, it contains
phase information. The shape and phase sensitivity of the interferometric
autocorrelation can be exploited to:

1. qualitatively test the absence or presence of phase modulation and
eventually determine the type of modulation;

2. quantitatively measure a linear chirp; and
3. determine, in combination with the pulse spectrum and linear filtering, the

pulse shape and phase by fitting procedures (see Section 9.4).

9.2.2.2. Linearly Chirped Pulses

The sensitivity of the interferometric autocorrelation to chirp is well illus-
trated by the experimental recordings made with the beam from a Ti:sapphire
laser in Spence et al. [5]. The lower and upper envelopes of the interference
pattern split evenly from the background level in Figure 9.1 pertaining to an
unchirped 45 fs pulse. In the case of a phase modulated pulse as in Figure 9.2,
the interference pattern is much narrower than the pulse intensity autocorrelation.
The wings of the interferometric autocorrelation are identical to those of the inten-
sity autocorrelation. The level at which the interference pattern starts relative to
the peak (2.8/8 in the case of Fig. 9.2) is a measure of the chirp, as explained later.
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Figure 9.1 Intensity (with background) (a) and interferometric (b) autocorrelation traces of a mode-
locked Ti:sapphire laser pulse after extracavity pulse compression. Note the peak to background
ratios of 3/1 and 8/1 for the intensity and interferometric autocorrelations, respectively (from Spence
et al. [5]).

�9 �90
Delay (psec)


�P�2.0 psec


�P�2.0 psec


�P
v�2.7

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

3

2

1

0

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

8

6

4

2

0

(a) (b)

Figure 9.2 Intensity (a) and interferometric (b) autocorrelation traces of a mode-locked phase
modulated Ti:sapphire laser pulse (from Spence et al. [5]).
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Figure 9.3 Interferometric autocorrelations of Gaussian pulses Ẽ(t) = exp{−(1 + ia)(t/τG)2} for
various values of the linear chirp parameter a. The upper and lower envelopes of the autocorrelations
are plotted for three values of the chirp parameter a. The upper and lower envelopes merge with the
intensity autocorrelation. The table on the right shows the position (delay and value) of the maxima
of the lower envelope (l.e.) of the interferometric autocorrelation as a function of chirp parameter a.

A simple tabulation of the chirp can be made by considering a linearly chirped
Gaussian pulse (ẼE(t) = exp[−(1 + ia)(t/τG)2]), for which the interferometric
autocorrelation can be determined analytically:

G2(τ) =
{

1 + 2 exp

[
−
(

τ

τG

)2
]

+ 4 exp

[
−a2 + 3

4

(
τ

τG

)2
]

cos

[
a

2

(
τ

τG

)2
]

× cos(ω	τ) + exp

[
−(1 + a2)

(
τ

τG

)2
]

cos 2ω	τ

}
. (9.17)

A graphical representation of the upper and lower envelopes as a function of
the chirp parameter a is shown in Figure 9.3. Comparison of Figs. 9.2 and 9.3
indicate a chirp parameter of roughly a = 20 for the experimental pulse. This is
of course only an approximation, but it gives a good estimate of the magnitude
of the frequency modulation near the pulse center.
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9.2.2.3. Averaging over the Pulse Train

Most often, measurements are an average over a pulse train. It has been
demonstrated by Van Stryland [6] that the intensity autocorrelation of pulses
with a statistical distribution of pulse durations is shaped like a double-sided
exponential. This is precisely the shape of the autocorrelation of a single-
sided exponential pulse. The autocorrelation of the output of synchronously
pumped lasers have typically such a double-sided exponential shape. It would
be incorrect to conclude that the pulses generated by these lasers have a single
sided exponential shape. Theoretical simulations have indeed confirmed that fluc-
tuations of the pulse duration along the train are at the origin of the observed
autocorrelation [7, 8].

A similar ambiguity exists in the case of the interferometric autocorrelation of
a train of pulses. The measurement can be either interpreted as the interferometric
autocorrelation of identical chirped pulses, or as the average of interferometric
autocorrelations of bandwidth-limited pulses of different frequencies. To illustrate
this point, let us consider unchirped Gaussian pulses with a Gaussian distribution
of frequencies F(
�) centered at ω	 (� = ω	 + 
�):

F(
�) = τG

b
√
π

e−(
� τG/b)2
. (9.18)

The total autocorrelation (averaged over many pulses at each delay) is the
statistical average of the autocorrelations at each frequency �:

G2(τ) =
∫ ∞

−∞

{
1 + 2 exp

[
−
(

τ

τG

)2
]

+ 4 exp

[
−3

4

(
τ

τG

)2
]

cos�τ

+ exp

[
−
(

τ

τG

)2
]

cos 2�τ

}
F(
�)d�. (9.19)

The integration over frequency can easily be performed. For small chirps, we
can make the approximation in Eq. (9.17) that cos[ a

2 ( τ
τG

)2] ≈ 1. The equation
obtained after substitution of (9.18) into Eq. (9.19) and subsequent integration
is undistinguishable from Eq. (9.17) for b = a. Therefore, it is important to
verify that the pulse train is constituted of identical pulses, in amplitude (energy),
duration and frequency. It is relatively easy to check whether the pulses have
constant energy and duration by displaying simultaneously the fundamental and
the second harmonic of the pulse train. If both show no fluctuation, it can be
said with reasonable certainty that the intensity autocorrelation represents pulses
having the same energy and duration. It can be verified that there are no pulse



466 Diagnostic Techniques

to pulse variation in frequency by displaying the pulse train on an oscilloscope,
after transmission through a spectrometer or reflection off a thin (	100 µm)
etalon.

9.3. MEASUREMENT TECHNIQUES

9.3.1. Nonlinear Optical Processes for Measuring
Femtosecond Pulse Correlations

In ultrafast optics, SHG is the most widely used technique for recording
second-order correlations. Because it is a nonresonant process of electronic
origin, the nonlinearity is fast enough to measure pulses down to 10−14s dura-
tion. While applicable through the IR and visible spectrum, the method is limited
at short wavelength (λ < 380 nm) by the UV absorption edge of optical crys-
tals. Techniques that have been used successfully for shorter wavelengths include
multiphoton ionization [9] surface SHG [10], and two-photon luminescence [11].
Third-order processes such as the optical Kerr effect have also been applied to the
diagnostic of fs UV pulses [12–14]. These third-order correlations, as discussed
in Section 9.1.3, have the additional advantage of being sensitive to pulse asym-
metry. Photodetectors excited by a multiphoton absorption are also convenient
tools for correlation measurements as they produce a signal (current) that can be
processed directly unlike most other nonlinear optical techniques [15–18].

9.3.2. Recurrent Signals

It is assumed here that we have an ensemble of identical fs pulses, so that the
correlations can be constructed from a large number of measurements taken for
different delay parameters τ.

An example of a simple second-order correlator is sketched in Figure 9.4(a).
The beams to be correlated are cross-polarized, and combined with a polariz-
ing beam splitter. An optical delay is used to adjust the delay of the reference
signal Ir(t − τ). The cross-polarized beams are sent orthogonally polarized into
a nonlinear crystal phase matched for type II SHG. If the conditions outlined
below are satisfied, the second harmonic signal is proportional to the function
Ac(τ) defined in Eq. (9.1). This measurement—or function—is generally referred
to as the background-free correlation, as opposed to the correlation with back-
ground. The latter is obtained by frequency doubling the output of a Michelson
interferometer (parallel polarization) in a crystal phase matched for type I SHG.
An alternate technique to generate Ac(τ) is to use beams with parallel polariza-
tion intersecting in a nonlinear crystal. The background free signal is the second



Measurement Techniques 467

(a) (b)

P

P

�
4

�
4

�
2

D D

Polarizing
beam splitter Polarizing

beam splitter

Nonlinear optical crystal

Filter

Nonlinear optical crystal

Filter

Figure 9.4 (a) Basic intensity cross-correlator, using second harmonic type II detection. A polariz-
ing beam splitter cube combines the beams to be correlated. The SH signal generated by the crystal
is proportional to the product of the fundamental intensities along the two orthogonal directions of
polarization. The sketch on the right side, (b), shows a simple autocorrelator using the same type of
detection. The same “recombining” polarizing beam splitter cube can be used to split the beams into
the two arms of the interferometer. Two quarter wave plates are used to rotate the polarization of the
beam reflected by the mirrors of the two delay arms by 90◦.

harmonic generated with wave vector k2 along the bisector of the two wave vec-
tors ks and kr . The crystal orientation has to satisfy the phase matching condition
k2 = ks + kr .

With either background-free techniques, the SH field is proportional to the
product of the fundamental fields:

ESHG(�) = η(�)Es(�)Er(�), (9.20)

or, for the spectral intensities:

ISHG(�) = 2µ0c

n
|η(�)|2Is(�)Ir(�). (9.21)

In order for the instrument sketched in Fig. 9.4 to measure the true cross-
correlation or autocorrelation, it is essential that the SH conversion efficiency
η(�) be a constant over the frequency range of the combined pulses. Another way
to express the same condition is to state that the effective crystal length should
be shorter than the coherence length of harmonic generation over the pulse band-
width (cf. Chapter 3). The “effective length” can be either the physical crystal
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thickness, Rayleigh range ρ0 of the focused fundamental beams, or the overlap-
ping region of the fundamental pulses in a noncollinear geometry. The shorter
the crystal, the broader the bandwidth over which phase matched harmonic
conversion is obtained, but the lower the conversion efficiency. There is clearly a
compromise to be reached between bandwidth and sensitivity. In Eq. (9.21), the
bandwidth efficiency factor η(�) includes only the frequency dependence of the
phase matching condition, and not a finite response time for the harmonic gener-
ation process. It is assumed here that the response time of the second harmonic
process is much shorter than the pulses to be measured, which is a reasonable
assumption since the second-order nonlinearity of wide bandgap crystals is a
nonresonant electronic process.

Provided the pulses can be approximated by a Gaussian, a simple test can
be performed to determine whether the proper focusing and crystal thickness
has been chosen. In the case of the autocorrelation [Fig. 9.4(b)], a standard
spectrometer (a 25-cm spectrometer is generally sufficient) is used to record the
spectral intensities of the fundamental and second harmonic [2]. In the case
of perfect phase matching and zero dispersion, and for a conversion efficiency
independent of frequency, the ratio of second harmonic to the square of the
fundamental spectral intensity will be a constant in the case of Gaussian pulses,
according to Eq. (3.106). The spectrum of the second harmonic will be narrower
than the squared fundamental spectrum if the effective crystal length is too long.
As a consequence of the SH conversion efficiency being frequency dependent,
the measured correlation width will be longer than the exact correlation length.

The background-free autocorrelation function Ac [Eq. (9.1)] for a fluctuat-
ing cw signal consists of a symmetric “bump” riding on an infinite background
(Figure 9.5). The width of the bump is a measure of the temporal width of the fluc-
tuations, and the contrast ratio (peak-to-background ratio of Ac) is a measure of
the modulation depth. A 100% modulation depth results in a peak-to-background
ratio of 2 to 1 [19]. Any background-free signal of finite duration results in a
function Ac of finite width [Fig. 9.5(c)]. If that signal has some fine structure
(amplitude modulation), a narrow spike will appear in the middle of the cor-
relation function [Fig. 9.5(d)]. This is the coherence spike, typical of a signal
consisting of a burst of amplitude noise [20]. These considerations do not apply
to the phase content or phase coherence of the pulse: The intensity correlations
are the same whether the pulse is at a fixed carrier frequency or has a random or
deterministic frequency modulation.

9.3.3. Single Shot Measurements

Not all lasers provide a train of identical pulses and/or work at high repetition
rate. Pulse to pulse fluctuation can be particularly severe in oscillator ampli-
fier systems. Single shot autocorrelators are therefore highly desirable. In this
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Figure 9.5 Some typical waveforms (intensity versus time) (top) and corresponding intensity auto-
correlation Ac(τ) (bottom). From left to right: (a) continuous signal with 100% amplitude modulation;
(b) noisy cw signal; (c) pulse; and (d) noisy pulse.

section we will discuss the simplest single shot autocorrelators. More sophisti-
cated instruments for single shot amplitude and phase retrieval will be described
in Section 9.4.

9.3.3.1. Intensity Autocorrelators

One of the first intensity autocorrelators for mode-locked lasers was a single-
shot instrument [21]. The beam to be measured is split in two beams, which
are thereafter sent with opposite propagation vector into a nonlinear medium.
The first autocorrelator was based on two photon excitation rather than SHG:
The medium (for instance a dye solution) was selected for its large two photon
absorption and subsequent fluorescence. Because of the larger optical field in
the region where the two counter-propagating pulses collide, the observed pat-
tern of two-photon fluorescence essentially displays the intensity autocorrelation
(with background). Because of the higher conversion efficiency of SHG, two-
photon fluorescence is not widely used in the fs time scale, except in the UV,
where no transparent nonlinear crystals can be found. To circumvent the diffi-
culty of spatially resolving the µm size of the two-photon fluorescence trace, the
beams are made to intersect at a small angle, thereby magnifying the fluorescence
trace [11, 22].

Single-shot autocorrelators using SHG have also been designed. In an arrange-
ment developed for ps pulses by Jansky et al. [23] and Gyuzalian et al. [25] the
autocorrelation in time is transformed into a spatial intensity distribution. This
method has been applied by numerous investigators to the fs scale [24, 26, 27].
The instrument is a typical noncolinear SH autocorrelator. The nonlinear crys-
tal is oriented for phase matched type I SHG for two beams intersecting at an
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angle 2� [Figure 9.6(a)]. Provided the beam waist in the overlap region w0 is
much larger than the pulse length νgτp, the intensity distribution across the SH
beam corresponds to the intensity autocorrelation function. Cylindrical focusing
and a linear array detector can be used to capture the intensity profile of the
autocorrelation. A typical measurement is shown in Fig. 9.6(b). The width of the
autocorrelation function 
τa is proportional to the diameter 
w of the SH beam:


w = 
τaνg

sin �
. (9.22)

Let us consider the projection of the two intersecting beams on axis z (along
the direction of propagation) and x (the orthogonal direction). The components of
the pulse envelope are copropagating along the z direction, counter-propagating
along the x axis. For a pulse with a temporal profile Ẽ(t), the component of
the two envelopes propagating along the x direction are Ẽx = Ẽ(t − x

/
Lx) and

Ẽ−x = Ẽ(t + x
/

Lx) with Lx = νg
/

sin �. The SH intensity along the x direction

is proportional to the product ẼxẼ−x [23]. If we consider for instance a linearly
chirped Gaussian pulse, the second harmonic just behind the crystal is also a
Gaussian:

ẼSHG(t) ∝ exp

[
−2

(
t2

τ2
G

+ x2 sin2 �

ν2
gτ

2
G

)(
1 + i

a

2

)]
. (9.23)
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The spatial dependence of the SH intensity is indeed an intensity autocorrelation,
expanded transversely by the factor 1/sin �. As noted by Jansky et al. [23]
and further investigated by Danielius et al. [28] the spatial phase dependence
of the SH field indicates that the wavefront is no longer a plane wave, but
has a (cylindrical) curvature proportional to the chirp parameter a. Referring
to Gaussian beam propagation Eq. (1.180), the curvature is approximately R =
k	ν2

Gτ2
G/(2a sin2 �).

An analysis of the beam propagation after the crystal can be made by spa-
tial Fourier transforms, starting with the wave equation in the retarded frame
Eq. (1.177):

∂

∂z
ẼSHG = − i

2k	

∂2

∂x2
ẼSHG. (9.24)

Taking the Fourier transform along the transverse spatial coordinate x and
integrating along the propagation direction z:

ẼSHG(kx , z, t) = ẼSHG(kx , z = 0, t)e
i

2k	
k2

x z
. (9.25)

Taking the inverse Fourier transform leads to the field distribution after a
propagation distance z:

ẼSHG(x, z, t) =
∫ ∞

−∞
ẼSHG(kx , z = 0, t)e−ikxxe

i
2k	

k2
x z

dkx . (9.26)

Assuming that the overlapping region is short enough to produce an undistorted
second harmonic, as discussed in Chapter 3, the SH field at the end of the
crystal is:

ẼSHG(x, z = 0, t) = ηẼ
(

t − x

Lx

)
Ẽ
(

t + x

Lx

)
, (9.27)

where η is the proportionality factor of Eq. (9.20) assumed to be constant over the
frequency range of interest. Taking the Fourier transform gives us the function
ẼSHG(kx , z = 0, t) to be inserted in Eq. (9.26):

ẼSHG(kx , z = 0, t) =
∫

ηeikxxẼ
(

t − x

Lx

)
Ẽ
(

t + x

Lx

)
dx. (9.28)

The spatial distribution given by Eq. (9.26) focuses after a distance zF for which
the phase factor (i/2k	)k2

x zF compensates the phase factor produced by chirp
in Eq. (9.23). It is possible to reconstruct the chirp by matching the intensity
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distributions measured at z = 0 and z = zF to the distributions calculated with
help of Eqs. (9.24) through (9.28).

9.3.3.2. Interferometric Autocorrelator

By recording the spatial profile of the second harmonic with interferometric
accuracy, Salin et al. [29] showed that it was actually possible to record an inter-
ferometric autocorrelation. Because of diffraction effects, as explained earlier,
the method is difficult to implement, and usually does not provide a recording
with an 8 to 1 peak to background contrast. Simpler methods are available, mak-
ing use of the tilt in energy front introduced by a dispersive element. We have
seen in Chapter 2 that the energy front is tilted with respect to the wavefront
by a prism (or any other element introducing angular dispersion). As shown by
Szabo et al. [30] this property can be exploited to provide a variable delay along
a transverse coordinate of the beam. A glass wedge is inserted in one or both
arm(s) of a Michelson type autocorrelator (Figure 9.7). As in the previous method,
the spatial (transverse) distribution of second harmonic is proportional to the pulse
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Figure 9.7 Sketch of the single-shot interferometric autocorrelator using prisms (or wedged
windows) to transfer the delay to the transverse coordinate of the beam, and typical recording of
a 250-fs UV pulse. To record fs pulses, the angle of the prisms should not exceed a few degrees.
The fringe spacing is adjusted by the tilt of a mirror in one arm of the autocorrelator (Adapted from
LeBlanc et al. [22]).
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intensity autocorrelation. Obtaining such an intensity autocorrelation, however,
assumes that the beams coming from both arms of the correlator add construc-
tively toward the detector, destructively toward the source. Such a condition is
difficult to implement, because it requires subwavelength stability and accuracy
in controlling either arm. For this particular correlator, it is more convenient to
introduce a small tilt of either end mirror of the Michelson interferometer. Such
a tilt produces a pattern of parallel fringes at the output. Before the frequency
doubling crystal, we have thus generated a first-order correlation. The second
harmonic of such a first-order correlation is an interferometric correlation [22].
This arrangement has the advantage that one has complete control over the spac-
ing of the fringes, which can be adjusted to accommodate the spatial resolution
of the array detector used in this measurement. An example of an interferomet-
ric autocorrelation obtained with a fs UV pulse is shown in Fig. 9.7. For this
particular case, the nonlinearity is two-photon fluorescence in BaF2.

9.4. PULSE AMPLITUDE AND PHASE
RECONSTRUCTION

9.4.1. Introduction

Because the second-order autocorrelations are symmetric and do not provide
any information about the pulse asymmetry, either an additional measurement
or a new technique is required to determine the signal shape. We will start with
simple methods that complement the information of the autocorrelations, and pro-
ceed with an overview of various methods that have been introduced to provide
amplitude and phase information on fs signals. The ideal diagnostic instrument
is obviously one that would give a real time display of all pulse parameters.
Because of the ambiguity associated with an average over a large number of
pulses, a single-shot method is also desirable. The challenge in fs pulse char-
acterization is that a temporal resolution is needed that is faster than the pulse
itself. The solution, as sketched in Figure 9.8, is to apply a transfer function to
expand the signal. From the knowledge of the transfer function and the expanded
signal the shape of the original object is recovered.

As introduced in Chapter 1 a light pulse in the time domain is characterized
by its electric field

E(t) = 1

2
E(t)eiϕ0 eiϕ(t)eiω	t + c. c. (9.29)

In this section we are concerned with the retrieval of the pulse envelope E(t) and
the time-dependent phase ϕ(t) only. The measurement and control of the absolute
phase ϕ0 are described in Chapter 13.
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A flea

(a) (b) (c)

Figure 9.8 Applying a transfer function (b) to magnify the object (a) to be observed. The original
object can be reconstructed by applying the inverse transfer function to the observed figure (c).

More than 30 years ago Treacy [31] measured a “sonogram” of ps pulses.
It took more than a decade before its importance for the full-field characterization
of fs pulses was recognized [32]. Phase and amplitude of a pulse stretched in an
optical fiber was measured using a cross-correlation with a short sample pulse
(compressed output pulse) using an interferometric technique [33].

Early on methods based on interferometric autocorrelations and the pulse spec-
trum were developed to retrieve the complex field [2, 4, 34]. Efforts to use the
pulse spectrum in conjunction with some kind of (nonlinear) correlation have
been pursued [35–37].

With the development of more reliable and powerful fs lasers in the 1990s
a variety of other pulse characterization schemes have been discussed and
demonstrated [38–46]. While some rely on matching the measurements with
a complex pulse amplitude iteratively, others permit a direct reconstruction.
In the past decade, two techniques have emerged as most successful and ver-
satile for a variety of different application scenarios—frequency resolved optical
gating (FROG) [14] and spectral phase interferometry for direct electric field
reconstruction (SPIDER) [47].

In the next section we will discuss the general requirements on an exper-
imental apparatus to retrieve amplitude and phase of ultrashort light pulses.
In Section 9.4.3 we will review techniques based on the measurement of pulse
correlations and spectrum with subsequent fitting. FROG and SPIDER will be
introduced in Sections 9.4.4 and 9.4.5, respectively.

9.4.2. Methods for Full-Field Characterization
of Ultrashort Light Pulses

Walmsley and colleagues [48–50] used an elegant approach to discuss the gen-
eral requirements on measurement techniques that permit the retrieval of both
amplitude and phase of short light pulses. A necessary and sufficient condition
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is that the instrument contains at least one-time nonstationary and one-time
stationary element. Four interferometric and four noninterferometric schemes
that consist of a minimal number of filters exist that satisfy these require-
ments [49, 50]. The detector is assumed to be time integrating, that is, it has
zero bandwidth.

Time stationary filters whose output do not depend on the arrival time of the
pulse act on the pulse field according to

Eout(t) =
∫

S(t − t′) Ein(t′) dt′. (9.30)

Examples are passive devices such as mirrors, gratings, spectrometers, and dis-
persive delay lines. Time nonstationary (or frequency stationary) filters produce
an output that does not change with arbitrary spectral shifts of the input

Eout(�) =
∫

N(� − �′)Ein(�′)d�′. (9.31)

Examples are shutters, which may be controlled externally or by the light pulse
itself.

Each of the two filter classes can be further divided into phase-only (P) and
amplitude-only (A) filters. Examples of corresponding filter functions are:

NA(t, τ) = e−�2(t−τ)2
(9.32)

NP(t, a) = eiat2
(9.33)

SA(�,ωc) = e−(�−ωc)2/γ2
(9.34)

SP(�, b) = e−ib�2
, (9.35)

which represent a time gate, a phase modulator, a spectral filter, and a dispersive
delay line, respectively.

In Chapter 1 we introduced the Wigner function W as a convenient tool
to completely characterize the field of an ultrashort pulse. It is related to the
nonstationary two-time correlation function

C(t, t′) = 〈Ein(t)E∗
in(t′)

〉

by

W(�, t) =
∫

dt′C (t + s/2, t − s/2) ei�s. (9.36)
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Note, that the correlation function C is what one could theoretically measure with
a quadratic detector after a suitable set of filters. Any apparatus for complete pulse
characterization must produce a function of two independent variables to carry
the information about the pulse contained in C(t, t′) or W (�, t). The required
two independently adjustable parameters have to be provided by the set of filters
used. The detector then produces an output signal

D(pi) =
∫

d�
∫

dtW(�, t)F(�, t, pi). (9.37)

Here F is a window function determined by the filter parameters pi (type and
sequence) of the instrument. If the window function of the apparatus is known
the Wigner function (and from that the pulse parameters) can be retrieved from
the measurement D. If the apparatus consists of only time stationary (frequency–
stationary filters) the window function becomes independent of time (frequency).
The measured signal in these cases is the overlap of one of the marginals of the
Wigner function, cf. Eqs. (1.41) and (1.42), and therefore contains no phase
information. A necessary requirement for full-field reconstruction is thus the
presence of at least one of either filters.

The general layout of a noninterferometric and an interferometric system is
sketched in Figure 9.9(a) and (b) consisting of a minimum set of filters. Because
the detector responds only to intensities (square in the field) only amplitude filters
are meaningful elements just preceding the detector. A noninterferometric system
consists of filters in sequence. In an interferometric device the pulse is split, each
replica filtered separately before the combined and filtered output is detected.
While FROG belongs to the first group of techniques, SPIDER is an example of
an interferometric technique.

D DNA

NASA, SANA, NPSA, SPNA NA
SA NA

NA
NA SA

Sp
Np SA

Sp
Np NA

Ein(t) Ein(t)
SA NA

SA

SA

(a) (b)

Figure 9.9 (a) Noninterferometric and (b) interferometric techniques for the measurement
of amplitude and phase of short light pulses. Four possible combinations of filters (labeled
by their transfer functions) are shown for each concept. Adapted from Iaconis et al. [47]
and Walmsley and Wong [49].
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9.4.3. Retrieval from Correlation and Spectrum

While being always symmetric, the shape of an intensity and interferometric
autocorrelation is (somewhat) sensitive to the pulse shape. It is conceivable that
the pulse spectrum can complement the information provided by the symmetric
second-order autocorrelations, to determine the signal shape. As an illustration
of this, Table 9.1 shows analytical expressions [2] for the pulse spectrum, the
intensity correlation, and the envelope of the interferometric correlation for vari-
ous pulse shapes. For some typical shapes of the temporal intensity profile given
in the first column, the spectral intensity (column 2) is used to compute the
duration–bandwidth product τp
v listed in column 3. The unit for the time t
is such that the functional dependence takes the simplest form in column 1.
The inverse of that time unit is used as unit of frequency �. The most often
quoted parameter is the ratio of the FWHM τac of the intensity autocorrela-
tion (column 4) to the pulse duration τp, and is given in column 5. Finally, the
upper and lower envelopes of the interferometric autocorrelation G2(τ) can be
reconstructed from the expressions given in column 6.

Table 9.1

Typical pulse shapes, spectra, intensity, and interferometric autocorrelations.
To condense the notation, x has been substituted for 2

3 τ , y for 4
7 τ , ch for cosh,

sh for sinh. τac is the FWHM of the intensity autocorrelation. τp is the FWHM of
the pulse intensity given in column 1. In the last column,

Q = ±4[τch2τ − 3
2 ch2xshx(2 − ch2x)]/[sh32x].

E2(t) |E(�)|2 τp
v Ac(τ) τac/τp G2(τ) − [1 + 3Ac(τ)]

e−t2 e−�2
0.441 e−τ2/2 1.414 ±e−(3/8)τ2

sech2(t) sech2
(
π�

2

)
0.315

3τ(chτ − shτ)

sh3τ
1.543 ± 3(sh2τ − 2τ)

sh3τ

[et/(t−A)+
e−t/(t+A)]−1

A = 1

4

1 + 1/
√

2

ch
15π

16
� + 1/

√
2

0.306
1

ch3 8

15
τ

1.544 ±4

⎛
⎜⎝

ch
4

15
τ
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15
τ

⎞
⎟⎠

3
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4
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3
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1.549 ±Q
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√
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As we have seen in the previous section, the interferometric autocorrelation
also carries information about the pulse chirp. At the same time these correla-
tion functions are one of the data sets that require relatively little experimental
effort. It is therefore tempting to explore the feasibility of obtaining ampli-
tude and phase of the optical pulse from such measurements. Indeed some
of the earliest successful retrievals of the complex field of fs pulses were
based on the simultaneous fitting of spectrum and interferometric autocorrela-
tion [2, 4]. The reconstruction was facilitated after replacing the autocorrelation
by a cross-correlation of pulses of different duration. The result of that cross-
correlation approximated the longest of the two pulses. Figure 9.10 shows an
example of a Michelson interferometer unbalanced with a phase-only filter
(block of glass), and the recorded intensity and interferometric correlation
functions.

In most cases the problem reduces to the task of measuring the pulse spectrum
and suitable correlations and finding an amplitude and time-dependent phase that
fits the data best. Care has to be taken to guarantee a unique retrieval, which
is to avoid ambiguities hidden in the data sets (see, for example, Problem 3
at the end of this chapter). For this reason unbalanced correlators where a

Glass

D

a

KDP

�400 0
Delay (fs)

400
0

Delay (fs)
�300300

b

t

t
t

Downchirped

Pulse

Figure 9.10 Sketch of an asymmetric correlator to record second-order correlation functions
G2 through SHG. An example of intensity (a) and interferometric (b) cross-correlation measured
with this setup is also shown. The input was an asymmetric downchirped pulse, which is compressed
in the arm containing a 5-cm BK7 block. Adapted from Diels et al. [2].
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Figure 9.11 Schematic diagram of the retrieval of phase and intensity from correlation and spectrum
only (PICASO) [36, 51].

linear optical element of known transfer function is inserted into one arm of the
correlator have been implemented [34, 36].

A possible retrieval algorithm is sketched in Figure 9.11. The pulse spec-
trum, S(�) = |E(�)|2, and a pulse correlation of type k or an ensemble of
M correlations, Ck,m are measured. The retrieval starts by guessing a spectral
phase, ϕ(�), which combined with the measured spectrum results in an initial
pulse

√
S(�)eiϕ(�). This pulse is used to calculate the correlation(s) Ck,r(τi) that

are recorded in the measurement. A root mean square deviation of measured and
calculated correlation can be defined by


k =
M∑

k=1

√√√√ 1

N

N∑
i=1

[
Ck,r(τi) − Ck,m(τi)

]2, (9.38)
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Figure 9.12 (a) Target and retrieved pulse amplitude and phase using a third-order correlation,
which was unbalanced with an amplitude-only filter. Field noise (3% additive and multiplicative)
was considered. (b) rms errors for different retrieval scenarios for the pulse shown in the left part of
the figure. The labels refer to the components of the correlations used in the retrieval (amp., unbal.,
dual B0, for example, means that two intensity correlations of third order, where used, measured
with an amplitude unbalanced Michelson interferometer. In one of the measurements an additional
filter was placed in front of the detector). The labels were defined in Eqs. (9.7) and (9.12). Adapted
from Nicholson and Rudolph [37].

which serves as the figure of merit to be minimized during the search. The quality
of the retrieval and its robustness against experimental noise depends on the data
sets used for the correlation functions.

If the correlation is chosen properly, the pulse can be retrieved reliably together
with the spectrum. This is illustrated in Figure 9.12. Part (a) shows a test pulse
and its retrieved replica using a third-order correlation, which can be based on
third harmonic generation for example. Figure 9.12(b) depicts the rms error of
the retrieval results for different measurement scenarios, that is, different types
of correlation in addition to the spectrum.

9.4.4. Frequency Resolved Optical Gating (FROG)

Frequency resolved optical gating (FROG) was introduced by Kane and
Trebino [13, 14] in 1993, and since then has developed into a field of its own.
Numerous versions of the original scheme have been introduced to increase accu-
racy, sensitivity, versatility, and practicality. Details of these developments can
be found in Trebino’s [52] book devoted entirely to this subject.
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Figure 9.13 Experimental arrangement for frequency resolved optical gating. The pulse to be ana-
lyzed Ẽ(t) is gated by its delayed replica Ẽ(t−τ) in a Kerr shutter assumed to respond instantaneously
(Adapted from Trebino and Kane [13]).

A FROG measurement records a two-dimensional trace of the form

SE(�, τ) =
∣∣∣∣
∫ ∞

−∞
dt Ẽ(t)g(t − τ)e−i�t

∣∣∣∣
2

, (9.39)

where g is a gate function of variable delay τ, and Ẽ(t) is the complex pulse
amplitude to be determined. The gate function is usually provided by a nonlinear
optical process. Assuming instantaneous response, g(t − τ) ≈ |Ẽ ′(t − τ)|2 for a
Kerr nonlinearity and g(t − τ) ≈ Ẽ ′∗(t − τ) for sum frequency generation. Ẽ ′ can
be the original pulse in which case an autocorrelation is measured or a reference
field for a cross correlation (XFROG). The Fourier transform in Eq. (9.39) is
realized using an optical spectrometer in front of the detector.

The original FROG apparatus involved a Kerr shutter and is sketched in
Figure 9.13. The signal transmitted by the Kerr gate, the sequence polarizer—
Kerr medium—polarizer, is a pulse of electric field (complex) amplitude3:

Ẽs(t, τ) = Ẽ(t)g(t − τ), (9.40)

A CCD camera at the output of the spectrometer records the spectrogram SE(�, τ)
of Ẽs(t, τ). The delay τ varies parallel to the entrance slit of the spectrometer
because gate and signal pulse intersect at an angle in the Kerr medium.

The function represented by Eq. (9.39) is well-known in acoustics and used to
display acoustic waves [53]. The spectrogram of a strongly chirped pulse shown
on the left side of Figure 9.14 seems identical to the writing of many successive

3Apart from constants that do not affect the shape and that we will omit here.
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Figure 9.14 Spectrogram of a pulse with strong SPM. The frequency sweeps from −12 to +12
inverse pulse lengths during the pulse (Adapted from Trebino and Kane [13]). The acoustic analog
(see also the reconstruction in Fig. 9.16).

notes (right side of Fig. 9.14), which can be considered a temporal sequence of
spectral components. The difference is that only, in the case of music, the carrier
frequency is in the KHz rather than PHz range, and the time delays are seconds
rather than fs. The problem of reconstruction reduces essentially to extracting
the function Ẽs(t, τ) from the spectrogram. Indeed, we note that the integral of
Eq. (9.40) over the delay τ is simply proportional to the pulse itself4

Ẽ(t) ∝
∫ ∞

−∞
Ẽs(t, τ)dτ. (9.41)

The FROG trace is related to the Fourier transform of Ẽs(t, τ), Ẽs(t,�τ), by

SE(�, τ) =
∣∣∣∣
∫ ∞

−∞
dt
∫ ∞

−∞
d�τ Ẽs(t,�τ)e−i�t+i�ττ

∣∣∣∣
2

. (9.42)

Extraction of the unknown signal Ẽs(t,�τ) from the spectrogram (9.42) is a
two-dimensional (the two dimensions are t and τ) phase retrieval problem. This
(phase retrieval) problem is known to have a unique solution for two and higher
dimensions [54, 55]. The flowchart of the original FROG algorithm, which can
be found in Trebino and Kane [13, 14], is shown in Figure 9.15 for illustration.

Because we can write Eq. (9.39) as

SE(�, τ) = |Ẽs(�, τ)|2,

4The integration over the variable τ is equivalent to opening the gate function for all times in
Eq. (9.40).
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Figure 9.15 Flowchart of an iterative reconstruction algorithm. Adapted from Trebino and
Kane [13].

by replacing the magnitude of Ẽs(�, τ) by
√

SE(�, τ) during each iteration cycle,
Eq. (9.39) is always satisfied. Improved algorithms, based for example on gen-
eralized projections known from phase retrieval of images, have been developed
over the years [52, 56]. Here the integration step to obtain Ẽ(t) is replaced by a
search to minimize the figure of merit

Z =
∑
i, j

∣∣∣Ẽs(ti, τj) − Ẽ(ti)|Ẽ(ti − τj)|2
∣∣∣ .

The reconstruction of the pulse defined by the spectrogram on the left side
of Fig. 9.14 leads to the instantaneous frequency versus time and spectrum of
Figure 9.16.
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Figure 9.16 Instantaneous frequency versus time and spectrum reconstructed from the spectrogram
on the left Fig. 9.14 (Adapted from Kane and Trebino [14]).
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9.4.5. Spectral Phase Interferometry for Direct
Electric Field Reconstruction (SPIDER)

Unlike the techniques discussed before SPIDER allows one to determine the
pulse shape and phase noniteratively by a set of linear transformations of the
measured data. The technique developed by Iaconis and Walmsley [47] is an
example of spectral shearing interferometry. Suppose we have two pulses that
are identical except that they are shifted in frequency with respect to each other
by an amount ωs (spectral shear). These two pulses are delayed in time by τ and
send into a spectrometer. At the output of the spectrometer, using a quadratic
integrating detector, we measure a signal proportional to the square of the sum
of the spectral fields Ẽ(� + ωs) and Ẽ(�)e−i�τ .

S(�) = |Ẽ(� + ωs)|2 + |Ẽ(�)|2 + 2|Ẽ(� + ωs)||Ẽ(�)| cos(
�) (9.43)

where


� = [�(� + ωs) − �(�) + �τ] . (9.44)

Because of the cosine term the spectrogram is modulated with a period of
about τ−1. The data set S(�) can be processed noniteratively using a retrieval
procedure known from spectral interferometry to obtain the spectral phase dif-
ference �(�+ωs) −�(�) and from this the spectral phase �(�) [57,58]. Note
that the spectral phase �(�) and amplitude |E(�)|, which can be obtained from
the square root of the spectral envelope, determine the pulse amplitude and phase
unambiguously.

For example, the spectral interferogram is Fourier transformed using a
computer. The resulting spectrum (in time) has components centered at t = 0
(carrying information about the spectral envelope) and at t = ± τ. The t = 0, −τ

components are removed by filtering and the result is inverse Fourier transformed.
After removing the component �τ the spectral phase difference is obtained, from
which the spectral phase �(�) can be calculated through concatenation.

The question is how to produce two pulse replicas that differ only in their
center frequencies? A SPIDER apparatus is sketched in Figure 9.17. The pulse to
be characterized is split into two replicas. One replica is stretched and chirped in
a dispersive device, for example a grating sequence. The second replica is split
again into two time-delayed pulses, for example in a Michelson interferometer.
These two (identical) pulses are mixed (upconverted) with different parts of the
stretched pulse, each centered at a different frequency because of the chirp.
The result is a pair of (upconverted) pulses that are identical except for a spectral
shear.
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MI

�

GDL

SF

S

Figure 9.17 Schematic diagram of a SPIDER apparatus. One replica of the pulse to be characterized
is stretched and chirped in an element with group delay dispersion (GDL), the other replica is split
into identical time-delayed pulses in a Michelson interferometer (MI). The sum frequency is produced
in a nonlinear crystal (SF) and recorded in a spectrometer (S). Adapted from Iaconis et al. [47].

The stretcher has to be designed so that the frequency of the stretched pulse
does not change (much) during the time of the original pulse duration. Pulses
consisting of few optical cycles have been successfully characterized using the
SPIDER technique [60]. By combining it with homodyne detection sensitivity
and versatility are improved [61]. True single shot implementation of SPIDER
has been demonstrated at a repetition rate of 1 KHz [62].

9.5. PROBLEMS

1. Show that the statistical average of the autocorrelation of Gaussian pulses
distributed in frequency [distribution given by Eq. (9.18)] is approximately
identical to the autocorrelation of a simple Gaussian pulse [perform the
integration of Eq. (9.19), and compare to Eq. (9.17)].

2. Consider a Gaussian pulse of 50-fs duration at 800 nm, with an upchirp cor-
responding to a = 1. 5. Determine analytically the result of a measurement
using the cross-correlator in which a block of BK7 glass has been inserted
in one arm. Calculate the amount of glass required for pulse broadening by
a factor 5, after double passage through the glass. Calculate the envelopes
A1(τ), A2(τ), and A3(τ) that will be obtained by measuring a second-order
cross-correlation, cf. Eq. (9.7). Write the expressions corresponding to the
various steps of the procedure leading to the reconstruction of the original
pulse following Section 9.2.2.2.

3. Derive Eq. (9.12), the expression for the third-order interferometric cor-
relation. Determine the peak to background ratio of the fringe resolved
autocorrelation and of the intensity autocorrelation. Assume equal pulses,
E1 = E2.

4. Let us assume that the spectral phase of a pulse is given by �(�) =
φ2(� − ω	)2 + φ3(� − ω	)3 and the complex field is to be retrieved from
the measurement of the pulse spectrum and (a) an amplitude unbalanced



486 Diagnostic Techniques

(a)

�1500 1500�1000 1000�500 500

200

150

100

50

0

�50

�100

�150

�200
0

�3

�
2

�1500 1500�1000 1000�500 500

200

150

100

50

0

�50

�100

�150

�200
0

�3

�
2

(b)

Figure 9.18 Figure of merit, cf. Eq. (9.38), of pulse retrieval based on a spectral measurement
and (a) an amplitude unbalanced third-order correlation and (b) an amplitude and phase unbalanced
third-order correlation.

third-order correlation, and (b) an amplitude and phase unbalanced third-
order correlation using the PICASO scheme, cf. Fig. 9.11. The search space

(φ2,φ3) is depicted in Figure 9.18, with dark zones representing minima
of the root-mean square deviation, cf. Eq. (9.38). Explain the reason for
the ambiguity in case (a). How do the two possible pulses differ in the
time domain? Why does adding a phase filter resolve the ambiguity?
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10
Measurement Techniques of
Femtosecond Spectroscopy

10.1. INTRODUCTION

Femtosecond pulses are an ideal tool to investigate ultrafast processes of var-
ious origins. There is usually more than one parameter that varies with time in
any particular experiment. One of these parameters will often be the position.
As an example of the types of time dependence that have to be distinguished, let
us consider the example of an apple falling from a tree (Figure 10.1). A photo-
graph taken with a sufficiently short exposure time can freeze the motion of the
falling apple as it reaches the position x. We can compare this picture with one
of the apple still on the tree, which provides some information about the aging
process. To establish either the law of motion x(t) or the temporal behavior of
aging, we need to know exactly the time elapsed from the moment the apple
was shaken loose from the tree to the moment the photograph was taken. The
standard experimental technique is to trigger the fall (for instance, ignite a small
explosion) and simultaneously start a clock that synchronizes the shutter of the
camera. By triggering the event, we do not have to wait days for the apple to
fall down.

A pump–probe femtosecond experiment has analogies as well as fundamen-
tal differences with the falling apple measurement. The basic analogy is that a
powerful light pulse—usually labeled the “pump pulse” or “excitation pulse”—
interacts with the sample and excites it into a nonequilibrium state (Figure 10.2).
The sample thereafter relaxes toward a new equilibrium state. This process can
be mapped by sending a second (much weaker) pulse, called a probe or test

491



492 Measurement Techniques of Femtosecond Spectroscopy

x

x

t

Figure 10.1 The falling apple and the aging apple.
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Figure 10.2 Schematic representation of a pump–probe experiment in ultrafast spectroscopy. The
pump and probe pulses can be obtained from a single source and delayed with respect to each other
in a Michelson or a Mach–Zehnder interferometer, for example.

(pulse), onto the sample. The probe is the analog of the snapshot photograph,
aimed at detecting a change of optical properties without disturbing the object
under investigation. The difference with the falling apple is that the speed of
light is infinite compared to the velocity of the apple, whereas the propagation
time of the probe radiation through the sample can be long compared with the
event to be observed. Therefore, the geometry of interaction, the angle between
probe and pump, the interaction length, and the group velocities in the sample
are essential parameters in femtosecond pump–probe experiments.

In a typical pump–probe experiment, the delayed weak pulse probes the
change of an optical property 
S, such as transmission or reflection, induced
by the pump. Repeating the experiments for various delays τd provides the func-
tion 
S(τd). Depending on the actual light–matter interaction, 
S(τd) is related
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to material parameters such as occupation numbers, carrier density, and molecular
orientation. In this chapter we discuss a selection of fs experimental techniques,
many of them originally developed for ps and ns spectroscopy.

The obvious temporal limitation of the pump–probe technique is the duration
of the pump and probe. The medium preparation should be completed before
the material can be probed. If the physics of the interaction is well understood,
a theoretical modeling (deconvolution) can provide some interpretation of data
corresponding to partial temporal overlap of pump and probe.

A compromise often must be sought between spectral and temporal resolution.
Either the probe or the pump pulse has to select a specific spectral feature. To
excite the desired transition, rather than an adjacent one, the excitation spectrum
(i.e., the pulse spectral width 
ωp, augmented by the Rabi frequency κE or
power broadening of the transition, if needed) should not exceed the separation
between lines 
. The spectral resolution imposes therefore a limit to the temporal
resolution, because the pulse duration should not be less than τp ≈ 1/(
 + κE).

10.2. DATA DECONVOLUTIONS

In most fs time-resolved experiments, a signal S(τd) is measured as a function
of position or delay τd of a reference probe pulse of intensity Iref (t). We will
consider the large class of measurements where the measured quantity is propor-
tional to the product of a gating function Ig times the physical quantity f (t) to
be analyzed. The gate Ig(t) is a direct function of the reference intensity Iref (t).
Because—as pointed out in the previous chapter—the detection electronics has
no fs resolution, the measured signal will be the time integral:

S(τd) =
∫ ∞

−∞
Ig(t − τd)f (t)dt. (10.1)

Deconvolution procedures should thus be applied to retrieve the physical quan-
tity f (t) from the measurement S(τd). A typical example is a measurement of
time resolved fluorescence by upconversion. As detailed in Section 10.7, the
detected upconversion radiation results from mixing the signal (fluorescence)
and the reference pulse in a nonlinear crystal. Therefore, in that particular case,
the gate function is the reference pulse itself Ig(t) = Iref (t). It is often assumed
that the gating function in the correlation product [Eq. (10.1)] is much shorter
than the fastest transient of the signal and thus can be approximated by a δ func-
tion. With that simplifying assumption, the signal is directly proportional to the
physical parameter to be measured: S(τd) ∝ f (τd). There are, however, fast
events—such as the rise of fluorescence—for which this simplifying assumption
is not valid. The exact temporal dependence f (τd) can be extracted from the data
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if the gating function Ig(t) is known. Indeed, if I(�) is the Fourier transform of
the gate function Ig(t), and S(�) is the Fourier transform of the measured signal
S(τd), the Fourier transform f (�) of the physical quantity f (t) is just the ratio:

f (�) = S(�)

I(�)
. (10.2)

The physical quantity f (t) can be calculated by taking the inverse Fourier
transform of Eq. (10.2). This deconvolution technique can be applied in numer-
ous cases where the gate function Ig(t) does not depend on the phase of the
interaction.1

10.3. BEAM GEOMETRY AND TEMPORAL
RESOLUTION

To obtain a better quantitative understanding of the influence of the beam
geometry on the temporal resolution, let us analyze a pump–probe experiment
as sketched in Figure 10.3. The pump pulse creates a small change of the trans-
mission coefficient, 
a(x, y, z, t), which is sampled by the time-delayed test

Test

Pump

Sample

A

B

D

P
D

x

y

d

It

Ip

2�

�d

�

Figure 10.3 Schematic diagram of a pump–probe transmission experiment in noncollinear geom-
etry. The line AB shows the position of the pump pulse maximum at t = 0. Refraction at the sample
interfaces has been neglected.

1The gate depends on the phase of the interaction in the case of coherent interaction treated in
Chapter 4. In that case the measured signal cannot be described by the simple expression (10.1).
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pulse of intensity It(t). The signal measured by the detector PD as function of
the delay τd can be written as the sum of the transmitted test pulse energy Wt0
in the absence of a pump and a pump-induced change 
Wt(τd):

Wt(τd) = Wt0 + 
Wt(τd)

∝
∫ ∞

−∞
dt
∫ ∫ ∫

dx dy dz [1 + ao + 
a(x, y, z, t)] It(x, y, z, t − τd)

(10.3)

where ao is the transmission coefficient in the absence of the pump and |a0| 	 1
has been assumed: ea = 1+ a0 +
a. In the overlapping volume of the two beams,
a complex mixing of spatial and temporal effects occurs. We want to derive
conditions under which the excitation geometry does not affect substantially the
outcome of the experiment. For simplicity, the beam profiles of pump and test
pulse are assumed to be uniform and of rectangular shape, the temporal profiles
are Gaussian of equal FWHM τp, and the overlapping region is symmetric with
respect to the sample center. The time axis is chosen so that the pump pulse
maximum reaches the origin of the coordinate system at t = 0, and the test pulse
reaches the origin at t = τd . The sample response is assumed to follow the pump
pulse instantaneously, 
a ∝ Ip(t), and we expect a signal 
Wt(τd) resembling
the pulse autocorrelation in the absence of geometrical effects. An increase of
the correlation FWHM is then a measure of the loss in temporal resolution of
any pump–probe experiment because of geometrical effects.

In the following considerations we will omit constants for the sake of brevity.
The delay-dependent part of the measured signal is


Wt(τd) ∝
∫ ∞

−∞
dt
∫

dx
∫

dyIt(x, y, t − τd)Ip(x, y, t) (10.4)

where we have already carried out the z-integration yielding a constant. The
pulses propagate through the sample with the group velocity νg. Lines of
constant intensity (parallel to AB in Fig. 10.3) obey the equation

(x − νgt sin α) = −(y − νgt cosα)
cosα

sin α
(10.5)

for the pump pulse and

[
x + νg(t − τd) sin α

] = [y − νg(t − τd) cosα
] cosα

sin α
(10.6)
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for the test pulse. Hence, the corresponding pulse intensities which are needed
in the integral (10.4) can be written as

Ip = Ip0 exp

{
− 4 ln 2

(νgτp)2
[ y cosα + x sin α − νgt]2

}
(10.7)

It = It0 exp

{
− 4 ln 2

(νgτp)2

[
y cosα − x sin α − νg(t − τd)

]2} . (10.8)

Inserting these expressions into Eq. (10.4) and carrying out the time integration
yields after some algebra


Wt(τd) ∝ e−2 ln 2(τd /τp)2

ym∫

−ym

dy

u(y)∫

l(y)

dx exp

{
− 8 ln 2

(τpνg)2

[
x2 sin2 α − νgxτd sin α

]}

(10.9)

where

ym = min

(
d

2 sin α
,

D

2

)
(10.10)

l(y) = − d

2 cosα
+ y tan α (10.11)

u(y) = d

2 cosα
− y tan α. (10.12)

The value of ym depends on whether or not the overlapping area of the beams is
completely inside the sample. The upper and lower limit of the x-integration form
the diamond-shaped boundary of the overlapping region as sketched in Fig. 10.3.

The exponential function in front of the integrals is the autocorrelation function
of a Gaussian pulse and represents the result of an ideal measurement where the
geometrical effects do not play a part, i.e., the spatial integration yields a constant
which does not depend on τd . This is obviously the case for a collinear beam
geometry (α = 0◦). For all other cases one can evaluate Eq. (10.9) numerically.
Figure 10.4 shows the FWHM of 
Wt(τd) normalized to its value at α = 0◦ as
a function of α and for different values of the parameter K = νgτp

/
d. The latter

describes the ratio of the geometrical pulse length and the beam width. As can be
seen, the shorter the pulses at a given beam width, the more critical becomes the
beam geometry in a noncollinear experiment. The temporal broadening of 
Wt



Transient Absorption Spectroscopy 497

0

7

6

5

4

3

2

1

0
5 10 15

0.01 0.06

0.1

0.3
6

N
or

m
al

iz
ed

 F
W

H
M

 (degree)

20 25

Figure 10.4 FWHM of 
Wt (τd ) according to Eq. (10.9), normalized to its value at α = 0◦ and
shown as a function of the half angle α between pump and probe pulse. The curves are depicted
for different values of the ratio of the geometrical pulse length and beam width, K = νgτp/d. The
sample thickness was chosen to be D = 3νgτp. For K = 0.1, a second curve for D = 10νgτp is also
shown for comparison (from Krueger [1]).

can be substantial, causing a loss in time resolution of a pump–probe experiment.
The effect of the crystal thickness, on the other hand, is small at moderate values
of the angle α. In the following sections we will always assume an experimental
geometry that justifies neglecting these geometric effects.

10.4. TRANSIENT ABSORPTION SPECTROSCOPY

Transient absorption spectroscopy is a widely used form of a pump–probe tech-
nique. As a simple example to illustrate the method, we consider an ensemble of
two-level systems at resonance with a fs pulse source. With all the particles in the
ground state at thermal equilibrium, the sample acts as a saturable absorber. The
physical quantity to be determined is the energy relaxation time T1 of the excited
state. This parameter is to be extracted from the measurement of attenuation of
the probe versus delay.

A typical experimental arrangement is sketched in Figure 10.5. In order for
the probe to be much weaker than the pump, the reflectivity of the beam splitter
(called BS in Fig. 10.5) should be larger than 0.5. Because only the transmission
of the probe is measured, there is a need to devise a means to shield the pump
pulse from the detector. Because pump and probe have the same wavelength,
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K1

Figure 10.5 Typical geometry for measuring transient absorption. The two relatively delayed pulses
are spatially separated before being sent onto the focusing optics, to provide for k vector separation
in the sample S.

one is left with the following choices:

• separation by polarization,
• separation by wave vector, or
• temporal separation in combination with a gated detector.

In the example sketched in Fig. 10.5, it is the wave vector separation that is used.
In a typical experiment, the first (pump) pulse will saturate the absorber, and

the delayed probe pulse will sample the absorption coefficient. The interpretation
of the data is straightforward if the transition can be considered as homogeneously
broadened. For delays longer than the phase relaxation time T2 of the transition,
the probe pulse samples the absorption coefficient α:

α = σ
N (10.13)

where σ is the absorption cross section and 
N is the population difference
(density) between the upper and lower level of the transition. According to the rate
equation (3.51), after excitation, the absorption coefficient relaxes exponentially
with time:

α(τd) = α0 + 
αe−τd /T1 , (10.14)

where 
α is the change in absorption produced by the pump pulse, τd the delay
of the probe relative to the pump, and T1 is the energy relaxation time of the
absorbing transition.

Extraction of T1 from the measurement can be made under a variety of experi-
mental conditions. In the considerations that follow, we will not attempt to select
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the experimental conditions for best signal-to-noise ratio, but the ones that lead
to the simplest analytical expression relating the measurement to T1, without the
need for numerical modeling. We assume a uniform beam profile. In addition
to being “optically thin,” the sample thickness d is assumed to be negligible
compared with the overlap length of pump and probe beams. Finally, the pump
and probe pulse duration is assumed to be much shorter than the relaxation time
to be measured (τp 	 T1), to avoid the need of deconvolution procedures. The
completion of the pumping process is taken as time origin. The measured signal
S(τd) is the energy of the transmitted probe versus delay. For a probe signal of
energy density W = ∫ Idt sent through a sample of thickness d:

S(τd) = A
∫ ∞

−∞
I(t − τd)eα(t)ddt

≈ AWeα(τd )d ≈ AW [1 + α(τd)d], (10.15)

where A is the beam cross section. Inserting Eq. (10.14) into Eq. (10.15) yields:

S(τd) = AW
[
1 + α0d + 
αde−τd /T1

]
(10.16)

≈ S−∞ + AW
αde−τd /T1 , (10.17)

where S−∞ is the probe transmission in the absence of the pump pulse. The
energy relaxation time T1 can be obtained directly from a logarithmic plot of
S(τd) − S−∞ versus τd . The crucial approximation in Eq. (10.15) is that the
temporal variations of the absorption coefficient be slow compared to the duration
of the probe pulse. A numerical deconvolution of the data can be made if this
latter condition is not satisfied.

The expression (10.14) is only valid for delays sufficiently large such that the
excitation of the pump has dephased before the arrival of the leading edge of the
probe (τd � T2 + τp). For short delays that do not satisfy the latter condition,
the probe coherently interacts with the polarization created by the pump. For
pump and probe collinear and having the same polarization, the induced dipoles
created by the pump will be in or out-of-phase with the probe field, depending on
whether the delay is an even or odd number of half wavelengths. The transmitted
energy versus delay will have an interference-like pattern similar to that observed
in a zero area pulse experiment (see Chapter 4 and the end of this chapter). This
pattern is often referred to as the “coherent spike” of a pump–probe experiment.
In the case of noncollinear pump–probe experiments, a “transient grating” is
created by the spatial–temporal superposition of the probe and the polariza-
tion created by the pump. In the latter geometry, the coherent spike can be
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Figure 10.6 Transient transmission in CdSxSe1−x. The population numbers in the states excited
by the pump can be determined from the measured changes in transmission of the 100 fs probe pulses
at 618 nm. The change in occupation numbers is a measure of intraband relaxation (Adapted from
Rudolph et al. [2]).

explained as a result of partial diffraction of the pump pulse into the direction of
the probe.

As a typical example of transient absorption, Figure 10.6 shows the absorption
recovery of a mixed crystal, CdSxSe1−x, after excitation with a 618 nm pulse.
The pump pulse creates free carriers, i.e., electrons in the conduction band and
holes in the valence band, which occupy states and subsequently increase the
transmission of a test pulse at the corresponding wavelength. As the carriers
relax toward the bottom of the band, the transmission decreases. The decay time
is a measure of the intraband relaxation.

Much more information can be gained by using a fs white light continuum
instead of a probe at the excitation frequency. In the previous example, the
test pulse monitored the change in carrier density only for specific states above
the band gap. A continuum fs pulse can probe simultaneously all states in a
broad energy range, providing detailed information on the time-dependent carrier
density distribution. An example of a pump–probe transmission experiment using
a white light continuum is discussed in the next chapter.

10.5. TRANSIENT POLARIZATION ROTATION

A linearly polarized pump pulse can induce anisotropy in a sample, which can
be probed subsequently with a delayed pulse. Anisotropy means here that the
transmission depends on the polarization of the probing radiation. The decay in
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anisotropy can often be related to orientational relaxation of the dipoles excited
by the pump. Such measurements have been applied successfully on a fs time
scale to the determination of momentum (k-space) relaxation of photo-excited
electrons in condensed matter (for instance, GaAs [3]).

A polarization rotation can also be induced in transparent media. The pump
pulse acts through the optical Kerr effect causing birefringence. This polarization
anisotropy can be seen as a polarization direction dependence of the refractive
index experienced by the probe.

A standard experimental arrangement to measure the temporal change in pump
induced polarization anisotropy is shown in Figure 10.7(a). Let us assume an
absorbing sample. Subsequent to the excitation by the pump pulse, a probe
pulse—of the same wavelength—is sent with its electric field vector oriented
at an angle β with respect to that of the pump. The pump induces a polarization
change (rotation) for the probe pulse, 
β.

Sample
Detector

Detector

135°

45°

S45

S135

P ADelayed
probe

P
um

p

�
��
�

⊥

ε�

ε

(a)

(b)

Figure 10.7 (a) Experimental setup to measure pump-induced birefringence. The Glan polarizer P
sets the polarization of the probe at an angle β with respect to that of the pump. The analyzer A
extracts the components of the transmitted probe at an angle of 45◦ and 135◦ with respect to the
pump polarization. (b) Sketch showing the relation between the rotation angle 
β of the probe E
and the induced anisotropy in absorption. In and out denote the probe polarization before and after
the sample.
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We will first derive a relationship between the polarization rotation 
β of the
probe as a function of the anisotropy produced by the pump and then relate 
β to
experimental parameters that are easily accessible. We make the assumptions of
optically thin samples so that the absorption ea ≈ 1 + a causing small rotations

β for which sin 
β = tan 
β ≈ 
β and cos
β ≈ 1. Let us assume that
the pump pulse causes the sample to have an absorption coefficient a‖ and a⊥
for the components of the probe field, E‖ and E⊥, that are polarized parallel
and perpendicular to the pump, respectively. The two field components after the
absorber are:

E ′‖ ≈
(

1 + 1

2
a‖
)

E‖ =
(

1 + 1

2
a‖
)

E cosβ = E ′ cos(β + 
β) (10.18)

E ′⊥ ≈
(

1 + 1

2
a⊥
)

E⊥ =
(

1 + 1

2
a‖
)

E sin β = E ′ sin(β + 
β) (10.19)

where E and E ′ are the field amplitudes of the input and output probe fields,
respectively. Dividing these two equations, E ′⊥/E ′‖, and using only the two last
terms yield:

tan(β + 
β) =
(

1 + 1
2 a⊥

)
(

1 + 1
2 a‖
) tan β. (10.20)

For |a|,
β 	 1 this can be approximated by


β ≈ sin(2β)

4

(
a⊥ − a‖

)
. (10.21)

Clearly, the polarization rotation is caused by an induced anisotropy of the optical
thickness of the sample by the pump,

(
a⊥ − a‖

)
.

To measure the small rotation angle it is advantageous to monitor the trans-
mitted probe components at polarization angles of 45◦ and 135◦ with respect to
the pump polarization [Fig. 10.7(b)]. The corresponding probe field components
after the sample are:

E ′
45 = E ′ cos

(π
4

− β − 
β
)

≈ 1

2

√
2E ′ [cosβ + sin β + 
β(cosβ − sin β)]

(10.22)
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and

E ′
135 = E ′ cos

(π
4

+ β + 
β
)

≈ 1

2

√
2E ′ [cosβ − sin β − 
β(cosβ + sin β)] .

(10.23)

What is recorded in such a pump probe experiment is the ratio of the intensities
(pulse energies):

R′ = (E ′
45)2

(E ′
135)2

. (10.24)

Eqs. (10.21) and (10.23) can be inserted into the equation for R′. After some basic
algebra and making use of 
β 	 1 again we find

R′ ≈ R

(
1 + 4
β

cos(2β)

)
, (10.25)

where R = [1 + sin(2β)]/[1 − sin(2β)] is the ratio of the two probe components
in the absence of the pump. From relation (10.25) the rotation angle 
β can be
determined from the measurement of R and R′ and the known angle β.

The scattered pump intensity adds a noise component to the signals S135 and
S45. The angle β has to be sufficiently large, such that the scattered noise from the
pump be negligible compared with the measured probe component E2 sin2β. An
angle of β = 15◦ is chosen in most applications [3,4]. The measured anisotropy
(rotation in probe beam polarization of the order of one degree) decays with
probe delay and is a measure of relaxation processes following the excitation.
An example of a polarization rotation measurement is shown in Figure 10.8.

10.6. TRANSIENT GRATING TECHNIQUES

10.6.1. General Technique

There are numerous variations of transient grating techniques, providing a
wide array of information on sample properties. A general review of these tech-
niques is given by Eichler et al. [6]. The basic experimental setup is sketched
in Figure 10.9. Two pump pulses of different propagation direction overlap in
the sample. If their relative delay (τ1) is less than the phase relaxation time of the
interaction, they produce an interference pattern of the sample excitation. The
modulation of the sample excitation can manifest itself in a periodically changing
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Figure 10.8 Optical Kerr signals for the liquids CH2Cl2, CHCl3 and CCl4 (top to bottom). Dif-
ferent time constants can be identified for each sample. They represent a complex interplay of
intramolecular processes as well as interaction with the local environment (Adapted from [5]).

Probe

Pump 2

Pump 1
�2

�2

�1

�1

0

�d

�1

kG

k1

�

k2

Figure 10.9 Schematic representation of a transient grating experiment.

transmission (amplitude grating) and/or a refractive index (phase grating). The
grating vector is:

kG = k1 − k2, (10.26)

where k1,2 are the propagation vectors of the pump pulses in the sample. The exis-
tence and dynamics of the grating can be probed by the diffraction that a delayed
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(weak) probe pulse experiences. A series of detectors can probe simultaneously
the behavior in several diffraction orders. If the excitation is weak, the absorption
and refractive index modulation are small [|
α/α0| 	 1, |
n/n| 	 1], and the
relative diffracted probe intensity (first order) is given by [6]:


Idiff

Ip
∝ (
n)2 +

(
λp

2π

)2

(
α)2. (10.27)

One has generally to distinguish between two mechanisms for the decay of
diffraction efficiency with delay:

1. The pump-induced changes in the sample relax locally. For example, if

α and 
n are the result of free carrier generation in a semiconductor,
carrier relaxation toward the original equilibrium state will lower the mod-
ulation depth. The diffraction as a function of delay provides information
on the carrier relaxation time.

2. The sample excitation diffuses spatially (nonlocal mechanism). In the
example of free carrier generation in a semiconductor, the pump mod-
ulates the carrier density, and thus triggers diffusion of carriers into the
low excitation regions (minima of the induced grating). The result is a
gradual wash-out of the modulation and decline of the diffraction signal.
In many cases, the diffusion process can be described by a diffusion equa-
tion with a characteristic diffusion constant. From the characteristic decay
time of the diffraction efficiency and the grating period one can determine
the diffusion constant.

Both processes (1) and (2) have to be taken into account in the data evalu-
ation. To distinguish between the local and nonlocal relaxation mechanisms
(in particular when they occur on a comparable time scale), a series of
measurements can be performed at various angles θ between the two pump beams
producing the grating. Because the grating constant is modified by changing the
angle θ [Eq. (10.26)], the decay component resulting from diffusion will also
be modified. The local relaxation component to the decay should not depend
on the angle θ. Another possibility to distinguish between local and nonlocal
contributions to the decay is to compare transmitted (zero diffraction order) and
diffracted signals.

Grating techniques also provide the possibility of measuring coherent effects
by varying the delay τ1 between the two pump pulses, at constant probe delay τd .
The first arriving pump pulse generates a polarization oscillation in the sample
which decays with the characteristic transverse relaxation time T2. The second
pump interferes with this polarization, which results in a modulation of the exci-
tation (e.g., occupation numbers). The modulation depth and thus the diffraction
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efficiency experienced by the probe pulse and measured as function of τ1 contain
information on T2.

The actual data evaluation in a transient grating experiment can be complex
and requires a detailed model of the processes involved. An example of determi-
nation of phase relaxation times using collinear counter-propagating pump pulses
is detailed in the next subsection.

10.6.2. Degenerate Four Wave Mixing (DFWM)

In this particular variation of transient grating experiment, the two pump
pulses are two strong counter-propagating waves Ẽp1(t) exp[i(ω	t − kpz)] and
Ẽp2(t) exp[i(ω	t + kpz)]. The probe wave is sent along an intersecting direction
x and has as electric field Ẽ3(t − τd) exp[i(ω	t − kxx)]. The nonlinear interaction
results in the generation of a signal Ẽ4(t) exp[i(ω	t + kxx)], which, for momentum
conservation, is counter-propagating to the probe direction (Figure 10.10). In the
case of continuous waves, and, for instance, a quadratic nonlinearity, it can
be shown that the wavefront of the generated signal wave Ẽ4 is the reverse of
the wavefront of the probe Ẽ3 [7]. This property of spatial phase conjugation
does not transpose directly in the time domain. Temporal phase conjugation is
chirp reversal, which can be shown to occur only when the following conditions
are met [8]:

• instantaneous nonlinearity,
• medium thickness 	 than the pulse length, and
• weak interaction (|Ẽ4| 	 |Ẽ3|).

Probe

Pump

Pump

Signal

0 Delay

DFWM
signal

T2

T2

t

t

t

~ε3

~εp2

~εp1

Figure 10.10 Coherent single-photon resonant DFWM. The probe pulse is trailed by a polarization
wave, that forms a population grating with one of the pump pulses that follows. The other pump
pulse scatters off that grating into the direction from which the probe originates. The rise of the signal
energy versus delay is thus a measure of the phase relaxation time of the single-photon resonance.
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It can easily be seen that if all but the second condition are met, each depth of
the medium will generate a DFWM signal, resulting in a square pulse Ẽ4 with a
length equal to twice the sample thickness [8].

We have so far assumed that all three waves meet simultaneously in the non-
linear medium. Interesting information on the dynamics of the interaction can be
gathered from the study of the DFWM signal when all three waves are applied
in a particular time sequence.

We assume in the following discussion that the nonlinear medium is shorter
than the optical pulses and is either at single- or at two-photon resonance with
the radiation. Let us first consider the case of a single-photon resonant absorber
being excited first by a weak probe, followed by two simultaneous strong counter-
propagating pump pulses (Fig. 10.10). As we saw in Chapter 4, the short pulse
creates a pseudo-polarization Q̃3 = w0 sin θ0 exp[−ikxx] that decays with a char-
acteristic time T2. If a strong pump pulse enters the interaction region within
that characteristic time, it will form a population grating [as seen from the Bloch
equation (4.7)] corresponding to the interferences between waves of vector kx

and kz. If the second pump pulse impinges on this grating, it will be diffracted
along the opposite direction as the signal (wave vector −kx) according to the
Bloch equation (4.6). The longer T2 is, the more the probe can be launched in
advance of the two pump pulses, and still produce a signal. As illustrated in
Fig. 10.10, the rise time of the signal versus delay is a measure of the phase
relaxation time of a single photon transition.

The same experiment performed on a two-photon resonant transition, as
sketched in Figure 10.11(a), leads to different results and interpretation. Because
the interaction is a two-photon process, the weak probe alone cannot have any
significant effect on the system, and there will be no signal if the probe is
ahead of the pump pulses. We saw in Chapter 4 that for a two-photon transition,
Bloch’s equations (4.6), (4.7) apply, except that the driving term is proportional
to the square of the field. The two counter-propagating pump pulses can produce
a two-photon excitation oscillating at 2ω	 [see Eq. (4.95)], which will decay
with the phase relaxation time T2(2ph) of the two-photon transition. One compo-
nent of this two-photon excitation, �12, with no spatial modulation (zero spatial
frequency), will interact with a probe to generate a counter-propagating signal
by two-photon stimulated emission. A probe pulse sent through the interaction
region with a subsequent delay τd will induce a signal by two-photon stimulated
emission, Ẽ4 ∝ �12(τd)Ẽ∗

3 . Because the probe field corresponds to a phase factor
ω	 + kxx and the two-photon excitation to a phase factor 2ω	, the signal E4 has
a phase factor 2ω	 − ω	 − kxx = ω	 − kxx, which describes a wave propagating
in the direction opposite to the probe. Because the two-photon excitation �12
is the amplitude of an off-diagonal matrix element decaying with a two-photon
phase relaxation time T2(2ph), the two-photon stimulated emission being propor-
tional to �12 will only exist within T2(2ph) of the pump excitation. In the case
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Figure 10.11 Coherent two-photon resonant DFWM. (a) The counter-propagating pump pulses
create a two-photon excitation of frequency 2ω	, which decays with the two-photon phase relaxation
time T2(2ph). The signal is two-photon stimulated emission induced by subsequent passage of the
probe pulse. It is thus the fall of the signal energy versus delay that is a measure of the phase relaxation
time of the two-photon resonance. (b) Intensity of the DFWM signal versus probe delay. The sample
is the saturable absorber jet of a mode-locked dye laser. The crosses indicate the experimental data
points. Theoretical curves for the two-photon resonant interaction are plotted for three values of the
phase relaxation time: 20 fs (dotted), 50 fs (solid), and 75 fs (dashed).

of two-photon resonance, it is thus the trailing edge of the signal energy versus
delay that is a measure of the phase relaxation time T2(2ph).

An example of determination of phase relaxation times through DFWM is
given in Fig. 10.11(b). In this particular case, the sample is the saturable
absorber jet (dye DODCI) of a mode-locked dye laser [9]. The two pump pulses
are the counter-propagating pulses circulating inside the dye laser cavity. The
probe is taken from one of the outputs of the dye laser, and focused with a 25-mm
focal distance lens into the interaction region. Figure 10.11(b) shows the average
intensity of the signal retro-reflected into the probe direction, as a function of the
delay of the probe. The leading edge of the signal matches exactly the instan-
taneous response, given the pulse shape Ẽ(t) = exp[−0. 15ix2]/{exp[−1. 33x] +
exp[0. 8x]} (where x = t/τs, and the pulse FWHM is 1. 72τs = 76 fs). The
instantaneous response, for the single-photon transition model, is calculated by
taking the steady-state solution of Bloch’s equations (4.10) and (4.11) for the
field consisting of the sum of the probe and pump fields. The trailing edge of the
DFWM signal versus delay shows clearly the effect of a two-photon coherence.
Following the procedure outlined above, the DFWM signal can be calculated as
a function of delay for the two-photon excitation [9]. The result of the calculation
(for the particular pulse shape mentioned above) is plotted in Fig. 10.11(b) for
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three values of the two-photon phase relaxation time T2(2ph) = 20 fs (dotted line),
T2(2ph) = 50 fs (solid line), and T2(2ph) = 75 fs (dashed line).

The experiment thus indicates a two-photon resonant DFWM and a phase
relaxation time of 50 fs (decay of the DFWM signal versus delay) for the
two-photon transition. There is no resolvable effect of a single-photon res-
onant DFWM (rise time of DFWM signal versus delay). The dominance of
the two-photon enhancement of DFWM in DODCI at 620 nm is confirmed by
theory. Simple numerical estimates indicate that indeed, the contribution of the
two-photon resonance dominates the DFWM signal [9].

10.7. FEMTOSECOND RESOLVED FLUORESCENCE

If an excitation is followed by fluorescence (luminescence), the time resolved
measurement of the transients of this radiation provides useful information on
the evolution of occupation numbers and relaxation channels. Streak cameras are
often used to measure fluorescence decay. The temporal resolution of this instru-
ment is limited to approximately one-half of a picosecond. As noted previously,
all-optical techniques are needed to obtain even better time resolution. The gen-
eral method of correlation introduced in Chapter 9 applies also to fluorescence
measurements.

A pump pulse provides the time-dependent excitation to be analyzed. The
radiation to be measured as a function of time is correlated with a delayed replica
of the pump (reference pulse). This cross correlation is achieved by upconverting
(sum frequency generation) the fluorescence with the fs reference pulse. This
technique, pioneered by Mahr and Hirsch [10] with ps pulses, was first applied
to the fs range to measure the rise time of fluorescence in organic dyes [11].

The basic experimental setup as sketched in Figure 10.12 includes a polar-
izing beam splitter, two quarter wave plates, and a nonlinear crystal for type
II sum frequency generation. Type II sum frequency generation is essential to
provide an optimum signal-to-background ratio. In the first experiment, an unam-
plified dye laser at 620 nm was used. After the calcite polarizing beam splitter,
one of the polarization components of the main pulse is focused into the sample,
e.g., a concentrated solution of oxazine dye in ethylene glycol. The backscattered
fluorescence radiation (at ωf ) is collected by the focusing lens and recollimated
toward the calcite prism and the nonlinear detection. In this reflective geometry,
the temporal resolution is limited by the optical depth of the sample or the con-
focal parameter of the focused beam, whichever is shorter. With the concentrated
solution of oxazine dyes used, the optical depth of the sample was approximately
2 µm, limiting the temporal resolution to 6 fs. A half wave plate can be intro-
duced before the calcite polarizer to control the fraction of radiation sent to the
sample.
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Figure 10.12 Setup for femtosecond resolved detection of fluorescence.

The nonlinear crystal generates the sum frequency (of intensity Isum) of the
radiation components polarized along two orthogonal axes. If Iref (t − τd) is the
reference signal delayed by an amount τd and polarized along x̂, and Is(t) is
the fluorescence signal polarized along the orthogonal direction ŷ:

Isum(τd) ∝
∫ ∞

−∞
Iref (t − τd)Is(t)dt. (10.28)

To reach the ultimate resolution, the bandwidth of the conversion process should
be larger than the bandwidth of the reference pulse. Both the imperfection of
the crystal and the nonperfect rejection factor of the polarizing beam splitter
contribute to a fraction εy of the reference beam polarized along the axis y, and
hence a (τd independent) background signal:

Ib ∝
∫ ∞

−∞
εyI2

ref (t − τd)dt. (10.29)

The optical quality of the nonlinear crystal is essential in this experiment, because
it helps discriminate between the signal and a background caused by SHG of the
more intense reference beam. Additional background rejection can be obtained
by spectrally separating the gated fluorescence (at ω	 + ωf ) from the second
harmonic of the reference signal (at 2ω	). The bandwidth of this filter should
correspond to the pulse spectral bandwidth 
ωp to ensure a temporal resolution
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given by the pulse duration. The focusing lens can be replaced by a parabolic
mirror which collects fluorescence from a larger solid angle [12].

The number of upconverted photons per excitation pulse can formally be
written as

Nup ≈ V1V2Q

(
vFW0

�ωF

)

ωp


ωF

τp

TF
, (10.30)

where V1 is the linear loss of the experimental setup, V2 is the fractional solid
angle (i.e., solid angle divided by 4π) from which the focusing optics gather
the fluorescence, the term in parentheses describes the total number of fluores-
cence photons excited, 
ωp/
ωF is the fraction of the fluorescence spectrum
which is upconverted and reaches the detector, τp/TF with TF as fluorescence
lifetime is the fraction of fluorescence within the time window set by the pulse,
and Q is the conversion efficiency of the sum frequency generation. For an
upconversion experiment using a passively mode-locked dye laser to resolve the
fluorescence dynamics of an organic dye and urea as nonlinear crystal, the fol-
lowing parameters are typical: V1 = 10−1, V2 = 2 × 10−3, W0 = 150 pJ,
τp = 100 fs, TF = 1 ns, Q = 5 × 10−4, vF = 1. This yields N1 = 1. 5 × 10−4

upconverted photons per pump pulse photon. This weak signal is detectable
because the repetition rate of the source is ≈ 108 Hz, resulting in a photon flux
of 1. 5 × 104 s−1. Figure 10.13 shows as an example the onset of fluorescence
for the dye oxazine 720.
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Figure 10.13 Onset of fluorescence of an organic dye (Oxazin 720) measured by up-conversion.
The number of photon counts is plotted versus delay. Theoretical curves corresponding to different
relaxation times T21 of a simple three-level model system are shown.
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10.8. PHOTON ECHOES

Photon echo is the standard method—directly derived from spin echoes—to
determine the phase relaxation time T2 of a transition [13,14]. In the basic photon
echo experiment, a sequence of two pulses is sent through the sample. Ideally,
the first pulse will be a π/2 pulse, and the second a π pulse.

In an inhomogeneously broadened medium, the π/2 pulse excites the elec-
tric dipoles to oscillate with their characteristic frequency ω0. Immediately after
excitation all dipoles are in phase and the macroscopic polarization is maxi-
mum. As time progresses, because of their different eigenfrequencies, the dipoles
dephase relative to each other. The macroscopic polarization is damped with a
time constant given by the inverse of the width of the inhomogeneous line profile
ginh(ω0 − ωih). The individual dipole groups still oscillate, with an amplitude
damped with the phase relaxation time T2 corresponding to the homogeneous
line profile. The π pulse at delay τd adds a phase of π to each individual oscil-
lator, which causes them to add again in phase after a time τd (2τd after the
π/2 pulse). The associated macroscopic polarization results in a collective radia-
tion effect called an echo. The explanation of the echo in the Bloch vector model
is as follows.

After the first pulse (π/2 pulse), the pseudo-polarization vector is aligned along
the ν axis, as shown in Figure 10.14(a). Each component of the line ginh(ω0−ωih)
will precess around the w axis—thus in the u-ν plane—at an angular velocity
(ω0−ω	), for a time equal to the delay τd between the π/2 and π pulses. The effect
of the π pulse, however, is to create the mirror image of the component of the
pseudo-polarization vector, with respect to the u axis, as shown in Fig. 10.14(b).
Each component of the line ginh(ω0 − ωih) is subsequently precessing at the

w w w

u u u

v v v

�E

(a) (b) (c)

Figure 10.14 Photon echoes: A π/2 pulse (a) creates a macroscopic polarization (pseudo-
polarization vector aligned along the ν axis). Following the excitation, the components of the
pseudo-polarization vector precess (b). After a π pulse is applied, the spreading process is reversed (c).
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velocity (ω	 − ω0), hence reversing the course of the previous “spreading.”
After a time τd following the π pulse, the components of the pseudo-
polarization vector will be lined up again, resulting in a macroscopic echo signal
[Fig. 10.14(c)]. The only decay mechanism for the echo is the nonreversible
homogeneous decay. The pseudo-polarization vector of initial amplitude P0,
after the delay 2τd , has been reduced exponentially to P0 exp(−2τd /T2); hence
the echo intensity decays as exp(−4τd /T2). It should be noted that the π/2 and
π pulse areas need not be reached to observe an echo. The amplitude, however,
is maximum for this particular choice.

The dephasing in condensed matter at room temperature is extremely fast.
The challenge in photon echo measurement is to resolve the fast decaying echo
from scattering from the tail of the preceding π pulse. The various possibilities
to separate the signal are:

1. temporal gating of the echo,
2. k vector separation,
3. separation by polarization, or
4. separation by focalization.

The time resolution necessary for the first technique could be achieved by upcon-
verting the echo using type II SHG with a delayed excitation pulse (of polarization
orthogonal to that of the echo). The other three techniques are commonly used. If
k1 is the wave vector of the first (π/2) pulse, and k2 the wave vector of the second
one, it can be shown that the angle of emission of the third pulse (the echo) is
twice the angle between the direction of the two first pulses—hence ke = 2k2−k1
(cf. Figure 10.15). This property can be easily understood from momentum con-
servation considerations. Indeed, a photon echo is a particular case of degenerate
four wave mixing experiment, in which the first two waves form a grating. The
latter waves do not need to be simultaneous; their interval only needs to be
shorter than the phase relaxation time, to form a grating. The grating vector
is k2 − k1. The second pulse with wave vector k2 scatters off that grating, to
generate a first-order diffracted wave in the direction ke = k2 − (k1 − k2).
The latter property is directly related to the focusing properties of the echo.
If the radius of curvature of the first π/2 pulse is R1, and that of the π pulse R2,
the echo has the wavefront curvature given by [15]:

1

Re
= 2

R2
− 1

R1
. (10.31)

Polarization can also be used to distinguish the echo from the intense exci-
tation pulses. The polarization dependence of the echo has been investigated by
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Figure 10.15 Photon echo applied to GaAs. Left: wave vector diagram. Right: echo amplitude
versus delay for different carrier densities (adapted from Becker et al. [17]).

Alekseef and Evseev [16] and shown to depend on the total angular momen-
tum number J of each of the two levels involved in the transition. For a
J = 1/2 → J = 1/2 transition, the polarization of the echo makes an angle 2ψ
with that of the first (linearly polarized) pulse (ψ being the angle between the
polarization of the first and second pulse). In the latter case also, a linearly polar-
ized pulse following a circularly polarized pulse, produces a photon echo with
circular polarization. For transitions J = 0 ↔ J = 1 and J = 1 → J = 1, the
echo has the polarization of the second pulse, with an amplitude proportional
to cosψ.

None of the echo separation techniques totally eliminates the background
provided by the first pulses. The duration of the exciting pulses should be shorter
than the phase relaxation T2 to be measured.

The fs photon echo technique has been applied to the study of dephasing of
band-to-band transitions in the direct gap semiconductor GaAs [18]. Dephasing
in this system is because of momentum relaxation of the carriers, as veri-
fied by an independent method that specifically probes momentum relaxation
(see previous sections). The data (Fig. 10.15) indicate a carrier concentration
dependent phase relaxation time ranging from 14 to 44 fs, [17, 18] fitting the
power law T2 = 6. 2 × 106 × N−0.3 (T2 in fs, concentration of excited carriers
N in cm−3). This power law is characteristic of a three-dimensional screening.
A similar experiment performed on two-dimensional MQWs gave a density law
T2 = 6. 8×107 ×N−0.55, reflecting a two-dimensional screening of carriers [19].
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Recent advances in fs photon echo spectroscopy of molecules and solids are
summarized in papers by Ashbury et al. [20] and Dao et al. [21].

In summary, the photon echo method is quite powerful and useful for the
determination of relaxation times longer than the pulse duration. It has been one
of the most commonly used.

10.9. ZERO AREA PULSE PROPAGATION

The photon echo experiment is based on a sequence of two nonoverlapping
pulses whose relative phase is unimportant. An essential feature of coherent exci-
tation is that the excitation depends on the phase of the applied signal. We saw in
Chapter 4 that a sequence of two pulses 180◦ out-of-phase applied at resonance
to a two-level system, will return that system to the ground state. There will be
no energy loss for this particular pulse sequence, while there will be maximum
absorption if the pulses are in phase. The contrast in absorption for the in phase
pulse sequence—as opposed to the sequence of pulses out-of-phase—can be
used as a measure of coherent interaction, and to determine T2. The experimen-
tal setup consists essentially of a Michelson or a Mach–Zehnder interferometer
(Figure 10.16) to produce a zero area pulse.

The measurement is particularly simple and clear in the case of a single homo-
geneously broadened line. A linear (i.e., with a small area pulse) measurement
provides all the information needed in that case. The zero area pulse sequence
has a zero spectral Fourier component at the average pulse frequency. The linear
absorption for that pulse sequence—when applied at resonance with the line—
is proportional to the spectral overlap of the line and the pulse spectrum. For
T2 = ∞, the infinitely narrow line coincides with the node of the spectrum
of the zero area pulse, and there is no absorption. The smaller T2, the broader
the line and its overlap with the pulse spectrum. With decreasing T2, the ratio of

BS1 BS2

�
�

�
�

Figure 10.16 Michelson or Mach–Zehnder interferometers for the generation of zero area pulses.
The beam splitters BS1 and BS2 should be identical, to produce a zero area pulse. The field envelopes
of the pulses are shown.
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absorption for an out-of-phase (zero area) pulse sequence to the absorption for an
in phase pulse sequence will also decrease. An illustration of such a measurement
in Li vapor is shown in Figure 10.17. The energy of the second harmonic of the
transmitted pulse sequence is plotted as function of the delay between the two
components of the pulse.

In the time domain the experiment can be explained as follows. The first signal
emerging out of the interferometer of Fig. 10.16 excites the resonant transition
in lithium vapor. The induced dipoles reradiate a field which opposes the applied
field, and therefore cause absorption. The energy stored in the medium will be
restituted to the second signal emerging out of the interferometer if the latter is
180◦ out-of-phase with the first pulse (the reradiated field adds in phase with the
applied electromagnetic signal). Maximum absorption occurs for in phase pulse
sequences. The signal versus delay should therefore show an interference pattern
with a periodicity in delay equal to the light period.

The constructive–destructive interferences that extend beyond the region of
pulse overlap decay with the collision time of the resonant sodium atoms with a
buffer gas (Ar, 1000 torr pressure). SH detection was used in that particular exam-
ple [22]. By using SH detection, the transition between the region corresponding
to pulse interferences, and coherent interaction effects, can easily be identified.
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Figure 10.17 SH detection of the transmission of a zero area pulse sequence consisting of two
delayed pulses through lithium vapor in the presence of argon as buffer gas. The vertical lines
indicate the contrast between in-phase and out-of-phase transmission. The second harmonic of the
transmitted zero area pulse sequence versus delay is recorded. The advantage of the SH detection is
that the first portion of the curve is approximately the interferometric autocorrelation of the pulse.
The transmission corresponding to out-of-phase pulse sequence is the lower envelope near zero delay
(weaker pulse because of destructive interference) and becomes the upper envelope for larger delays
(larger transmission on resonance for out-of-phase pulse sequences).
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For delays smaller than the pulse duration, the pulse interference pattern is an
interferometric autocorrelation (see Chapter 9).

In the case of an inhomogeneously broadened line, the phase dependence of
the interaction disappears in the weak pulse limit. We have seen in Chapter 4 that
the weak pulse absorption is proportional to the spectral overlap of the line and
pulse. As shown by Eq. (4.35), in the case of purely inhomogeneous broadening
and no saturation:

dW

dz
∝
∫ ∞

−∞
ginh|E(�)|2d� = −α0W , (10.32)

and the absorbed energy is independent of the phase content of the pulse. There
is, however, a difference in nonlinear transmission [for which the approximation
of Eq. (10.32) does not apply] of in-phase and out-of-phase pulse sequences, even
in the case of inhomogeneous broadening. Let us consider a sequence consisting
of two pulses. If each half of the pulse sequence has an area between 0 and π, the
zero area pulse sequence will be absorbed more strongly than the in-phase pulse
sequence. The physical reason can be explained simply by considering the origi-
nally uniform absorption spectrum [Figure 10.18(a)] in which the first pulse burns
a hole, which is seen by the second pulse as an inverted homogeneously broad-
ened line [Fig. 10.18(b)]. For the in-phase pulse sequence, there is less absorption
because of the reduced absorption of spectral components at the pulse average fre-
quency [Fig. 10.18(c)]. In contrast, the zero area pulse sequence does not have
spectral components overlapping with the center of the hole [Fig. 10.18(d)].
However, if each half of the pulse sequence is a π pulse, the system will be
returned to ground state independently of the relative phase of the pulses.

The phase relaxation time T2 can be extracted by measuring the ratio of the
energy transmission factor 
W/W for a sequence of pulses 180◦ out-of-phase
to the same transmission factor for the in-phase pulse sequence as a function of
total energy W in the pulse sequence [23]. The corresponding values of απ/α0
are plotted in Figure 10.19 for three values of the phase relaxation time T2.

The main advantages of zero area pulse excitation as applied to the determi-
nation of phase relaxation times are:

• the pulses of the sequence can overlap,
• phase relaxation times shorter than the pulse duration can be measured,
• the experimental technique is particularly simple, and
• a 180◦ pulse sequence has zero area for transitions of different degeneracy

and dipole moment.

The last property results in an easier interpretation of the data when the measure-
ment covers more than one type of transition. The extension of this method
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Figure 10.18 Interaction of an in-phase and out-of-phase two-pulse sequence with an inhomoge-
neously broadened absorption transition. Initially (a), the line profile is uniform. At t = t1, the first of
a two-pulse sequence burns a hole in the uniformly inhomogeneously broadened absorption line (b).
The second pulse no longer sees a uniform line, but an inverted homogeneously broadened line. The
absorption will be smaller for the in-phase pulse sequence (c) which has more spectral components
(dotted line) overlapping with the center of the hole, than with the out-of-phase pulse sequence (d).

to molecular multiphoton transitions has been discussed in Diels et al. [24]
and Besnainou [25]. In addition to the measurement of a dephasing time for
a multiphoton transition, the pattern of absorption versus relative phase of the
pulse sequence can be used to identify the type of resonance [25].

10.10. IMPULSIVE STIMULATED RAMAN
SCATTERING

10.10.1. General Description

Some molecular vibrations—for instance the stretching mode of a symmetric
diatomic molecule such as N2—cannot be directly excited by a resonant
electromagnetic field. However, such dipole forbidden transitions between states
of equal parity and angular momentum can be accessed by a transition involving
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Figure 10.19 Ratio of the relative energy transmission for the 180◦ out-of-phase απ to the in-
phase α0 pulse sequence, as a function of the normalized pulse energy, for various values of the
phase relaxation time T2, for an absorption line with infinite inhomogeneous broadening. The pulses
are Gaussian, with a temporal separation equal to twice their duration (FWHM). The phase relaxation
times are 100× (a), 6× (b), and 1× (c) the pulse duration.

two photons. In resonant Raman scattering, the difference between the optical
frequencies of the two photons involved in the transition is equal to the fre-
quency of the mechanical vibration being excited. Let us consider, for instance,
a molecular vibration of frequency ω21 between two states |2〉 and |1〉 of identical
parity [Figure 10.20(a)]. The molecule can be brought in the vibrationally excited

Spectral intensity
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Figure 10.20 (a) Excitation of a Raman transition |1〉 → |2〉 via an electronically excited state 〈	|.
(b) For a fs pulse of average carrier frequency ω	, the two frequency components of the Raman
transition are contained within the pulse spectrum. The medium itself selects the frequency pairs
suitable to drive the Raman transition.
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state |2〉 by a succession of optical excitations via the dipole allowed transitions
|1〉 → 〈	| and 〈	| → |2〉, involving photons of frequencies ω	1 and ω	2.

Because of the broad bandwidth of the fs pulse, stimulated Raman scattering
can occur through the mixing of various spectral components of the ultrashort
optical pulse [Fig. 10.20(b)]. For example, a molecular vibration is initiated
by the sudden impulse exerted by the electric field of the pulse. The sample
selects a pair of frequency components whose difference is in resonance with
the eigenfrequencies of a Raman transition. This type of Raman scattering is
called “impulsive stimulated Raman scattering” [26]. The fs excitation makes
it possible to excite in phase a macroscopic ensemble of vibrating molecules.
In solids, it is a coherent excitation of lattice vibrations that is achieved.

It is generally not possible to achieve a complete excitation of the Raman
transition with a single fs pulse. Many Raman active modes can sometimes be
accessed by the same fs pulse. However, if the process of impulsive stimulated
Raman scattering is repeated at each cycle 2π/ων of a Raman transition, the
excitation will be enhanced. The selectivity of the process is also increased by
the periodic excitation [27].

Impulsive stimulated Raman scattering can be used to analyze vibrational
motions—for instance to determine their decay through pump–probe techniques.
Synchronous excitation by a train of pulses can lead to substantially larger ampli-
tudes of motion. This excitation process can generate high frequency vibration.
A train of pulses spaced by a picosecond can generate THz LO phonons in
semiconductors, which have a wavelength in the 100 Å range, and can therefore
be used for high resolution imaging in solids.

10.10.2. Detection

The change in matter properties associated with the Raman excitation can be
probed in a variety of ways. One can, for instance, probe an induced birefrin-
gence, in which case the rotation of the probe polarization will be measured,
as detailed in Section 10.5. In parallel polarization (probe polarization parallel
to that of the pump), the attenuation of the probe will be modulated with delay,
because the probe pulse can also induce Raman transitions. The phase of the oscil-
lations of attenuation versus delay of the probe depends on the particular spectral
component that is being probed. In the example reproduced in Figure 10.21,
the pump and probe have the same polarization and are sent nearly collinearly
through a sample of liquid CH2Br2 [26]. The transmitted probe is dispersed by a
monochromator. Two frequency components (609 nm and 620 nm) are displayed
as a function of delay in Fig. 10.21.

Both spectral components are seen to oscillate with delay at the molecular
vibration frequency, but with opposite phase. A simple explanation is that at a
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Figure 10.21 Transmission versus delay for two spectral components of the probe signal, for a
sample of CH2Br2 pumped by a 65 fs pulse of a few µJ energy at 615 nm. The excitation and probe
pulses are focused to a 200-µm spot size, at an angle of 5◦, into a 2-mm sample cuvette (Adapted
from Ruhman et al. [26]).

particular delay, the position of the vibrating coordinates is such that the 609 nm
radiation is absorbed, and the 620 nm reinforced by the Raman transition. For a
delay corresponding to half a vibration cycle later, the 609 nm transition will be
reinforced and the 620 nm attenuated.

So far we have assumed a single pump pulse to induce the Raman signal.
A standing wave pattern can also be generated for the impulsive stimulated Raman
signal, either through a periodic configuration of the sample, or through the use
of two intersecting pump pulses.

An example of sample periodicity is an MQW structure, of which the spacing
between wells is made to match the wavelength of the phonon to be generated.
The phonon can be generated by a train of fs pulses spaced by the phonon period,
tuned to the intraband absorption in the quantum wells. The periodic spatial
structure that is excited is responsible for the spatial coherence of the phonon [28].
The excitation by a periodic pulse sequence ensures temporal coherence of the
created phonons.

It is also possible to create a standing wave Raman excitation with two inter-
secting pump pulses of the same frequency [26]. The temporal evolution of the
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vibration is easily analyzed through diffraction of a probe pulse by the standing
wave pattern.

10.10.3. Theoretical Framework

The same density matrix formalism as in Chapters 3 and 4 can be used to
describe impulsive stimulated Raman scattering. As in Fig. 10.20, we will con-
sider Raman transitions between a ground state |1〉 and a first excited state |2〉
of a vibrational mode with frequency ω21. The states |1〉 and |2〉 are infrared
inactive, i.e., there is no dipole allowed transition |1〉 → |2〉. Coupling between
these two states can occur via any electronic state 〈	|. All states |	〉 connected
to |1〉 and |2〉 via a dipole transition will contribute to the Raman transition. We
assume the optical field E to be off-resonant with all single-photon transitions.
For this assumption to hold, the detuning of the intermediate levels 〈	| has to
exceed several pulse bandwidths.

The evolution of the system is described by the density matrix equations (4.1).
For the particular level system being considered:

∂ρ12

∂t
− iω21ρ12 = − iẼ+

�

∑
	

(ρ1	p	2 − p1	ρ	2)

∂ρ22

∂t
= − iẼ+

�

∑
	

(ρ2	p	2 − p2	ρ	2)

∂ρ1	

∂t
− iω	1ρ1	 = − iẼ+

�

∑
j

(ρ1jpj	 − p1jρj	), (10.33)

where the sum over j applies to any level connected to 〈	| by a dipole transition,
including levels 1 and 2. A similar equation applies for ρ2	.

As we have seen in Chapter 4, it is more convenient to decompose the off-
diagonal matrix elements ρ1	 and ρ2	 into an envelope and fast varying phase
term. For instance:

ρ1	 = �1	eiω	t (10.34)

and a similar equation for ρ2	. Substituting Eq. (10.34) into the third equa-
tion (10.33), and keeping only the levels 1 and 2 as levels that are dipole
connected to levels 	:

∂�1	

∂t
+ i(ω	 − ω	1)�1	 = − iẼ

2�
(ρ11p1	 + ρ12p2	). (10.35)
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The assumption of the intermediate levels 〈	| being off-resonance enables us to
use the adiabatic approximation. This is a standard approximation used routinely
in the context of deriving interaction equations in condition of two- (and more)
photon resonance [29]. A detailed analysis of the use of the adiabatic approxi-
mation in the context of two-photon transitions can be found in [29]. Essentially,
the second term in the left-hand side of Eq. (10.35) dominates, and we can
approximate �1	 by its steady-state value:

�1	 = −Ẽ(ρ11p1	 + ρ12p2	)

2�(ω	 − ω	1)
, (10.36)

and a similar equation for �2	. Substituting into the first equation (10.33), we
find the evolution equation for the coherent Raman excitation:

∂ρ12

∂t
− iω21ρ12 = − i

4�2
Ẽ Ẽ∗∑

	

(
ρ11

p1	p	2

ω	 − ω	1
− p1	p	2

ω	 − ω	2
ρ22

)
. (10.37)

Of particular interest is the amplitude of the off-diagonal element ρ12. Let
us define a (complex) amplitude �12 similarly as in Eq. (10.34): ρ12 =
�12 exp(iω12t). In addition, to simplify the discussion, let us assume, that there
is only one level 〈	| that dominates the interaction. We note that ω	 − ω	2 =
(ω	 − ω	1) [1 + ω21/(ω	 − ω	1)]. Substituting in Eq. (10.37) yields:

∂�12

∂t
eiω21t = ip1	p	2

4�2(ω	 − ω	1)
Ẽ Ẽ∗ (�22 − ρ11) (10.38)

where �22 = ρ22/[1 + ω12(ω	 − ω	1)]. We recognize in Eq. (10.38) a Rabi
frequency similar to the two-photon Rabi frequency discussed in Chapter 4:

p1	p	2

4�2(ω	 − ω	1)
Ẽ(t)Ẽ∗(t) = r12

�2
Ẽ(t)Ẽ∗(t). (10.39)

The evolution equations for the density matrix components can be rewritten:

∂�12

∂t
= i

r12

�2
Ẽ Ẽ∗e−iω21t [�22 − ρ11]

∂ρ22

∂t
= −2Im

[ r12

�2
Ẽ Ẽ∗�12eiω21t

]
. (10.40)
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The form of the set of equations (10.40) is similar to Bloch’s equations (4.6)
and (4.7). In the weak pulse approximation (ρ11 ≈ 1), after passage of the fs
excitation, the off-diagonal matrix element oscillates at the Raman frequency:

ρ12 ≈ −ieiω21t
[∫ ∞

−∞
r12

�2
Ẽ(t′)Ẽ∗(t′)e−iω21t′dt′

]

= −ieiω21t
[∫ ∞

−∞
r12

�2
Ẽ(�)Ẽ∗(� − ω21)d�

]
. (10.41)

Equation (10.41) is obtained by integrating the first differential equation (10.40)
with ρ11 ≈ 1 and ρ22 ≈ 0. It can be seen immediately from the convolution
product in Eq. (10.41) that, for efficient Raman excitation, the pulse spec-
trum should be broad compared with the Raman frequency ω21. Indeed, for
ω21 � τ−1

p , there is no overlap between Ẽ(�) and Ẽ(�−ω21). The dimensionless
quantity

θR =
∫ ∞

−∞
r12

�2
Ẽ(�)Ẽ∗(� − ω21)d� (10.42)

is the analog of the tipping angle of the polarization in the Bloch vector model.
We recognize from the analogy between Eqs. (10.40) and Bloch’s equations (4.6)
and (4.7), and the description of the vector model in Chapter 4, that an angle θR

on the order of unity will be required to bring the ground state population to a
vibrational excited state of energy �ω21. It is left as a problem at the end of this
chapter to demonstrate that the convolution in θR can be maximized by using,
instead of a single pulse, a train of pulses spaced in time by τd = 2nπ/ω21 (n
integer). The increase in selectivity can be inferred from the form of θR in the
frequency domain [Eq. (10.42)]: θR vanishes for a pulse spacing 
t �= 2π/ω21,
in the case of a large number of pulses and undamped oscillations. The technique
of using a synchronized pulse train can also lead to much larger amplitudes of
motion than a single pulse [27]. Methods of generating such pulse trains have
been presented in Chapter 8.

10.10.4. Single Pulse Shaping Versus
Mode-Locked Train

The expression (10.42) for θR can be maximized by a pulse train whose
repetition rate is any submultiple of the frequency ω21

/
2π. With ω21 in the
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THz range, one technique is to shape a fs pulse into a sequence of pulses.
Another possibility is to tune the mode-locked period of the laser to T =
2nπ/ω21 (n integer). Such a technique is reminiscent of high-resolution coher-
ence spectroscopy, where the repetition rate of mode-locked trains is tuned to
a submultiple of an atomic resonance, leading, for instance, to enhanced quan-
tum beats [30]. With advances in semiconductor lasers, repetition rates in the
GHz to THz range are accessible with fs pulses. The repetition rate of pas-
sively mode-locked lasers can also be tuned continuously by adjusting the cavity
length [31].

A question that arises is: what is the lowest repetition rate that can be used
to excite a particular resonance ω21? That question can be simply answered by
modeling the resonant system by a classical oscillator, driven by an infinite
series of δ function forces separated by a time T . Each successive pulse excites
the particular oscillation corresponding to the resonance. This oscillation is rep-
resented in the classical model by the displacement x of an oscillator of mass m,
restoring force–Kx, and damping constant b. The oscillation is not completely
damped before the time of arrival of the next pulse, which, if T is a multiple
of 2π/ω21, will reinforce the motion. After an infinite number of driving pulses,
the damped oscillation between two successive driving pulses will be stationary
(see Figure 10.22). Assuming (2N + 1) pulses in the train, the periodic driving
force is represented by a series of δ functions: F = F0

∑N
j=−N δ(t − jT ). The

equation of motion for the classical oscillator is:

mẍ + bẋ + Kx = F0

N∑
j = −N

δ(t − jT ). (10.43)

Pump pulse

Time

Molecular
vibration

Figure 10.22 Damped molecular vibration, following impulsive stimulated Raman excitation by a
train of ultrashort pulses. The amplitude of the oscillation will be maximum for a pulse separation
equal to a multiple of the period of the molecular vibration.
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Simple Fourier transformation of this equation leads to a solution for the
amplitude x(ω). Taking the inverse Fourier transform of that solution yields x(t):

x(t) = F0

2π

∑
j

Ij (10.44)

with

Ij =
∫ ∞

−∞
eiω(t−jT )

(K − mω2) + ibω
dω. (10.45)

The integrand Ij in Eq. (10.45) has two poles at ω = i� ± ω21, and ω2
21 =

K /m − �2 and � = b/2m. The stationary solution for the oscillator is found by
contour integration and summation over j of the geometric series:

x(t) = 1

2
A(T )e−�t + iω21t + c. c. (10.46)

with

A(T ) = iF0

ω21

1

1 − e�T + iω21T

= iF0

ω21

1 − e�T − iω21T

1 + e2�T − 2e�T cosω21T
. (10.47)

A(T ) is essentially the amplitude of the first cycle of oscillation. Its value is
maximum and equal to iF0/[ω21(1 − e�T )] when ω21T = 2nπ, and minimum,
equal to iF0/[ω21(1 + e�T )] for ω21T = 2(n + 1)π. The modulation depth
(1 − e�T )/(1 + e�T ) is thus determined solely by the damping rate and the period
of the driving force T . When driving a system at a subharmonic of the resonant
frequency, the term ω21T in Eq. (10.47) can be large (ω21T = 2nπ, with n a
large integer). The resonances (values of the periodicity T that satisfy the res-
onance condition) are closely spaced. The damping factor � determines which
subharmonic N can still be used to drive effectively the resonance ω21. Each
δ function force sets off an oscillation, which should not be completely damped
before being reinforced by the next exciting pulse.

10.11. SELF-ACTION EXPERIMENTS

Pump–probe experiments are intended to provide information on linear and
nonlinear properties of matter. As noted previously, there is a fundamental
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Figure 10.23 For linear systems, and some simple nonlinear systems, the complex susceptibility
can be completely determined from single pulse transmission (reflection) measurements, provided the
amplitude and phase of the incident, transmitted, and reflected signals can be completely determined.

temporal limitation: For the measurement interpretation the pump or excitation
process should be completed before the medium is probed. One could try to
obtain information on the properties of matter by measuring the time resolved
fields of a single pulse incident, reflected and/or transmitted by a thin sample
(Figure 10.23), using some of the techniques outlined in Chapter 9.

In the case of a linear interaction with the medium, the problem is analogous to
the analysis of a linear circuit. For instance, referring to Chapter 1 [Eqs. (1.73)
through (1.79)], the complex dielectric constant ε̃(�) = ε0[1 + χ̃(�)] can be
extracted by taking the Fourier transform Ẽ(�) of the incident (i) and transmitted
(t) fields:

1 + χ̃(�) = − c2

z2�2
ln2

[
Ẽt(�)

Ẽi(�)

]
(10.48)

where z is the sample thickness.
There is no simple algorithm that can solve the general problem of

retrieval of a nonlinear susceptibility χ(n)(�) from a series of measurements
of incident, transmitted, and reflected fields. Some assumptions have to be
made—for instance, that all nonlinear susceptibilities except the third order,
χ(3), can be neglected. Within this approximation, measurement of the third
harmonic transmitted field Ẽ3ω leads to a determination of the third-order
susceptibility:

χ(3)(�) = 2c
z

ω	

Ẽ3ω(�)

Ẽ2(�)
. (10.49)

The transmission measurements provide information on the bulk properties
of the sample. Properties at the surface can be analyzed by measuring the
reflected field. For instance, at normal incidence, the reflection coefficient is
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approximately χs(�)/[4 + χs(�)], where χs(�) is the complex susceptibility at
the surface (assumed to be 	 1). In the presence of resonances, these complex
susceptibilities may have a complicated functional dependence on the optical
field.

10.12. PROBLEMS

1. Referring to Section 10.3, derive in detail Eqs. (10.5) through (10.9). Find
the effect of the beam geometry on the temporal resolution for a square
temporal profile and square spatial profile in x and y.

2. A transient grating experiment is performed with a semiconductor. Let
us assume that we have an amplitude grating only and that the carrier
density n(x, t) obeys the equation for ambipolar diffusion (one-dimensional
model):

∂n

∂t
− D

∂2n

∂x2
= 0. (10.50)

Derive a formula that relates the diffraction signal versus τd to the diffusion
parameter D to be determined. From the diffusion parameter one can then
obtain the carrier mobility µ = eD/(kBT ), where e is the electron charge,
kB Boltzmann’s constant, and T the temperature.

3. Prove that in a transient grating experiment the diffraction of a probe pulse
measured as function of the delay between the two pump pulses contains
the information on the transverse relaxation time T2. Assume an ensem-
ble of homogeneously broadened two-level systems, weak excitation, thin
samples.

4. The purpose of this problem is to compare impulsive stimulated Raman
scattering excited by a single pulse and a train of identical pulses. The
period of the Raman oscillation to be excited is 1 ps, and its damping time
is 500 ps. The molecular system has a resonant absorption at 750 nm. The
laser system delivers a Gaussian pulse of 50-fs duration, 1 nJ energy, at
770 nm, focused into the sample with a beam waist of w0 = 200 µm.
The dipole moment of the transitions p1	 = p	2 = 6 10−29 Cm. Calcu-
late the off-diagonal matrix element ρ12 resulting from the excitation by
the Gaussian pulses. Assume next each fs pulse is replaced by a train of
10 Gaussian pulses of 50-fs duration, but of 0.1 nJ energy each. Calculate
the off-diagonal matrix element as a function of the period of this pulse
train (in the range 1–10 ps).
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11
Examples of Ultrafast
Processes in Matter

11.1. INTRODUCTION

A microscopic analysis of many fundamental processes in matter starts at
the ps or fs time scale. Primary events associated with macroscopic transfor-
mations that appear relatively slow, such as chemical reactions, photosynthesis,
phase changes, and human vision, evolve on a fs time scale. A mere listing of
all processes in biology, chemistry, and physics that are being actively inves-
tigated is already beyond the scope of this book. A detailed introduction of
these topics can be found for example in the books by Kaiser and Auston [1],
De Schryver et al. [2], Shah [3], and Mukamel [4]. A periodic update of these
topics is published in the proceedings of the biannual conferences on Ultrafast
Phenomena [5].

Rather than to attempt an extensive review, this chapter will focus on a few
examples of ultrafast events in matter and their measurement. We will proceed
by order of material systems of increasing complexity. The simplest system is the
single atom, in which wave packets representing the motion of the electron in a
Rydberg orbit can be analyzed with ultrafast techniques. Next, we proceed from
the single atom to simple molecules to dissociating molecules—a step toward
chemical reactions. The next form of arrangement of atoms is condensed mat-
ter, in which fs techniques are particularly powerful in analyzing changes of
phase. Finally, biological systems offer the ultimate in molecular complexity.
Femtosecond techniques are an essential tool in unraveling, for example, the
primary processes of vision and photosynthesis.

531
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11.2. ULTRAFAST TRANSIENTS IN ATOMS

11.2.1. The Classical Limit of the Quantum
Mechanical Atom

Bohr’s model of the hydrogen atom was based on the concept of the
electron describing a classical trajectory in the attractive potential of the nucleus.
The quantization relation introduced empirically by Bohr (see, for instance
Cohen-Tannoudji et al. [6]) states that the angular momentum of the orbits is
quantized:

memp

me + mp
νr = pr = �n (11.1)

where v is the radial velocity of the electron ( p its linear momentum) along the
orbit of radius r, me, and mp are the masses of the electron and proton, and n is
the quantum number. The classical picture of the orbiting electron violates the
uncertainty principle for small quantum numbers n. To be able to describe the
electron motion by a classical trajectory, the uncertainty in position (
r) and
momentum (
p) should be smaller than r and p, respectively, or:


r

r


p

p
	 1 (11.2)

� �

n�
. (11.3)

The last inequality (11.3) is simply obtained by substituting the uncertainty
principle and the quantization condition (11.1) into the classical representation
condition (11.2). The two conditions (11.2) and (11.3) are only compatible for
large values of the quantum number n, or large orbits. States characterized
by a high principal quantum number are called Rydberg states. The classical
orbit becomes a reasonable approximation for these states with large quantum
number n.

11.2.2. The Radial Wave Packet

A fs pulse cannot be used to excite an atom from its ground state to a single
Rydberg state, because Rydberg states are closely spaced as compared to the
bandwidth of ultrashort pulses. Instead, a fs pulse will excite a superposition
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of many Rydberg states. This superposition is a wave packet localized in the
radial coordinate. The period of oscillation corresponds to the period of the
Kepler orbit of a classical particle with the energy corresponding to that of
the average Rydberg state excited.

The experimental technique to observe the radial motion of the electrons along
these Kepler orbits is a pump–probe experiment. The pump pulse excites the
atoms to a superposition of Rydberg states. The number of ions (or free electrons)
produced by a subsequent probe is recorded as a function of delay. As explained
below, the number of ions can be related to the position (velocity) of the electron
along its Kepler orbit [7–9].

There is no localization in the angular coordinates. If the ground state is an
S state, the states forming the wave packet are P states with various principal
quantum numbers. Each of these states has as an angular dependence proportional
to the square of a single spherical harmonic, a dependence in sin2θ in the case
of the l = m = 1 state (where l and m are the usual eigenvalues of the orbital
angular momentum and its projection along a z axis). The classical description of
a Kepler orbit applies: Rather than a single orbiting electron, we should visualize
an ensemble of noninteracting particles orbiting the nucleus, with their principal
axes distributed according to the sin2θ distribution (Figure 11.1). This “radial
Rydberg wave packet” will move in the effective atomic potential between the

Figure 11.1 An ensemble of classical Kepler orbits make up the radially localized wave packet
created by fs excitation of the ground state atom. The major axes of the ellipses are randomly
distributed over all directions with a sin2θ distribution, but each electron has the same angular
coordinate in various ellipses. (From Stroud [7].)
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two classical turning points. It is a radial wave packet, because only a few angular
momentum eigenstates can be excited (selection rule l → l ± 1), and the angular
coordinates of the Rydberg electron are delocalized in a quantum mechanical
sense [10]. Each of these orbits correspond to approximately the same energy,
hence the same classical period. Therefore, with all particles moving in phase
along the various elliptical orbits, they arrive at the same time close to the nucleus,
as illustrated in Fig. 11.1. To the motion of the charged particle is associated an
electric current J = ev proportional to its velocity v. The Rydberg wave packet
is excited by a pump pulse. The energy absorbed by a delayed probe pulse of
electric field Ep is proportional to J · Ep. The absorbed energy is large if the
delay is such that the pulse reaches the atoms with the electron near the nucleus
(maximum velocity), and substantial ionization will result. At the other turning
point far away from the core, the electron is nearly a free particle (which will
not absorb radiation).

The photoionization versus probe delay is shown in Figure 11.2. The signal
oscillates at the classical orbital frequency. However, because the Rydberg states
are not equally spaced in frequency, the states get out-of-phase, and the wave
packet decays. Owing to the finite number of states excited, the observed decay
of the wave packet shown in Fig. 11.2 is not an irreversible process: After a large
number of cycles, the components of the wave packet come back in phase [11],
a process called “revival” of the wave packet. One can also observe “fractional
revivals” [9]. For instance, during the one-half fractional revival, every other
state in the superposition comes into phase, leading to the formation of two
wave packets. Experimental evidence of the formation of two wave packets is
the change in oscillation frequency to twice the orbital frequency in Fig. 11.2.

11.2.3. The Angularly Localized Wave Packet

Radial localization was obtained by creating a superposition of states corre-
sponding to a large radial quantum number n, spanning a group of values 
n.
Similarly, angular localization will require the superposition of excitations to a
large angular momentum l, spanning a group of values 
l. Because a single
photon carries only one unit of angular momentum, many photons are required
to reach the high angular momentum states from the ground state. The technique
devised by Yeazell and Stroud [12] is to excite sodium atoms from the ground
state to the n ≈ 50 manifold of states via a 2-photon transition, using circularly
polarized light at 483.7 nm from an excimer pumped dye laser. A radio frequency
(rf) field is used to create the high angular momentum wave packet through
30-photon excitation from the 50d state to states grouped around l = 32 (n = 50,
29 < l < 37, m = l). The orientation of the wave packet lies along the direction
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Figure 11.2 Photoionization signal as a function of probe delay. (a) Experimental recording.
(b) Theoretical simulation. The Rydberg wave packet spans 
n = 5 and is centered on the Rydberg
state n = 72 of atomic potassium (wavelength of pump pulse 285.6 nm). The probe is at 571.2 nm.
(From Yeazell and Stroud [9].)

of the rf field vector at the time of the optical excitation. Because the precession
and rate of dispersion of the wave packet are slow (order of ms), detection can
be made through ionization with a pulsed electric field [12]. The wave packet
is localized in the angular direction but not in the radial direction. The classical
description is that of an ensemble of elliptical orbits, all with their axes aligned
along the direction of the rf field. However, the phases of the motion along the
ellipses are not determined, resulting in an elliptical distribution in space that is
approximately stationary in time.

Techniques involving ultrashort optical and electrical pulses have been pro-
posed by Gaeta et al. [13] to localize wave packets in the radial and angular
coordinates. This would produce an atomic electron in a classical orbit.
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11.3. ULTRAFAST PROCESSES IN MOLECULES

11.3.1. Observation of Molecular Vibrations

11.3.1.1. Simple Molecules

When single atoms combine to form molecules, additional internal degrees of
freedom, such as rotations and vibrations, arise, with transients in the picosecond
and femtosecond range.

Instead of an electron moving in the field of an atom, we shall now consider
the case of an atom in a molecule. For the purpose of illustration let us consider
as specific system the I2 molecule for which the potential curves of the electronic
states are reproduced in Figures 11.3 and 11.4. A fs pulse is used to excite the
X(ν ′′s = 0) → B(ν ′ = n) transition in the 500–600 nm wavelength range (where
ν characterizes the vibronic excitation). Owing to the broad excitation spectrum,
the fs pulse creates a coherent superposition of vibronic states of mean quantum
number n. Note that during the short fs interaction the nuclear motion can be
neglected, which corresponds to a vertical transition in Figs. 11.4 or 11.3. The
time evolution of this system can be viewed as the motion of this wave packet in
the molecular potential. The classical limit is the mechanical (harmonic) oscilla-
tion with a characteristic vibration frequency ωvib. As in the case of the electron
in a Rydberg atom, the periodic motion of the wave packet can be observed with
fs techniques.

There are several techniques available to monitor the quantum state of excited
molecules. They are based on the fact that the interaction strength with a sec-
ond light pulse depends on the instantaneous location and shape of the wave
packet. If the experiment is carried out in a molecular beam, a delayed fs
pulse can be used to excite the molecule from state B to a dissociative state.
The fragments can be monitored with a mass spectrometer. If the measure-
ment is carried out in a cell, the population of the B state can be observed
simply through the fluorescence from the B state to the ground state. To probe
the dynamics of the vibration, the molecule can be irradiated by probe pulses
identical to those that created the excitation (except for the timing and phase).
Because the excited state still represents a stable molecule, return to ground
state stimulated by the second pulse will be possible at periodic intervals cor-
responding to the vibrational period of the electronically excited I2 molecule
(Fig. 11.3).

The experimental technique is essentially that of the zero area pulse experiment
described in the previous chapter. In the case of I2, the excitation wavelength
should be in the range of 608 to 613 nm. The zero area pulses are generated in
a Mach–Zehnder interferometer and sent through a 5 cm long room temperature
I2 cell at 0.25 torr [14]. The fluorescence is detected at a right angle. The return
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Figure 11.3 Study of the potential surface of I2, using a pair of identical pulses with adjustable
relative phase and delay. (a) Sketch of the potential surfaces. (b) Envelope of the fluorescence signal
(only the contribution because of the two-pulse excitation) from the B state, corresponding to an
in phase sequence (upper envelope) and an out-of-phase sequence (lower envelope). (Adapted from
Scherer et al. [14].)

to ground state will occur if the delayed probe of the same wavelength as the
pump is π out-of-phase with the exciting pulse. If instead the probe is in phase
with the first pulse, the excitation will be reinforced. As in the case of the radial
Rydberg wave packet, the classical picture for an oscillating particle fully applies.
The envelope of the fluorescence pattern for in phase and out-of-phase pulse
sequences is shown in Fig. 11.3(b) (from Scherer et al. [14]). The successive
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Figure 11.4 (a) Sketch of the bound potential energy surfaces relevant to the study of iodine
through excited state fluorescence. (b) Fluorescence from the excited state B1 of I2 as function
of the delay between the two excitation pulses of wavelength λ1 and λ2. (Adapted from Bowman
et al. [15].)

peaks are separated by 278 fs. This spacing corresponds to the superposition of
the vibrational levels of the B state pumped by excitation at 611.2 nm from the
thermally populated levels of the ground state. The classical picture is that we
are seeing the period of the oscillation of the excited molecule, corresponding to
a vibration frequency of 3.6 THz.

Another possibility to measure the dynamics of the wave packet is to probe
the excitation of state B into a bound state B1 [Figure 11.4(a)] with a time-
delayed pulse of different frequency (λ2 = 310 nm) [15]. This was done by
measuring the fluorescence from state B1 as a function of the delay between
the excitation pulses, as shown in Fig. 11.4(b). The short time oscillation has
the period of vibration of the molecule or period of wave packet motion in the
B state. The periodical behavior of the oscillation period results from a revival
of the wave packet (see, for instance, Yeazell et al. [11]). The wave packet
consists of a finite number of nearly equally spaced energy states (anharmonic
potential). This causes the wave packet to spread as time progresses so that it
is no longer localized. As a result, the periodic behavior of the fluorescence
disappears. However, because only a finite number of states is excited by the fs
pulse and forms the wave packet, a rephasing of the states occurs after a certain
time period. As in the case of the Rydberg states, the wave packet again becomes
localized, which manifests itself in an increased modulation amplitude of the
fluorescence.
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11.3.1.2. Complex Molecules

Vibrations and Other Motions

The interpretation of the vibrational studies is particularly simple for isolated
diatomic molecules. Molecular vibration and vibrational relaxation, of course,
occur in more complex systems, too. As an example, let us consider organic
dye molecules in solution. As outlined in previous chapters these systems have
gained importance as laser dyes and saturable absorbers, and have therefore been
extensively studied. Because of the large number of internal degrees of freedom
and the strong interaction with the solvent, the damping of coherently excited
wave packets and the vibrational relaxation often proceed on a subpicosecond
time scale. Wise et al. [16] observed a damped sinusoidal decay in a pump–
probe absorption experiment. For the dye Nile Blue, for example, they could
identify eight different oscillation frequencies, documenting the large manifold
of molecular eigenmodes of this complex system. Femtosecond techniques have
also been successfully applied to the spectroscopic characterization of clusters,
see, for example, Baumert et al. [17].

An absorption spectrum of a dye solution taken with an ordinary spectropho-
tometer typically exhibits a resonance corresponding to the S0 → S1 transition
with a spectral width of several tens of nanometers. This broad absorption profile
results from a large number of rotational and vibrational states within one elec-
tronic state. An interesting question is whether the transition is homogeneously
or inhomogeneously broadened. As explained in Chapter 3 (Fig. 3.2), the answer
depends on the time scale on which the experiment is performed. A convenient
experimental technique is time resolved hole burning.

Hole Burning

Hole burning or saturation spectroscopy is the standard technique to determine
the homogeneous linewidth (T−1

2 ) in gases and vapors. In the case of condensed
matter, a fs variation of that technique can be used. First, an intense fs pump
pulse is applied to saturate a particular transition. Let us consider as a specific
example a hole burning experiment performed on cresyl violet [18]. The 60-fs
wide pump pulse (centered at 618 nm) excites the S0(ν = 0) → S1(ν = 0)
transition of the molecule (Figure 11.5). Because the occupation numbers of the
ν = 0 transition in the S0 and S1 electronic state are modified, an absorption
change in the 0 → 1 and 1 → 0 transition is also observed immediately after
excitation. A fraction of the pump pulse is chirped and compressed—and hence
spectrally broadened—to probe the modified absorption spectrum of the sam-
ple. Twelve millimeters of fiber and a pair of gratings compress that fraction of
the pump down to 10 fs, using the technique outlined in Chapter 8. For every
delay increment, the difference spectrum (with and without pump) is recorded.
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Figure 11.5 (a) Absorption spectrum of cresyl violet near the region of pumping. The dashed
line illustrated qualitatively the spectral modification immediately after the 60-fs pump pulse.
(b) Differential absorption spectra for successive delay increments after excitation of cresyl violet
with a 60-fs pump pulse at 618 nm (Adapted from Brito-Cruz et al. [18]).

The resulting plot reproduced in Fig. 11.5 (b) shows clearly that three successive
holes are burned in the absorption profile. The inverse of the linewidth of the
hole indicates a phase relaxation time of T2 = 75 fs. A plot of the differential
absorption versus time also shows a fast transient. The decay of the hole structure
with time is a measure of the cross relaxation. The red shift of the peak in the
differential absorption indicates vibrational relaxation. The spectral feature gives
in this case a more positive identification of the homogeneous broadening than
the more complex temporal transient.

11.3.2. Chemical Reactions

One of the great frontiers in chemistry is detailed experimental investigations
of chemical reactions in progress from reactants through a transition state to
products. Previously, understanding of the evolution of the transition state relied
almost exclusively on theoretical treatments. For a three-atom system with a
small number of electrons, calculations may provide potential energy surfaces
on which to compute classical trajectories to simulate chemical reactivity. To
adequately reflect observable chemical phenomena, the accuracy of these energy
potential surfaces needs to be on the order of 1 kcal/mol, an appalling figure
for spectroscopists, because it corresponds to a spectral uncertainty of 350 cm−1

(or 1013 s−1)! The uncertainty is even worse for more complex molecular systems
with many more internal degrees of freedom, hence the need for an experimental
technique that will directly measure the potential energy surfaces of the transition
states.
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Femtosecond pulses offer the possibility of separating the electronic and
nuclear parts of the wave function and therefore work directly within the
framework of the Born–Oppenheimer approximation (see, for instance, Cohen-
Tannoudji et al. [6]). One of the new methods discussed in the beginning of
this section is to coherently excite or de-excite a transition from a ground to a
higher energy potential surface. The advantage of the fs pulse excitation is that
no substantial change in nuclear coordinates can take place during the interaction
with light.

For the study of chemical reactions, the experimental difficulty is that mea-
surements cannot be made on a single isolated molecule, and it seems difficult
at best to synchronize (for instance) pairs of molecules involved in bimolecu-
lar reactions. In the case of unimolecular reactions, however, it is possible to
use a femtosecond pulse to initiate synchronously the dissociation of a group of
molecules (excitation to a repulsive potential surface V1), and to monitor sub-
sequently their evolution to products with delayed probe pulses as sketched in
Figure 11.6 [19].
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Figure 11.6 Pump–probe experiment to observe the transition region of a reaction. (a) The molecule
is first excited by a pump pulse at λ1 from the potential energy curves for the bound molecule V0,
to the dissociative state V1. After a delay τd during which the fragment evolves along the repulsive
potential V1, a probe pulse at λ∗

2 excites the complex to the dissociative (eventually ionizing) potential
surface V2. As the fragments recoil, the pulse at λ∗

2 (or λ∞
2 ) probes the transition region (or the free

fragments). (b) The expected fs transients, signal versus delay τd at λ∗
2 and λ∞

2 (Adapted from Zewail
et al. [20].)
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Potential curves have been extracted from such measurements [21]. The probe
pulse induces transitions from the repulsive potential surface V1 (along which the
dissociating molecule is moving, following excitation by the pump), to another
potential surface V2. For a given delay τd , the probe absorption versus probe
wavelength approximates a step function, where the wavelength at the step is a
measure of the energy difference between potential energy surfaces V2 and V1
at the particular delay τd . It is usually not practical to measure the absorption
of the probe with low density molecules. Instead, one can determine the number
of molecules excited to the V2 potential surface by laser induced fluorescence.
Another possibility is to use a photoionizing probe (in which case the number of
transitions is directly measured by an ion count). This technique has been applied
to a detailed study of the unimolecular dissociation [19]:

ICN∗ → I + CN. (11.4)

The value of the resonance energy versus delay is a measure of the difference
between the potential energy surfaces V2−V1. To obtain an absolute measurement
of an energy potential curve, it is necessary to know the shape of the upper curve
V2, or to make the assumption that this upper curve is flat. For the particular
experiment reported in Rosker et al. [19] the variation of the potential surface V2
should not exceed 100 cm−1 [19]. Another approach is to use a theoretical model
to calculate the upper potential surface. However, because the potential variation
is on the order of 6000 cm−1 over the range of interest [19], the required accuracy
is on the order of a few percent. Procedures to invert the data to obtain the energy
surfaces for the ICN reaction have been developed by Bernstein and Zewail [21].
Because of the large energy changes along the potential energy surface in a
short delay, the probe pulse duration has to be selected to obtain the optimal
combination of temporal and spectral resolution. We refer the reader interested
in a general overview of fs probing of dissociative reaction to Zewail [20, 22]
and Cong et al. [23].

The technique of probing chemical reactions has been successfully applied to
unimolecular dissociations. The possibility of using a femtosecond technique to
study bimolecular reactions at the individual collision level is complicated by
the difficulties of spatial and temporal synchronization. One way to overcome
this problem is through the use of van der Waals complexes of weakly bound
molecular clusters. In these complexes the moieties are held in a reasonably well-
defined geometry, so that the prospective bimolecular reagents or their precursors
may be frozen into a convenient geometry in preparation for reaction initiation.
There are well-established techniques to produce clusters of heterodimers [24, 25].
Once frozen collision complexes have been prepared by expansion of molecular
beams after a supersonic nozzle, a bimolecular chemical reaction can be initiated
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by a fs photodissociation pulse producing a pair of reagents. Such a technique
has been applied to the reaction [26]

H + OCO → [HOCO]‡ → OH + CO. (11.5)

The van der Waals “precursor molecule” was [IH · · · OCO] formed in a free-
jet expansion of a mixture of HI and CO2 in an excess of helium carrier gas.
To clock the reaction, an ultrashort laser pulse photodissociates HI, ejecting an
H atom toward the O atom of the CO2. The delayed probe detects the formation
of OH. Such an experiment establishes clearly that the reaction proceeds via an
intermediate state, as shown in Eq. (11.5) and gives values for the lifetime of the
intermediate complex [HOCO]‡.

Femtosecond techniques are not limited to the observation of chemical reac-
tions, but can even be exploited to influence the course of the reaction (see, for
instance, Potter et al. [27]). This can open new relaxation channels or increase
the yield of certain reaction products.

11.3.3. Molecules in Solution

Considerable progress has been made toward the microscopic understand-
ing of molecular vibration and chemical reactions in solution. For instance, we
have shown at the beginning of this section techniques to study the wave packet
dynamics of the nuclear motions of iodine in the B state, in the collision-free
limit. These techniques can be applied to solutions of different densities and liq-
uids. The primary effects of the solvent on the fs wave packet are dephasing,
energy relaxation, caging, and recombination [28]. Except for collision-induced
rapid nonradiative transitions in the liquid state, which cause the main fluores-
cence emission to originate from a lower transition, the experimental techniques
are similar to the one used in the gaseous phase.

Femtosecond techniques have also been applied to more complex chemical
problems, such as the study of photodissociation. The influence of the solvent on
the dynamics of photodissociation of ICN can be dramatic [29]. The knowledge
gained of how the solvent influences the decay of photofragment translation and
rotation is useful in understanding the dynamics of thermally activated chemical
reactions [29]. Theoretical simulations have indeed shown that the fluctuations
in reactant and product translational and rotational motions of thermally activated
reactions proceed on the fs scale [30].
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11.4. ULTRAFAST PROCESSES IN
SOLID-STATE MATERIALS

11.4.1. Excitation Across the Band Gap

Femtosecond techniques made it possible to resolve fundamental interaction
mechanisms and times in solids at room temperature. These processes are of
tremendous importance. For instance, they determine physical limits for speed
and miniaturization in semiconductor devices. Figure 11.7 illustrates essential
processes in semiconductors, following optical excitation above the band gap.
For a comprehensive review of ultrafast processes in semiconductors probed by
laser pulses, see Shah [3].

An ultrashort light pulse of frequency ω	 creates electron–hole pairs in states
above the band gap. Their mean excess energy is 
E = �(ω	 − ωgap), and their
initial energy distribution resembles the excitation spectrum. With large excited
carrier densities, mainly carrier–carrier scattering leads to a thermalization within
the �-valley without changing the mean carrier energy. This means that some car-
riers scatter out of their initial states, so that the distribution of occupied states
becomes broader. Such processes are generally associated with momentum relax-
ation and are responsible for the dephasing of the polarization. Corresponding
T2 times can be measured by means of photon echo experiments as described in
the previous chapter. The temperature that can be attributed to the thermalized
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Figure 11.7 Simplified diagram of ultrafast processes occurring after above band gap excitation in
semiconductors.



Ultrafast Processes in Solid-State Materials 545

electronic system can exceed the lattice temperature by far. Depending on the
band structure and photon energy, intervalley scattering can occur.

Energy is transferred to the lattice (heating) by inelastic electron–phonon col-
lisions, and the carriers relax into states at the bottom of the band. The Fermi
distribution which is finally reached, can be characterized by a temperature which
is equivalent to the lattice temperature. If the excitation density is sufficiently
high, a local change in the lattice temperature can readily be observed. Extremely
high excitation can even result in melting. While the initial carrier scattering pro-
ceeds on a time scale of tens of fs or less, the intraband energy relaxation times
can amount to a few ps.

11.4.2. Excitons

Another interesting feature of the excitation spectrum of solids is the exci-
ton resonance. Excitons can be viewed as an electron–hole pair bound together
through the Coulomb attraction, with properties similar to a hydrogen atom.
Because of the positive Coulomb interaction, the corresponding energy levels
are below the band gap (cf. Fig. 11.7). If the energy of the exciton is raised by
an amount larger than the binding energy (Eb), the bound systems decay into a
free electron and hole (exciton ionization). Such a process can be induced, for
example, by longitudinal optical (LO) phonon scattering and typically proceeds
on a time scale of about 100 fs in bulk materials at room temperature.

Owing to the strong excitonic oscillator strength and nonlinear susceptibili-
ties, transient properties of excitons have attracted much attention. In particular
in MQW structures, the exciton resonances can be clearly distinguished from the
bulk absorption at room temperature. Figure 11.8 displays the absorption spec-
trum of a CdZnTe–ZnTe MQW and the results of a pump–probe experiment [31].
The pump spectrum was chosen to excite predominantly excitons. The differential
transmission at the exciton resonance shows a fast increase and a partial recovery.
Its dynamics can be explained by exciton excitation, exciton ionization because
of LO-phonon scattering, and the presence of a coherent artifact. The increase of
the transmission at photon energies, which probe the occupation of states at the
bottom of the bands (λ = 610 nm), is a direct indication of the exciton ionization
into free carriers. The characteristic ionization time was determined to be about
110 fs [31].

11.4.3. Intraband Relaxation

Intraband relaxation processes can conveniently be observed using pump–
probe absorption techniques. A pump pulse of certain energy creates carriers at
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Figure 11.8 (a) Room temperature absorption spectrum of a CdZnTe–ZnTe MQW and the spectra
of the 80-fs pump pulse and 14-fs probe pulse. The latter is a self-phase modulated and compressed
part of the pump pulse. (b) Differential transmission at 620 nm and (c) 610 nm for a pump excitation
level of 2 × 1011 carriers/cm2. The wavelength filtering was done after the sample with a filter with
a bandwidth of ≈8 nm (from Becker et al. [31]).

corresponding states above the band gap. Temporally delayed probe pulses of var-
ious frequencies test the occupation of states at different energies above the gap.
The results of such an experiment for Al0.2Ga0.3As are shown in Figure 11.9 [32].
A quantitative evaluation of the data is rather complicated, in view of the com-
plexity of the processes involved in highly excited semiconductors. The interested
reader is referred to the book by Haug and Koch [33]. Qualitatively, however,
the time resolved transmission data follow a pattern consistent with the basic
properties of the band model.

A rapid transmission change occurs not only at the excitation energy, but
over a broader spectral range, indicating a thermalization within a time range
significantly shorter than 100 fs. At 1.88 eV and 1.94 eV, a reduced change
in transmission can be attributed to the cooling of the electronic system through
energy transfer to the phonon system (lattice). This cooling results in a relaxation
of carriers toward the bottom of the band, thus emptying higher energy states.
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The increase of transmission at 1.78 eV accounts for the increase of occupied
states at the band edge, with a characteristic time constant of 1 to 2 ps. The trans-
mission features observed at 2.07 eV are explained by intervalley scattering
(� ↔ L) and confirmed by additional probing of the split-off transition [32].

11.4.4. Phonon Dynamics

Phonons represent lattice vibrations. Just as in the case of molecular vibrations,
they can be probed either by Raman techniques (frequency domain spectroscopy)
or by ultrafast probing (time domain spectroscopy). The latter has the additional
advantage of being able to retrieve not only the amplitude but also the phase
of the vibration. A simple model for coherent excitation of phonons was intro-
duced in Section 10.10. The phonon vibration of frequency ωphonon is excited
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by pairs of spectral components of the pulse spectrum ω1 and ω2 such that
ωphonon = ω2−ω1. The measurement of such collective atomic motion in crystals
can be performed in reflection as well as in transmission (see, for example, Kütt
et al. [34] and references therein). The vibrations are observable through opti-
cal probing because the atomic displacements directly affect the band structure,
and consequently the dielectric function through the deformation potential and
electro-optic coupling. In addition, in polar crystals, direct excitation of phonons
is possible by an electric field containing suitable frequency components.

Transient reflectivity measurements performed on GaAs are presented in
Figure 11.10. A 50-fs pump pulse at 2 eV [34] is followed by an orthogonally
polarized probe. The [010] crystal axis is oriented at an angle ϑ = 45◦ and
135◦ with respect to the probe polarization. After an initial peak, the reflectivity
versus delay shows an oscillatory behavior, with a characteristic frequency of
8.8 THz that matches the frequency of the longitudinal (LO) phonons in GaAs.
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Figure 11.10 Relative reflection change of a [100] GaAs crystal excited by a 50-fs pulse at 2 eV.
The generated carrier density is 1018 cm−3. ϑ is the angle between the probe polarization and the
[010] crystal axis. AC denotes the autocorrelation of the pump (probe) pulse (from [34]).
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The dependence of the modulation amplitude on ϑ results from the electro-optic
effect, which here is responsible for the phonon-induced reflectivity change.

11.4.5. Laser-Induced Surface Disordering

In a strongly absorbing material, the energy deposited in a small surface layer
by a short light pulse can locally raise the temperature beyond the melting point.
What is the response of matter to a δ-function impulse of energy, sufficient to
cause melting? “How fast does melting occur?” is a question of fundamental
interest, which involves changes in order and structure. In addition to the possi-
bility of observing melting through “femtosecond photography” [35], nonlinear
techniques sensitive to the material symmetry can be applied [36]. Results of an
experiment to monitor changes in symmetry in GaAs during melting are shown
in Figure 11.11. In GaAs, melting can be considered as a transition from a
noncentrosymmetric material to an isotropic liquid. The second-order nonlinear
susceptibility χ(2) is therefore expected to change from a relatively large value
(for the crystal) to (almost) zero (for the liquid) during the phase transition. This
second-order susceptibility can be monitored by measuring the second harmonic
in reflection generated by a delayed probe [38–40]. The reflectivity for the fun-
damental increases from the solid reflectance value to that of liquid GaAs with
a characteristic time of about 1 ps. On the other hand, the SH signal drops
substantially on a time scale of about 100 fs. These data suggest an intermediate
state between the non-centrosymmetric crystal structure and the molten material.
Note that a transition to a centrosymmetric crystal would only require a small
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Figure 11.11 (a) Experimental setup to monitor ultrafast phase changes on a GaAs surface. A strong
pump pulse induces the phase change. (b) The upper curve shows the reflectivity of a delayed probe.
The lower curve is a plot of the second harmonic (in reflection) of the probe signal, which is a
measure of the change in symmetry associated with the phase transition. (Adapted from Govorkov
et al. [37].)
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displacement of the atoms and substantially less energy than required for the
actual bond breaking that occurs with melting.

With the availability of ultrafast X-ray sources, X-ray diffraction became a
powerful new spectroscopic tool for time-resolved spectroscopy [41]. Because
X-ray diffraction is sensitive to the crystal symmetry laser-induced phase changes
can be probed directly by this technique [42].

11.5. PRIMARY STEPS IN PHOTO–BIOLOGICAL
REACTIONS

In the progression of increasingly complex systems, we have come to the role
of fs tools in analyzing the most complex biological systems. Two important
biological problems connected to fs spectroscopy are photosynthesis and vision.
In both cases, light energy is converted to biochemical energy, either for the
purpose of energy storage–transfer or for the purpose of detection. The primary
processes in the complex chain of reactions following light absorption, in vision,
or photosynthesis, takes place on a fs time scale. The quantum yield of these
ultrafast transformations is remarkably high—typically between 50 and 100%.

11.5.1. Femtosecond Isomerization of Rhodopsin

The primary process of vision takes place in rhodopsin, a pigment embedded
in the membranes of specialized photoreceptor cells, the rod and cone cells of
the retina. The role of the pigment is light absorption followed by a molecular
conformational change, which leads eventually to a change in membrane poten-
tial. This change in electrical potential across the photoreceptor cells is eventually
transmitted to the nervous system [43]. We are interested here in the primary pro-
cess of vision, which is the isomerization of the pigment following absorption of
a photon.

The pigment is a complex molecule called rhodopsin consisting of an “opsin”
protein bound to the 11-cis form of retinal chromophore. The absorption band of
rhodopsin peaks at 500 nm, which corresponds to the peak sensitivity of vision.
This main absorption corresponds to a transition from the S0 ground state to a
S1 excited state in the potential energy surface representation of Figure 11.12(a).
The potential energy is plotted as a function of an angular torsional coordinate of
the molecule. Absorption of a photon at 500 nm is followed by isomerization
to the red-absorbing trans-isomer bathorhodopsin. The classical representation
of the transformation is a “twist” of the chain [Fig. 11.12(b)]. The potential
surfaces as a function of the corresponding coordinate angle have a minimum
corresponding to the cis- and trans-configurations.
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Figure 11.12 Schematic representation of the photo-isomerization reaction of rhodopsin.
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transformation is shown in (b). (c) Difference spectra measurements of 11-cis-rhodopsin at various
delays following a 35-fs pump pulse at 500 nm (≈10 fs probe) (from Schoenlein et al. [44]).

The quantum efficiency of this reaction is exceptionally high (0.67). The radia-
tion lifetime of the excited state of rhodopsin is 10−8 s. The extinction coefficient
is 6. 4 104 M−1cm−1, a typical value for a strongly absorbing dye.

The reaction of photo-isomerization was studied through transient transmis-
sion spectroscopy through a jet of rhodopsin [45]. Adequate spectral selectivity
was achieved with a pump pulse of 35-fs at 500 nm. A 10-fs probe pulse with
a spectrum in the range of 450 nm to 570 nm was used. The differential trans-
mission spectrum versus delay shown in Fig. 11.12 indicate disappearance of the
500 nm peak, and increased absorption at 530 nm, in the first 150 fs following
excitation. The speed of that isomerization calls for a better classical representa-
tion of the cis- versus trans-configuration than Fig. 11.12(b). It is doubtful that
the large motion of nuclei implied by the sketch could take place in a time as
short as 100 fs.

11.5.2. Photosynthesis

Photosynthesis is the process by which plants convert solar energy into chem-
ical energy. Its importance is obvious, because it is at the origin of life on our
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planet. This topic is too vast to be adequately covered in a section of this book.
A general overview of the topic can be found in a review article by Fleming and
van Grondelle [46], and in topical books [1, 43].

There are pigment–protein complexes called reaction centers, where a direc-
tional electron transfer takes place across a biological membrane. Light harvest-
ing molecules (“antenna” chlorophylls) transfer electronic excitation energy to a
special pair (P in the sketch of Figure 11.13) of chlorophyll molecules, which
acts as the primary electron donor.

The latter transfers an electron to a pheophytin (HA) within 3 ps, and from it
to a quinone (QA) in 200 ps, then to the other quinone QB, hence establishing
a potential difference across a biological membrane. Biochemical reactions that
store the energy subsequently occur with these separated charges.

The energy dissipation in the first processes should be small (about 0.25 eV) as
compared to the excitation energy (1.38 eV), to minimize the waste of excitation
energy. The electron transfer should be fast to compete with fluorescence and
radiationless decay.

The complexity of the problem can be appreciated by looking at the represen-
tation of the molecular structure of a bacterium’s photosynthetic reaction center,
which was determined to atomic resolution by Deisenhofer and Michel [46, 48].
A block diagram of the electron-carrying pigments in the reaction center is shown
in Fig. 11.13.

Recent transient absorption experiments have concentrated on the fast ini-
tial electron transfers [49]. In a model proposed by Zinth et al. [47, 49], the
bacteriochlorophyll anion B−

A is created in the first 3-ps reaction. The subsequent

BB BA

HB HA

QB QA

P

Figure 11.13 Sketch of the molecular arrangement of the four bacteriochlorophylls (P, BA, BB),
the two bacteriopheophytins (HA, HB), and the two quinones (QA, QB) in reaction centers (from
Zinth et al. [47]).
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Figure 11.14 Transient absorption changes for native reaction centers at 1.02 µm associated with
the photosynthesis. The large initial absorption increase has a time constant of 0.9 ps. It is related to
the absorption change due to the formation of a bacteriochlorophyll anion (from Zinth et al. [49]).

electron transfer to the bacteriopheophytin HA is faster, taking only 0.9 ps. In the
experiment, after the main absorption band of the pigment is pumped, a probe is
sent in the near IR, where the bacteriochlorophyll anions (P+B−

A) have a strong
absorption. The transient absorption change at 1.02 µm is shown in Figure 11.14.
The 0.9 ps time constant would correspond to the electron transfer from the
bacteriochlorophyll to the bacteriopheophytin (P+H−

A).
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12
Generation of Extreme Wavelengths

Presently, the generation of fs light pulses in lasers covers a spectral range from
the UV to the NIR. Figure 12.1 gives an overview on laser materials matched to
specific wavelength ranges. Nonlinear optical processes such as sum and differ-
ence frequency generation and parametric generation are typically used to extend
the spectral range covered by laser materials.

Beyond the traditional nonlinear optics, new techniques have emerged leading
to electromagnetic pulses of extremely short (X-ray) and extremely long wave-
lengths (far infrared or FIR). These novel sources in turn opened completely new
application fields, for example, time-resolved X-ray spectroscopy, short pulse
(single-cycle) radar, and FIR coherent spectroscopy. Femtosecond light pulses
can generate the shortest electrical pulses, which in turn serves to characterize
the fastest electronic components where purely electronic means must fail. More-
over, with fs optical pulses short acoustic pulses can be produced and launched
into materials for diagnostic purposes. The geometrical length of these pulses is
only a few nm. In this chapter we will discuss the basic principles leading to
the formation of pulses at these extreme carrier frequencies. The relevant pro-
cesses are a fascinating example of the complexity of the interaction of ultrashort
light pulses with matter. From a naive view point all four types of pulses arise
simply when a fs pulse is focused onto a solid surface. Another area where fs
light pulses help to push the limits of our present knowledge is the physics of
extremely intense electromagnetic fields (larger than the atomic field strengths),
which can be reached at the focus of high power pulses.
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Figure 12.1 Femtosecond pulse generation in different wavelength regions.

12.1. GENERATION OF TERAHERTZ (THz)
RADIATION

Two mechanisms can lead to terahertz (THz) radiation through focalization
of an ultrashort light pulse onto a sample: (a) optical rectification and (b) a
radiative current transient. In the original experiment on optical rectification using
femtosecond light pulses Auston et al. [1] demonstrated the generation of THz
waves through Cherenkov radiation. A fs pulse with an energy of about 100 pJ
was focused into a LiTaO3 crystal (Figure 12.2). The optical pulse propagating
through the crystal produces a polarization pulse via optical rectification. The
latter is a second-order nonlinear optical process that occurs simultaneously with
SHG. Indeed, an instantaneous polarization quadratic in the electric field is:

P(2) = ε0χ
(2)E2(t) cos2[ω	t + ϕ(t)]

= 1

2
ε0χ

(2)E2(t) {cos 2[ω	t + ϕ(t)] + 1}, (12.1)

which includes a SH term centered at 2ω	 and a dc field of the same ampli-
tude centered at zero frequency. Optical rectification can also be understood as
difference frequency generation. A frequency domain form of Eq. (12.1) is

P(2)(ωd = ω1 − ω2) = ε0χ
(2)E(ω1)E(ω2) (12.2)

where ω1 and ω2 can be any two frequencies from the pulse spectrum. Thus, the
difference frequency ωd can cover a spectral range from zero to several THz,
which corresponds to far infrared (FIR) radiation. For a Gaussian pulse with a
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Figure 12.2 Schematic diagram for the generation of terahertz radiation through optical rectifica-
tion. (Adapted from Auston et al. [1].) A time-delayed optical pulse sampled the FIR field by probing
the induced birefringence.

temporal intensity profile I(t) ∝ exp[−4 ln 2(t/τp)2], the THz radiation can be
described as a single-cycle infrared radiation of frequency

√
ln 2(2τp)−1 [2].

The optical rectification pulse is basically an electric dipole field that moves
with the group velocity of the optical pulse. At a given position along its path
in the crystal, this dipole generates a field that travels with the group velocity
νFIR associated with its low carrier frequency (of the order of the inverse pulse
duration τ−1

p ). For LiTaO3, νFIR ≈ 0.153c, which is rather low because (quasi-
resonant) lattice vibrations contribute substantially to the dispersion behavior
in the FIR spectral range. Because the group velocity of the optical pulse is
νg ≈ 0.433c, we have an interesting situation where the source velocity is larger
than the velocity of the emitted wave. This condition leads to the formation of
an electromagnetic shock wave (Cherenkov) radiation propagating on a conical
surface in the crystal. The characteristic angle between the surface normal of the
cone and its symmetry axis (propagation direction of the optical pulse) is

cos θc = νFIR

νg
(12.3)
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Figure 12.3 Temporal behavior of the THz field and the corresponding Fourier spectrum obtained
from optical rectification (Adapted from Auston et al. [1]).

which is 69◦ for LiTaO3 [1]. The electric field of the far infrared pulse transient
was measured using a second fs optical pulse which probed the FIR-induced
birefringence. By varying the time delay between pump and probe pulse the
FIR field can be sampled. This detection gives a complete recording of the FIR
waveform—hence, the FIR radiation is completely determined in amplitude and
phase. Figure 12.3 displays the temporal behavior of the FIR field as well as
its Fourier spectrum. If the (external) angle of incidence of the optical pulse is
chosen to be α = 51◦, a portion of the Cherenkov cone propagates normally to
the crystal surface and thus can propagate into free space (air) [3]. In this manner
the crystal acts like an emitter for THz radiation.

Instead of a moving dipole in a dielectric medium, an ultrashort electrical
pulse on a coplanar transmission line can also serve as source for THz radiation,
as reported by Fattinger and Grischkowsky [4]. The physical situation is sketched
in Figure 12.4. The transmission line consisted of two 5-µm wide, 5-µm thick
aluminum lines separated by 10 µm. The substrate was heavily implanted silicon
on sapphire to ensure a short carrier lifetime of about 600 fs [5]. The latter is
crucial for generating the short electrical transients and for a short response time
of the detection switch.

More recently even simpler techniques turned out to be effective means
to generate THz radiation. These include biased metal–semiconductor inter-
faces [5] and semiconductor surfaces between biased metal electrodes [6], which
is similar to a technique already used by Mourou et al. [7] to produce ps
microwave pulses. Their common operational principle rests on the production
of a fast carrier transient in an external bias field, following the optical excitation.
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Figure 12.4 THz radiation through ultrafast switching of a charged coplanar transmission line.
A fs pulse shortens the transmission line creating a subps electrical pulse. Its transients after prop-
agation over a certain length L can be measured by a time-delayed second pulse that excites a fast
photoconductive switch (Adapted from Fattinger and Grischkowsky [4]).

The rise time is roughly given by the carrier generation process, i.e., by the opti-
cal pulse duration. The fall time is limited by the finite transit time of the carriers
across the region of the electric field and by the carrier lifetime, whichever is
shorter.

Surprisingly, semiconductor surfaces excited above the band gap and without
external bias voltage were found to be emitters of THz radiation, too [8]. A static
built-in field normal to the semiconductor air surface acts as bias and may drive
the carrier current. The origin of this field is a downward bending of the conduc-
tion and valence band creating a charge depletion region near the semiconductor
surface. The generation of photocarriers in this layer then initiates an electron
and hole current in opposite directions.

A coherent contribution to this FIR generation process on a fs time scale
was recently suggested and analyzed [9]. The effect relies on the formation of
an instantaneous nonlinear polarization because of excited electron–hole pairs
and the coherent evolution of this system. These coherent effects—as is the
case for any type of coherent light–matter interactions, (cf. Chapter 4)—play
an important role if the Rabi frequency becomes comparable or larger than
the dephasing rate T−1

2 . Therefore, the coherent processes are expected to pro-
duce a significant contribution to the THz emission process when short and/or
powerful optical pulses are used [9]. The FIR radiation originating from opti-
cal rectification, as mentioned, is another example of a coherent generation
process.

The sources of FIR radiation described so far are mainly point sources.
An extended source (area of linear dimensions that are large compared with
the THz wavelength) has been demonstrated by sending fs pulses of large energy
onto a large area biased semiconductor [10]. Such an extended source has inter-
esting far- and near-field properties. The radiation is coherently emitted from
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an area of cm dimensions and has diffraction properties similar to a Gaussian
beam of cm beam waist at a wavelength of approximately 0.3 mm (Raleigh range
of the order of 1 meter). The inconvenience of this source is the large optical
power (distributed over the large area of the emitter) required. However, because
of the large excitation energy and area, the emitted FIR power is considerably
larger than with the point source devices [9, 10]. The THz pulses can therefore
be detected directly with bolometric structures. Pyroelectric detectors can even
be used for nJ and larger energies [9]. The bandwidth limitation associated with
the photoconducting receiver structures is eliminated by recording THz pulse
interferograms directly. To this aim, the FIR radiation is sent into a Michelson
interferometer, and the output signal is measured as a function of length detuning.
A corresponding interferogram of a THz pulse with a field FWHM as short as
85 fs is shown in Figure 12.5.

The large majority of the THz emitters can be considered as point sources
(dimensions 	 wavelength). For most applications, it is desirable to collimate
the emitted waves with a system of lenses or mirrors, propagate the beam over
long distances, and finally detect it. A simple means of collimating the beam is to
attach a lens, for example a silicon lens, directly to the radiation source [3,11,12].
Collimation of the point source radiation was achieved by a combination of
silicon lenses and parabolic mirrors, [11, 13] as sketched in Figure 12.6. The
transmitted radiation is focused by a combination of parabolic mirror and lens
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Figure 12.5 Second-order autocorrelation of the visible excitation pulse (broken line) and interfer-
ogram of the FIR pulse (solid line). The THz pulse was produced from an unbiased, n-type InP (111)
wafer doped at 1017 cm−3 (Adapted from Green et al. [9]).
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Figure 12.6 (a) Setup for generating and transmitting ultrashort THz radiation. (b) Detector for the
time resolved measurement of the THz field (Adapted from van Exter and Grischkowsky [11]).

onto a photoconducting antenna, which produces a transient bias voltage across
the 5-µm gap [Fig. 12.6(b)]. The transient voltage is gated by a photoconductive
switch driven by a time-delayed optical pulse. The recorded average current
versus delay is a convolution among the FIR field, the optical pulse, and the
response of the receiver. It is the last that limits the temporal resolution of the
detection system.

An interesting application of the THz source is coherent rotational spec-
troscopy [14]. The THz radiation is propagated through an 88-cm long sample
cell. The time domain spectrometer has a transmitter and a receiver part which
are replicas of each other. The rotational spectrum of N2O between 0 and
1 THz consists essentially of regularly spaced narrow lines [14]. The rotational
frequencies are given by:

vR = 2B(J + 1) − 4D(J + 1)2 (12.4)

where J is the rotational quantum number, B the rotational constant, and D
the centrifugal stretching constant. As many as 70 transitions can be excited
simultaneously by the THz pulse. Bloch’s equations (cf. Chapter 4) apply to this
system. They can be simplified assuming small pulse area and a long T2 time.
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Indeed, at a pressure of 600 torr (which corresponds to an optical thickness of
the sample αd = 1. 2), the dephasing time because of collisions is 65 ps, thus
much longer than the exciting pulse. Each of the excited molecules, for a par-
ticular J value, acts as a vibrating dipole. These dipoles—nearly equally spaced
in frequency—radiate in phase following the pulsed excitation (free induction
decay), resulting in a train of ultrashort pulses (Figure 12.7). The directly trans-
mitted pulse is followed by a series of THz pulses at a repetition rate of 25.1 GHz,
equal to the frequency separation between adjacent lines [2B in Eq. (12.4) if the
anharmonicity is negligibly small], as shown in Fig. 12.7(a). Because the incident
and transmitted fields are measured with high precision (the signal-to-noise ratio
in this experiment is better than 20,000), in amplitude and phase (the detection
measures the field magnitude rather than the radiation intensity), accurate fit with
the theory is possible [Fig. 12.7(b) as compared to Fig. 12.7(a)]. In addition to
a verification of the rotational constant B, the data lead to an improved determi-
nation of the centrifugal stretching constant D ≈ 5. 28 kHz, and the interatomic
distances in the molecule (N ↔ N ≈ 1.125 Å; and N ↔ O ≈ 1. 191 Å) [14].
An example of measurement and fitting of successive pulses in the train is shown
in Fig. 12.7(c) and (d).
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Figure 12.7 Coherent THz rotational spectroscopy of N2O. THz radiation transmitted (a) and
calculated (b) through N2O. Measurement (solid line) and calculation (dashed lines) of (c) the first,
and (d) the 14th radiated coherent pulse (Adapted from Harde and Grischkowsky [14]).
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12.2. GENERATION OF ULTRAFAST X-RAY PULSES

12.2.1. Incoherent Bursts of X-Rays

When a powerful light pulse is focused onto a solid, a high-temperature plasma
is produced, which can emit X-rays. Stimulated by laser fusion research, the
physics of laser induced X-ray generation has been extensively investigated. The
availability of high energy (milliJoule) tabletop lasers has made laser-produced
plasmas a unique and practical source of ultrashort X-ray pulses [15–21].
A diagram of optical pulse induced X-ray production is sketched in Figure 12.8(a).
In the absorption process, which takes place in a thin surface layer, the opti-
cal energy is initially transferred to the electronic system. Depending on the
target and the laser pulse intensity multiphoton processes ionize the material,
and the plasma is subsequently heated. The cooling of the laser-produced plasma
is accompanied by the emission of a burst of X-rays. Figure 12.8(b) shows the
time integrated spectral distribution from a Si target as was obtained by Murnane
et al. [22].

Several processes contribute to the X-ray emission spectrum:

• the emission of distinct lines resulting from transitions between inner
subshells of the ions,

• broadband emission from the recombination of unbound (free) electrons and
ions, and

• broadband emission consisting of bremsstrahlung radiation.
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Figure 12.8 (a) Sketch of laser-generated X-ray plasmas. (b) Time integrated soft X-ray emission.
Pulses of 160-fs duration and 5 mJ of energy were focused onto an Si target at an intensity of
1016 W/cm2 (Adapted from Murnane et al. [22]).
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There are substantial differences between the plasma generation with pulses on
the order of ps or longer and fs pulses. The physical difference is related to the
time scale of the plasma expansion for a distance equal to the absorption length,
into the surrounding vacuum. Expansion velocities are comparable with the sound
velocity, typically about 0.1 nm/fs, while the absorption length of metals is of
the order of 10 nm. The energy will thus be deposited in a time shorter than
the expansion time with a 100-fs pulse. Consequently a fs pulse interacts with
a solid or near-solid density plasma. With ps and longer pulses, the leading part
generates an expanding plasma that creates a density gradient above the target
surface. The later parts of the pulse are absorbed in this low density plasma up
to a density at which the electron plasma frequency equals the laser frequency.

The duration of the emitted X-ray burst follows roughly the duration of the
optical excitation pulse if it is of ps or longer duration. To obtain sub-ps X-ray
pulses, fs excitation pulses are needed to produce a fast enough rise of the elec-
tron temperature, and the plasma must cool rapidly to terminate the emission.
While the former is responsible for the rise time of the X-ray pulse, it is the
latter that will determine its decay characteristics. There are a number of pro-
cesses which allow a rapid cooling of the plasma if excited to high densities [22].
Among them are high thermal and pressure gradients which drive the hot elec-
trons into the bulk and expand the plasma into the vacuum. Moreover, because
the electron temperature exceeds the temperature of the atoms and ions by far,
inelastic collisions between them and the electrons are an efficient cooling mech-
anism. Using 160-fs excitation pulses, X-ray pulses as short as ∼1. 1 ps could be
measured [22], where this value represents the detector limit of the X-ray streak
camera. While the corresponding spectrum was in the soft X-ray range, a two
order of magnitude larger excitation density (∼1018 W/cm2) and a heavy metal
target (Ta) yielded hard X-rays in a range between 20 keV and 2 MeV [18].
Conversion efficiencies of about 0.3% were observed.

12.2.2. High Harmonics (HH) and Attosecond Pulse
Generation

While the techniques described above lead to incoherent emission of X-rays,
coherent X-rays can be generated via the production of high harmonics (HH).
Already in the 1970s, using CO2 laser radiation at intensities exceeding
1014 W/cm2 and Al targets, HH up to order n = 11 were observed [23].
In the late 1980s the 17th harmonic of a KrF laser (248 nm) was demonstrated
in Ne gas with intensities > 1015 W/cm2 [24], and harmonics up to n = 33
were observed in Ne with fundamental laser radiation at 1.06µm [25]. These
experiments demonstrated the potential of HH generation to enter the soft X-ray
spectral range. Real breakthroughs of this technique were made in the 1990s when
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Figure 12.9 (a) Above threshold ionization of an atom. The atomic Coulomb potential (dashed
line), U(x), is bent (solid line) because of the electric field of the pulse, leading to ionization. (b) The
electron trajectory in the vicinity of the ion caused by the electric field of the pulse. Recombination
with the ion leads to the emission of HH.

sub-ps pulses from various sources were focused on jets of noble gases.
Summaries of HH generation and their application including its history can be
found in reviews by Brabec and Krausz [26], Eden [27], and Kapteyn et al. [28].

A schematic diagram of HH generation using an atomic gas jet and its inter-
pretation are shown in Figure 12.9. According to a semiclassical model [29–31]
the atom is ionized by the incident laser pulse. The electron driven by the electric
field of the laser can remain in the vicinity of the ion over several light oscilla-
tions, while the oscillation amplitude can amount to several Angstroms. In the
nonrelativistic regime an oscillating free electron does not emit radiation. The
electron, however, can recollide with the ionized atom a fraction of an optical
period after the ionization event. When this occurs the electron loses an energy

W = U0 + κUp, (12.5)

that is emitted as radiation. Here U0 is the ionization potential energy of the
atom and

Up = e2〈E2〉
4mω2

	

(12.6)

is the kinetic energy (averaged over on optical cycle) of the electron (mass m)
wiggling in the laser field. The quantity Up is also called ponderomotive
potential. The energy W depends on the time within one optical cycle at which
the atom is ionized and the electron recollides. This defines a maximum possible
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energy the electron can acquire before recombination, for which κ ≈ 3.2.
As a result, the emission spectrum has a sharp cutoff at the short wavelength side,
λmin ≈ hc/

√
U0 + 3.2Up. Recollisions can occur with certain probability in each

half-cycle of the laser field, producing bursts of (attosecond) emissions coherent
to each other. In the frequency domain this corresponds to a comb of frequencies
representing the odd harmonics of ω	, the frequency of the driving field.1 HH with
order n as large as 221 were observed [32]. With few cycle fundamental pulses,
only few emission bursts occur and the discrete (comb) structure of the emission
spectrum disappears. Extending the coherent continuum to the X-ray water
window (2.3 nm–4.4 nm) was accomplished with sub-10-fs pump pulses [33].

Single attosecond pulses were predicted theoretically for few-cycle funda-
mental pump pulses and demonstrated experimentally [34, 35]. This opened up
exciting new applications of high field physics and attosecond spectroscopy.

12.3. GENERATION OF ULTRASHORT
ACOUSTIC PULSES

An acoustic wave is a strain or shear wave that can be produced by piezo-
electric transducers in mechanical contact with the material. The transducers are
usually driven by rf voltages. Such techniques have gained importance for the
design of acousto-optical modulators for actively mode-locked lasers. Moreover,
acoustic pulse propagation, scattering, and reflection can conveniently be used
for material characterization.

The generation of acoustic waves with (fs) optical pulses is another example
that illustrates the complexity of processes associated with the interaction of
light pulses with matter. Let us assume that a fs pulse is incident on a solid
surface of a highly absorbing material and that its energy density is below the
threshold for plasma generation and other irreversible processes. Two effects
are responsible for launching an ultrasonic wave (pulse) into the material. Their
relative importance depends on the material properties and the parameters of
the (optical) excitation pulse (see, for example, Grahn et al. [36] and references
therein).

(a) If the pulse is absorbed in a semiconductor, a high-density distribution of
electron–hole pairs is created in a thin layer at the material surface. This
electron–hole plasma changes locally the effective potential that deter-
mines the arrangement of the atoms in the lattice. The resulting stress
is given by σ = N(dVg/dη) where N is the excited carrier density and
dVg/dη is the deformation potential.

1For symmetry reasons (inversion symmetry) only odd harmonics are possible.
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(b) The carriers excited to states above the band gap relax (cool) mainly
because of interaction with the lattice through electron–phonon collisions.
Consequently, the temperature of the excited volume rises, producing
an elastic stress. The stress amplitude is directly related to the thermal
expansion coefficient and the absorbed energy density. For a more detailed
analysis one has to account for a possible diffusion of the excited carriers
during the electron–phonon interaction. This may increase the effective
excited region.

Figure 12.10 illustrates a simple model of acoustic pulse formation. At t = 0
elastic stress is generated with a depth profile that follows approximately the
absorbed energy density. This stress distribution acts as source for a strain wave
(pulse) propagating into the material and toward the interface. On reflection at
the interface, the latter experiences a phase change of π. This gives rise to the
final shape of the strain pulse as shown in Fig. 12.10 for t = d/νac. According
to our model the width of the stress pulse is determined by the absorption length
za for the optical pulse if the propagation length of the strain wave during the
optical excitation is smaller than za. If νac is the sound velocity this condition
can be expressed as

τp <
za

νac
. (12.7)

For an order of magnitude estimate let us assume za ≈ 10−8 m and νac ≈ 104 m/s,
which yields τp < 1 ps. For optical pulses shorter than 1 ps, the duration of the
acoustic pulse depends mainly on material parameters rather than on the particular
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Figure 12.10 Propagation of a stress pulse generated at t = 0 through absorption of an optical
pulse. (Adapted from Grahn et al. [36].)
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shape of the exciting pulse. In reality, of course, the formation of the stress is
not instantaneous. This concerns, for example, the finite thermalization time of
excited carriers (∼0.1 . . . 2 ps) and the rise of the temperature, respectively. Such
effects, in addition, limit the achievable duration of the acoustic pulse.

It is worth mentioning that the geometrical length of the acoustic pulse
amounts only to few nm, i.e., a fraction of an optical wavelength, which enables a
variety of attractive applications. One example is shown in Figure 12.11. A pump
pulse creates an acoustic pulse that subsequently bounces back and forth in a thin
material layer while being damped. This was monitored by testing the reflectivity
of the surface with a time-delayed probe pulse, see Fig. 12.11(b). The temporal
separation between the peaks in the reflectivity change corresponds to the transit
time of the acoustic pulse in the film. From the decrease in the peak height,
information on the damping of acoustic waves can be obtained.

Periodic structures such as MQWs can be used to generate acoustic waves with
some degree of spatial coherence [37]. For instance, the energy can be deposited
in an array of MQWs spaced by the wavelength of a longitudinal optical (LO)
phonon generated in the process of thermalization of the excited carriers. Such
a structure is the acoustical analogue of the distributed feedback laser [38–40].
The LO phonons add coherently along the normal to the MQW planes. The
frequency of the phonon can be in the hundreds of GHz, with a corresponding
wavelength of the order of 100 Å. The phonon generation can be understood
as a particular case of impulsive Raman scattering. As mentioned in Chap-
ter 10, coherent addition of the phonons at the frequency vph will be achieved
if a train of pulses separated by the period 1/vph is used instead of a single
pulse. The pulse shaping techniques mentioned in Chapter 8 can generate such
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Figure 12.11 (a) Diagram for the generation and detection of acoustic pulses. (b) Time dependence
of the reflectivity change of a 220 nm As2Te3 film as seen by the optical probe pulse. The echoes
corresponding to subsequent reflections of the acoustic pulse at the film–air interface appear clearly
as reflection changes (Adapted from Grahn et al. [36]).
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pulse trains. Femtosecond technology applied to MQW structures can thus lead
to the generation of temporally and spatially coherent acoustic waves of short
(≈ 100Å) wavelength.

12.4. GENERATION OF ULTRAFAST ELECTRIC
PULSES

The rapid progress in microelectronics not only makes circuits smaller and
more powerful but also faster. The fastest all-electronically produced transients
(≈0.5 ps) are still a few orders of magnitude slower than what can be obtained
by all-optical techniques. Of course, optics and electronics cover different appli-
cations and compete directly only in a limited application field. In many cases
a combination of optical and electronic means can be regarded as the optimum.
In light of this, to generate ultrashort electrical transients, one can advantageously
use fs light pulses to trigger photoconductive switches. Such switches made
from semiconductors and driven by ps optical pulses were first demonstrated
by Auston [41] and Lawton and Scavannec [42]. The development of fs pulse
sources and progress in material fabrication have since made possible the produc-
tion of sub-ps electrical pulses [43]. These pulses are employed to test ultrafast
electronic circuits and components and measure their temporal response; see
Frankel et al. [44] for example.

The basic operational principle of a photoconductive switch can be explained
by means of Figure 12.12. A metallic microstrip line on top of a semiconductor
is interrupted by a narrow gap. The implementation of the switch in a high speed
transmission line such as a strip line is necessary to propagate ultrafast electric
pulses while limiting the broadening effect of dispersion. The photoconductor

Metallic strip line

Grounded plate

CB

VB�

�

Photoconductor

d

Vb
Vout

Ttrap

Tdiff

Trec

Figure 12.12 Sketch of a photoconductive switch. The inset shows the excitation and relaxation
processes of the semiconductor.
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can also be a thin film deposited on an insulator. The bottom of this substrate
is metal-coated and grounded. The strip line is connected to a bias voltage Vb.
Because of the low (ideally zero) dark conductivity of the gap, the output voltage
is zero. When a light pulse of suitable frequency is focused into the gap free
carriers are generated which increase the conductivity. Subsequently, a current
develops which can be measured as a certain output voltage Vout . In the first
demonstration of a ps-pulse triggered switch [41], the voltage was again set to
zero by a second light pulse of certain delay but of longer wavelength (1.06 µm)
which produced a short circuit between the excited surface layer and the grounded
plate. This was possible since the absorption length of the 0.53 µm excitation
pulse in Si was much smaller than that of the “turn-off” pulse. Without the
second pulse, the drop of the output voltage is given by the decrease of free
carriers in the gap. This in turn is determined by local processes such as carrier
recombination and carrier trapping and by nonlocal processes such as carrier
diffusion.

An exact analysis of the switching behavior in the fs regime is a rather difficult
task. It requires not only the solution of Maxwell’s equations with correspond-
ing initial and boundary conditions but also an accurate modeling of the matter
response to the fs excitation pulse. To explain the basic operational principle,
however, a strongly simplified approach is possible and provides excellent results.
We will briefly explain this model for a photoconductive switch in a transmis-
sion line and follow the discussion of Auston [45,46]. The main idea is to model
the switch by an equivalent circuit consisting of a capacitor of capacitance C
and a parallel (time varying) resistor of conductance G(t); see Figure 12.13. The
conductance can be written as

G(t) = G0 + g(t) (12.8)

C

G(t)

Vb

Z0 Z0

Figure 12.13 Equivalent circuit for a photoconductive switch in a transmission line. (Adapted from
Auston [45].)
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where G0 is the dark conductivity and g(t) is the pulse induced conductance.
The latter can be expressed in terms of the free carrier concentration N and the
electron (hole) mobility µn (µp), as

g(t) = 1

V2
b

∫
d3x(Neµn + Neµp)|Ẽ|2 (12.9)

where Vb is the voltage across the gap, E is the local field strength in the gap
and d3x denotes integration over the excited volume layer. The local field is
a complicated function of the gap geometry and the carrier concentration and
distribution. To get an explicit expression for the photoconductance let us assume
that the perturbation by the pulse is small so that g 	 G holds.2 The electric
field in the gap can then be approximated by E = Vb/d where d is the gap length.
Assuming homogeneous gap illumination and complete absorption in a thin sur-
face layer, the total number of excited carriers is given by (1− r)W/(�ω	) where
r is the reflection coefficient and W/(�ω	) is the number of incident photons.
Inserting the values for the number of carriers and the electric field thus obtained
in Eq. (12.9) yields for the photoconductance after pulse absorption at t = 0

g(t > 0) = 1 − r2

d2
e(µn + µp)

W
�ω	

. (12.10)

This expression shows the importance of high carrier mobilities for the switch
sensitivity.

Let us next investigate the fundamental switching properties by idealizing the
process of carrier generation and using the equivalent circuit model. For a step
function conductance change

G(t) =
{

0 t < 0
G1 t ≥ 0

(12.11)

and a dc bias voltage Vb, the transmitted voltage signal for a photoconductor in
a transmission line of impedance Z0 is [45]:

V (t) = Vb

2

2Z0G1

1 + 2Z0G1

{
1 − exp

[
−(1 + Z0G1)

t

CZ0

]}
(12.12)

where Z0 is the impedance of the strip line. Obviously the transmitted signal
increases with G1 and saturates at Vb/2 for Z0G1 � 1. For small excitation,

2This simplifying assumption is for the purpose of analytical evaluation only: It is neither desired
for high switching efficiencies nor typical for ultrashort pulse excitation.
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i.e., Z0G1 	 1, the signal’s rise time is limited by the capacitance and is expected
to decrease with increasing G1.

As mentioned previously the drop in the transmitted signal can be controlled
with such material parameters as carrier recombination, trapping, and diffusion.
These parameters depend sensitively on the material and the fabrication process.
Diffusion and recombination times typically range well above several 10 ps and
thus would not lead to a sub-ps signal switch-off. Additional relaxation channels
can be opened by the introduction of local defects which act as trapping cen-
ters. These defects are implanted by doping with impurities or through radiation
damage. Effective carrier lifetimes as short as 600 fs were measured for radiation
damaged silicon on sapphire [5]. Other examples are CdTe [47] and GaAs [48]
where recombination centers were introduced during the material growth process.
With the implementation of such techniques there is usually a trade-off to be
made between the decrease of the free carrier lifetime and a decrease of the
mobility. These materials, however, enabled the generation of sub-ps electrical
pulses [43, 47]. An example is shown in Figure 12.14.

An important question is how to transmit and measure sub-ps electrical tran-
sients with THz bandwidths. Strip lines like those depicted in Fig. 12.12 have too
large a dispersion to be ideal transmitters for sub-ps electrical pulses. Mode dis-
persion is the most severe problem. For only one single mode to exist, the distance
between the metal strip and the grounded plate has to be small (a few microns),
which is difficult to achieve (mechanical tolerances). Electrical pulses of less than
10 ps double their length after propagation distances shorter than 1 mm [49].

Better results have been obtained with coplanar strip lines deposited on top of
the photoconductor as depicted in Fig. 12.14. Their geometrical separation can
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Figure 12.14 Sub-ps electrical pulse generated with a CdTe coplanar strip line and 100 fs excitation
pulses. Left: experimental setup. Right: correlation signal obtained through electro-optic sampling
(Adapted from Nuss et al. [47]).
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easily be controlled during the fabrication process, which is essential for single
mode propagation. Using “sliding contact” excitation the effective capacitance
was found to be zero to first order [50], which is most desirable for short electric
transients, cf. Eq. (12.12). But even with coplanar strip lines, sub-ps electrical
pulses (or slopes) cannot be propagated over more than several mm [51]. As
mentioned at the beginning of this chapter, they can be sent through considerable
distances in air or a dielectric bulk medium if suitable antenna–receiver structures
are used. There are speculations about utilizing soliton mechanisms to transmit
sub-ps electrical pulses over long distances in strip lines [52]. In analogy to
solitons in optical fibers, this requires an interplay between nonlinear and linear
processes.

Because of the dispersion problem, the measurement of sub-ps electrical pulses
has to be performed close to the location of their generation. This can be done
by implementing a second photoelectronic switch in the transmission line. The
voltage pulse generated in the first gap, propagates to the second gap which is
illuminated by a time-delayed second pulse [41]. The voltage signal at the output
of such a device measured as a function of the delay time is thus an autocorrelation
of the electrical pulse. Electro-optic techniques have been applied to measure
cross-correlations between the electrical and optical pulses. If the substrate has a
large enough electro-optic coefficient, the electrical pulse induced birefringence
can be probed by a time-delayed optical pulse of suitable wavelength [53]. What
is measured then is the polarization rotation experienced by the test pulse. Another
approach is to bring an electro-optic material in the vicinity of the location to
be probed [53]. The experiment depicted in Fig. 12.14 utilizes this method. For
good spatial resolution, the probe can be a needle produced from a suitable
material such as LiTaO3. The advantage of this technique is that the behavior of
the electrical pulse can be sampled along the transmission line and possibly in
following electronic components.
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13
Selected Applications

In previous chapters we have emphasized the role of femtosecond pulses in
basic research. Ultrashort pulses are not limited to esoteric research on ultrafast
events. We want to emphasize here more down-to-earth applications, for which
the femtosecond source can have practical advantages. The topics covered are
short pulse imaging, solitons, fs lasers as sensors, and stabilized fs lasers for
applications in metrology.

13.1. IMAGING

13.1.1. Introduction

It does not come as a surprise that ultrashort pulses contribute to the most
fundamental function of light: imaging. The intensity information of light is
sufficient to record two-dimensional images. Additional information provided by
the phase of the optical field makes it possible to record an image along all three
space coordinates. This technique, combining phase and amplitude retrieval of
the light scattered by objects, is called holography, and is the most accurate of all
macroscopic imaging methods. It can easily measure deformations much smaller
than one wavelength. The price to pay for the high accuracy of holography is that
an excessive amount of data has to be recorded. Because all the three-dimensional
information of the object has to be stored in a single recording, high optical energy
densities are used, with the possibility of laser damage if the material absorbs
light.

579
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“Range gating” is another method to obtain depth information, by measuring
the transit time of the radiation from the source to the object and thereafter to
the detector. If—as is often the case—the source and detector are colocated, the
distance z from source to object is simply c× (roundtrip time)/2. This technique
has been used since World War II for localizing and tracking moving objects.
The resolution has shifted from meter (radar) to centimeter (lidar). Femtosecond
pulses offer the possibility of a depth resolution of a few microns. Another func-
tion of ultrashort range gating is to discriminate against scattering, as will be
shown later in this chapter.

13.1.2. Range Gating with Ultrashort Pulses

A basic sketch of principle for range gating 3D images with fs pulses is shown
in Figure 13.1. The source fs beam is split into a reference and an object beam.
The reference beam, after an appropriate delay line, triggers the optical gate at a
delay time τ. The light backscattered from various depths z of the object reaches
the optical gate at time intervals spaced out by 2z/c. A particular depth is selected
by the delay time at which the shutter is opened. The signal S received by the
detector, as a function of delay τ, for a particular position (x, y) in the transverse
plane of the beam, is the correlation of the gating function g(t) and the intensity
from the object Is(t):

S(τ) =
∫ ∞

−∞
Is(t)g(t − τ)dt. (13.1)

Telescope
Object

Gate

Detector

Delay

Figure 13.1 Recording of a three-dimensional object through range gating with ultrashort pulses.
The gate is “opened” by a fs reference pulse derived from the illuminating source and appropriately
delayed. An ultrafast gating function can be achieved, for example, with a Kerr gate or a nonlinear
crystal for sum frequency generation. In the latter case, transverse resolution is generally obtained
by scanning a narrow beam across the object.
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If the gating function can be assimilated to a δ function with respect to the
variations of the signal Is(t), the measured transmitted signal is simply S(τ) ≈
Is(τ) = Is(2z/c), where the depth of observation z is determined by the position
of the reference mirror (delay). In general, the higher the order of the gating
process is, the better is the depth resolution. For instance, if three-photon inter-
action (ωd = 2ωr + ωs, where ωd , ωr , and ωs are respectively the frequencies
of the detected, reference, and signal photons) is used to gate the signal light,
because g(t) ∝ Ir(t)2, the gating signal is approximately

√
2× shorter than the

signal pulse. A compromise has to be reached: The higher the order of the gating
process, the greater the required reference intensity. Given the power limitation
of the source, the intensity requirement for the reference pulse limits the beam
cross section that can be utilized. Lateral scanning is therefore often used to
obtain the transverse information on the object.

Bruckner [1] proposed using a fast Kerr shutter to gate the radiation reflected
by index discontinuities in eyes. A Kerr shutter consists of a Kerr liquid between
crossed polarizers. The shutter is “opened” by an intense ultrashort pulse inducing
birefringence in the liquid. The gating time is either the pulse duration or the
response time of the liquid, whichever is longer. Kerr gates have been applied to
picosecond gating [2, 3]. Femtosecond temporal resolution can be achieved, for
example, by gating through second harmonic or sum frequency generation [4,5].
The technique consists of generating a second harmonic signal I2(t) proportional
to the product of a reference pulse Ir(t), derived directly from the source, and
the signal Is(t). The SH energy S2ω(τ) recorded as a function of reference delay
τ is simply the correlation function defined in Chapter 9. This technique has been
applied in one dimension to fibers, to locate defects in fibers and connectors with
a resolution of the order of a few microns [6]. The method has been extended to
three dimensions (three-dimensional imaging of the eyes) by scanning the beam
transversely [7]. The transverse resolution, limited by the size of the beam, can
be improved by illuminating each point of the 3D object and using tomographic
reconstruction algorithms [4].

Linear correlation techniques, such as heterodyning, can also be applied.
Here the reference pulse is frequency shifted. Gating is achieved by interfering
reference and object pulse and detection at the heterodyne frequency. Because
no nonlinear optical processes are involved, these linear techniques are sensitive
even at low illumination power. The backscattered signal is mixed with the refer-
ence signal, which is continuously scanned. The mixing signal is at the Doppler
frequency, thus measuring the speed of the scanner. The mixing beat note is
observable only in the regions where the reference and signal are coherent with
each other. In this particular application, either ultrashort pulses, or light with a
short coherence length are used. The technique was initially applied to fibers and
integrated optics structures [8].
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Huang et al. [9] introduced a greatly improved method as optical coherence
tomography (OCT) in the early 1990s. Since then OCT has developed into a
field of its own with impressive applications initially in the imaging of eyes [10],
and later in biomedical noninvasive imaging in general. We refer the reader to
several books devoted to OCT [11, 12].

Speed is an essential element in 3D imaging of in vivo biological objects.
There is a compromise between speed and sensitivity: Sensitive detectors require
a longer integration time. One possibility to reduce the time needed for data
acquisition is to reduce the multidimensional scanning to only one dimension
(the depth). It is possible in the case of nonlinear gating (second harmonic or
parametric generation) to record a single-shot transverse picture for each depth
increment. Direct recording of 2D images in “depth slices” has been demon-
strated with high contrast objects [5, 13]. The optical arrangement is sketched
in Figure 13.2. The laser beam is expanded to the size of the object after being
split by a calcite prism (polarizing beam splitter) between a reference and prob-
ing beam. The amount of beam splitting is controlled by a half wave plate, to
have the maximum probing intensity that the sample can accommodate. A quarter
wave plate in both the reference and object arms ensures that the returning beams

Delay

Object

SHG crystal
type II

Filter

CCD camera

Ir

Is

�/2

�/4

Figure 13.2 Setup for recording successive two-dimensional “slices” of a transparent 3D object
based on SHG. The backscattered radiation Is from the object is stretched out in time, corresponding
to the time of arrival from various depths. In the nonlinear crystal, the second harmonic, being pro-
portional to the product of the reference Ir and signal Is, selects a portion of the signal corresponding
to a certain depth (set by the reference delay).
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are redirected toward the detector. The backscattered signal beam and the ortho-
gonally polarized retro-reflected reference are sent into a nonlinear crystal cut
for type II phase matched SHG. Assuming the reference has a uniform transverse
intensity profile, the second harmonic contains the image information contained
in the fundamental beam. The time of arrival of the reference ultrashort pulse
determines the depth d at which a cross section through the object is imaged into
the CCD, as illustrated in Fig. 13.2.

The ultrashort pulse source used for the preliminary tests was a fs dye laser
operating at 620 nm [5]. Urea crystals were chosen for these tests as being the
only phase-matchable type II crystals at that wavelength. Unfortunately, good
quality urea crystals are not readily available. Despite these limitations, a spatial
transverse resolution of the order of 100 µm has been achieved in experiments
with a configuration in which the reference and object beams have the same
size [5, 13]. The titanium sapphire femtosecond lasers appear promising for this
particular application because of the better transmission of biological tissues in
its wavelength range of 750 nm to 850 nm and the possibility of using KDP
crystals (type II) for the gating.

There is a subtle interplay among sensitivity, depth, and transverse resolution
in the setup shown in Fig. 13.2. One cannot have the three parameters simulta-
neously optimized. For instance, an optimum conversion efficiency of one single
SH photon for one signal photon can be achieved, provided the crystal length and
the reference power density are sufficient. A simple estimate given as a problem
at the end of this chapter illustrates this problem. A minimum crystal length is
required to achieve single photon upconversion (i.e., one second harmonic pho-
ton for each signal photon). But to this minimum crystal length corresponds a
phase matching bandwidth, hence a limitation to the temporal resolution of the
up-conversion. In addition, the waist of the reference beam acts as a spatial filter,
limiting the transverse resolution of the imaging system.

13.1.3. Imaging through Scatterers

One of the main medical motivations for this type of research is early detection
of tumors. The photon energy of visible and infrared light is too small for direct
ionization of most tissues. Hence, an optical method seems to be an attractive
and safe alternative to X-rays. Large differences in absorption have been reported
between in vivo normal tissue and some types of tumor [14].

In medical and biological imaging, the biggest challenge is generally posed
by scattering. To illustrate the effect of scattering on short light pulses, let us
consider a femtosecond pulse being incident on a slab of thickness L made of
isotropic scatterers as shown in Figure 13.3. If we time resolve the transmission,
we observe a peak on the leading edge of the transmitted pulse, which corresponds
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Figure 13.3 Sketch of pulse propagation through a scattering medium.

to the unscattered light (“ballistic” component) followed by a broad distribution
of scattered light. Diffraction-limited resolution in an imaging process can only
be obtained with the ballistic light. The latter can be separated from the diffuse
light by appropriate time gating. The ballistic component of the transmitted light
is attenuated exponentially:

Iball = I0e−µsL , (13.2)

where µs = l−1
t is the scattering coefficient, and lt is the scattering mean free

pathlength. There have been numerous attempts to visualize objects embedded in
dense scatterers by range gating the backscattered or transmitted ballistic radia-
tion [3,13,15]. High sensitivity is required to compensate for the large attenuation
of the return signal. In the case of nonlinear detection, the second harmonic that
is recorded is proportional to the product of a reference intensity by the weak
backscattered radiation. Therefore, high peak powers (of the reference signal)
are required to obtain a good conversion efficiency at the detection.

Problems arise if the scatterer is dense, and Iball approaches the noise level
of the detection system. Here techniques are needed which provide not only
the time gating but also an optical amplification. Nonlinear techniques, such
as Raman amplification, and linear methods, such as heterodyning, have been
applied successfully [16–19] leading to micrometer resolution through dense
scatterers. The ultimate limit to the resolution is the quantum noise (photon shot
noise), which essentially implies that at least one photon should be detected per
element or pixel of the image. In the case of biological and medical samples
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that can only withstand average powers of irradiation of a few mW, these noise
considerations limit the applicability of diffraction limited imaging to scattering
densities µsL ≤ 35.

The multiply scattered photon path can be described by a diffusion model [20].
For L � lt , it can be shown that a collimated input beam of diameter d < lt at the
sample input broadens to a diameter d′, which is approximately given by [21]:

d′ = 0. 2L, (13.3)

if we refer to the early-arriving scattered light that exceeds the detection noise
and to illumination intensities below the critical values for biomedical samples.
The quantity d′ gives a reasonable measure of the resolution that can be achieved
in imaging an object buried in a dense scatterer. With a sample thickness of several
mm to several cm, the achievable resolution cannot be better than a few mm.

Several approaches are being attempted to utilize the large diffuse light com-
ponent for imaging through dense scatterers, such as several cm of tissue.
One direction that promises to improve the resolution is to use the earlier portion
of the scattered light, which may or may not follow a diffusion-like path [17,22]
for imaging.

An overview of activities in the field of imaging with short light pulses can
be found for example in the annual meetings of SPIE and OSA [23] and Kempe
and Rudolph [24].

13.1.4. Prospects for Four-Dimensional Imaging

Ultrashort pulses can be used as a substitute for holographic techniques to
record three-dimensional images, provided the object does not move on the time
scale of the ultrashort pulses. Holography with ultrashort pulses should be used
to record the temporal evolution of ultrafast 3D events. A method called “light-
in-flight holography” (LIFH) has been proposed by N. Abramson [25,26] to con-
vert the rapid time information obtained with ultrashort illumination holography
into space information that is stored. The basic principle is that the holographic
fringes can only be recorded if the object and reference beams arrive simultane-
ously at the recording medium. An ultrashort reference beam sent at oblique
incidence to the recording medium sets a time axis (Figure 13.4). Point A
is illuminated first and point B last after a time interval 
tAB = D tan θ/c.
At any point on the line AB, a hologram of the object beam corresponding to a
particular instant within the time interval 
tAB is recorded.

This technique has been used to detect the first arriving light through scatter-
ing media—the ballistic component cited previously. The holographic data can
be recorded on a CCD camera (provided the reference and object beam make a
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Figure 13.4 Light-in-flight holography illustrated for a simple one-dimensional transparent object
(uniform in the transverse dimension of the object).

sufficiently small angle for the fringes to be resolved by the camera), and recon-
structed through numerical fast Fourier transform [27–29]. The advantage of the
electronic recording and numerical processing is the possibility to integrate a
large number of successive (reconstructed) images. The speckle pattern is aver-
aged out if the time interval between exposures is greater than the correlation
time of the speckle.

13.1.5. Microscopy

Laser-scanning microscopy (see, for example, Wilson and Sheppard [30]) is
ideally suited to combine microscopic imaging with fs pulse illumination. There
are several attractive application fields of femtosecond microscopy—(a) nonlin-
ear microscopy, (b) microscopy with simultaneous space and time resolution,
and (c) microscopy of structures immersed in a scattering environment. An early
review can be found in Kempe and Rudolph [19]. In nonlinear microscopy the
image signal is generated by a nonlinear optical process, such as surface SHG
and two-photon excited fluorescence. An image is a map of the distribution of the
corresponding nonlinear susceptibility. Multiphoton fluorescence is particularly
attractive for microscopy of biological cells because of the depth selectivity of
the excitation process. Since its invention in 1990 by Denk et al. [31] the two-
photon fluorescence microscope has greatly improved the microscopic imaging
capabilities, in particular in the life sciences. Femtosecond pulses are needed
because of their great peak power at comparatively small pulse energy (i.e.,
small heat consumption in the specimen). An overview of ultrafast optics for
biological imaging can be found in a review by Squier [32].
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Simultaneous µm spatial and temporal resolution is of great desire for the
inspection of ultrafast opto-electronic circuits. Another direction is to com-
bine techniques of ultrafast spectroscopy with spatial resolution—to monitor,
for example, diffusion and relaxation of excited carriers in semiconductors.
In fluorescence microscopy additional information can be gained by measur-
ing the lifetime of the fluorescence. Because this relaxation depends sensitively
on the interaction of the fluorescing dye with the environment, the lifetime image
can describe local field and ion concentrations in cells [33].

Another example where scanning can be complemented by temporal correla-
tion with a reference pulse is confocal imaging of objects buried under scattering
layers. Confocal microscopy distinguishes itself by its depth selectivity [see
Figure 13.5]. Enhanced depth selectivity and optical amplification of the image
signal are desirable for imaging through scattering layers that strongly attenuate
the ballistic light. Both aspects can be addressed with scanning microscopy based
on a sensitive correlation technique, such as heterodyning [34]. A realization of
such a microscope is shown in Figure 13.6. It consists of a Michelson interfer-
ometer which contains a scanning microscope in one arm and a piezoelectric
transducer for Doppler shifting the reference pulse in the other arm. The role
of the pinhole is played by the coherent overlap of the plane reference wave and
the image light. A maximum heterodyne signal is obtained if the wave front from
the object is plane (parallel to the reference wave front), that is, if the object is
in focus.

Assuming a layer of thickness L with scattering coefficient µs on top of an
object with reflectivity R, the image signal of the correlation microscope can be

Beamsplitter BeamsplitterObject Object

Pinhole Pinhole
Lens Lens

Object in focus Object out of focus

PMT
�z

PMT

Figure 13.5 Schematic diagram of (reflection) confocal microscopy. Only light from layers that
are in focus can pass through the pinhole and reach the detector. The beam (or object) is scanned
in transverse direction to obtain a two-dimensional image of the layer that can be displayed by a
computer.
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Figure 13.6 Schematic diagram of a correlation microscope based on heterodyne detection
(from Kempe and Rudolph [35]).

written as:

Sd ∝
(
Er0Es0e−2µsL

) (
R ⊗ h̃2

) [ 〈E(t)E(t − τ)〉
Er0Es0

]
. (13.4)

Er0, Es0 are the amplitudes of the reference and the object pulse, respectively,
h̃ is the amplitude point spread function (APF) of the objective, ⊗ describes
convolution and 〈〉 denotes correlation. As can be seen from the first term in
Eq. (13.4), the attenuation of the ballistic light can be compensated by a large
enough amplitude of the reference wave (optical amplification). The second term
is the convolution of the object response with the APF. This term is essentially the
square root of the response of a confocal microscope and describes the transverse
and depth resolution. Additional depth selectivity and discrimination of scattered
light from layers close to the object is possible because of the correlation (third)
term in Eq. (13.4). It is nonzero only if the length mismatch of reference and
image arm is smaller than the pulse duration (coherence length). Monte–Carlo
simulations of photon paths showed that time gating in addition to the confo-
cal (spatial) gate substantially increases the maximum scattering density µsL
through which nearly diffraction limited imaging is possible, see for example
Magnor et al. [36].

The depth resolution of a microscope is usually measured by scanning a reflect-
ing object through the focus. The improved depth resolution of the correlation as
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Figure 13.7 (a) Depth scan through a 10-mm glass layer that introduces spherical aberration and
decreases the depth resolution of the confocal microscope (from Kempe and Rudloph [35]). (b) Scan
over a straight edge. The scatter density was 2µsL ≈ 20.

compared to the confocal microscope is shown in Figure 13.7(a). Figure 13.7(b)
illustrates the transverse resolution as measured by scanning the beam focus over
a straight edge buried under 5 mm of scattering material (96 nm latex spheres
dissolved in water).

If the system is able to detect ballistic light, there is no loss in resolution.
Microscopic techniques through scatterers have great potentials for noninvasive
imaging of biological and medical samples, see, for example Schmitt et al. [37].
Figure 13.8 shows the images from a confocal and a correlation microscope of
a cell layer of a leaf. The depth position of the layer was 80 µm from the lower
epidermis.

Figure 13.8 Correlation (left) and confocal (right) image of a cell layer 80 µm buried under the
lower epidermis (from Kempe and Rudolph [38]).
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13.2. SOLITONS

The concept of solitons has already appeared in various chapters of this book.
For instance, we saw in Chapter 5 how an elementary model for a laser cavity,
including only SPM and dispersion, leads to the nonlinear Schrödinger equa-
tion, which has steady-state soliton solutions. The same model applied to fibers
finds stable pulse shapes propagating without distortion over long distances. We
saw in Chapter 8 how solitons could be used for the shaping of fs pulses. This
application transcends the fs time domain: In communication, pulse durations in
the range of 20 to 80 ps are propagated without distortion through tens of km
of fibers or over 106 pulse lengths. The solitons used for pulse-coded commu-
nication, which are solitons in the time domain, will be briefly reviewed later.
The nonlinear Schrödinger equation was first derived and solved by Zacharov and
Shabat [39] in the context of self-focusing and self-filamentation. The solutions
of this equation describing stable filaments are solitons in the space domain.
The high intensities of fs pulses can also lead to spatial solitons, such as the
observed filamentation in air of fs pulses [40–42]. A more complex problem is
that of solitons both in the temporal and spatial domain, which we will discuss
at the end of this section.

13.2.1. Temporal Solitons

We saw in Chapter 8 that ultrashort pulses of sufficient intensity launched
in a single-mode glass fiber above the zero dispersion wavelength evolve into a
soliton. As mentioned previously, because the soliton maintains its characteristics
over long distances, it is an ideal signal for pulse-coded long-distance commu-
nication. Because any wavelength above the zero dispersion point can be used,
wavelength multiplexing is possible. The following problems must be overcome
for long-distance propagation:

1. decrease of the soliton pulse energy over long distances because of linear
fiber losses;

2. variations of the soliton propagation velocity resulting in timing jitter, hence
loss of information; and

3. sliding of the soliton frequency, resulting in a mixture of adjacent frequency
channels.

The first problem is solved with erbium-doped fibers (cf. Chapter 6) used as
optical amplifiers. For example, in a test of a trans-Pacific soliton link [43], an
Er-doped amplifier was located every 26 km to restore the original soliton pulse
energy, as sketched in Figure 13.9.
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Figure 13.9 Optical soliton transmission line, showing schematically two units of fiber repeater.
Each unit consists of a single-mode, low-loss communication fiber, a Fabry–Perot filter, and an
erbium-doped amplifier. The soliton spectrum makes its way through the successive filters with
sliding transmission peaks, while the noise sees the overall attenuation of the overlapping filters.

Gordon and Haus [44] showed that the timing jitter is related to a jitter in the
pulses’ central frequency. They found that a certain component of noise added to
the soliton will instantly shift its optical frequency and consequently its velocity,
hence its time of arrival. A consequence of the Gordon–Haus theory is that a
soliton has the property to shift its average frequency toward the frequency of
maximum transmission of a filter. Let us consider, for instance, a soliton whose
frequency is slightly shifted from the filter peak transmission. The differential
loss across the soliton spectrum, in conjunction with the ability of the nonlinear
effect to generate new frequency components, provides a force to push the soliton
back toward the filter peak. A frequency filter can therefore solve the time jitter
problem by preventing the soliton frequency from drifting around.

In an actual system, to accommodate frequency multiplexing, a Fabry–Perot
filter is used at the same location as the amplifier. Each transmission peak
of the Fabry–Perot interferometer defines a particular communication channel.
One disadvantage of the optical amplifiers is that the noise is also amplified.
Because of the property of the soliton to shift its frequency in the presence of
differential noise, filters of slightly different frequency can be put at the suc-
cessive amplifier location (cf. Fig. 13.9). The soliton makes its way through the
different filters located at each successive amplifier, while the noise, being lin-
ear, sees the attenuation provided by the overlapping filters centered at different
frequencies. Typical etalons used as filters are Fabry–Perot interferometers of
1.5 mm length and 9% reflectivity [43]. The fiber can support communication
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channels at frequency intervals of 100 GHz, which is the free spectral range of
such an etalon.

In the example of trans-Pacific communication, the frequency of the etalons
at successive amplifiers was shifted by 0.18 GHz at each successive amplifier
spaced 26 km apart. The total shift over the 9,000 km trans-Pacific distance is
still smaller than the 100 GHz frequency spacing between channels [43]. The
soliton pulse duration was 16 ps at 1557 nm. The fiber had an average dispersion
D = 0.5 ps/(nm km). Recall (cf. Fig. 8.4) that the parameter D = dk′

	/dλ =
−(2πc0/λ2)k′′

	 is generally used to characterize fibers, because it relates directly
to the group delay (in ps) per nm of bandwidth and per km propagation length.

Although this particular example is not specifically in the femtosecond time
scale, the concept and implementation originate directly from the properties of
fs pulse propagation discussed in Chapters 1 and 2, and the pulse compression
techniques explained in Chapter 8. Stable soliton propagation requires a balance
of positive (negative) SPM and negative (positive) GVD and negligible losses.
The diffraction losses are eliminated in fibers by confining the high intensity pulse
in a wave guide. In a bulk material, a mechanism for transverse confinement of
the beam is required to compensate for diffraction losses. Such a mechanism is
provided by self-focusing and self-filamentation, a problem addressed in the next
subsection.

13.2.2. Spatial Solitons and Filaments

In this section, spatial solitons relate to the confinement of pulses in a self-
guided wave guide. Because of their high peak power, femtosecond pulses are a
primary source to observe this phenomenon.

Chiao et al. [45] showed that the propagation equations for a time-independent
field, in the presence of a self-focusing nonlinearity, reduce to the nonlinear
Schrödinger equation. As we have seen in Chapters 5 and 8, the nonlinear
Schrödinger equation has stationary solutions. These solutions were precisely
investigated in the context of self-focusing [39]. Steady-state solutions, however,
are not a proof of the existence of stable filaments, in particular for pulsed
radiation.

As detailed in Chapter 3, Akhmanov et al. [46] showed that a nonlinearity
of order larger than n2 and of opposite sign can result in the formation of stable
filaments. As the beam collapses because of self-focusing, the intensity on axis
increases until the self-defocusing (for instance, from a negative term in n̄4I2)
balances the self-focusing produced by the positive n̄2I term. The filament sta-
bilizes at a diameter w such that the defocusing and focusing are in equilibrium.
Such filaments have been observed with continuous radiation in materials of
large, slow nonlinearities, such as suspensions of latex spheres, aerosols, and
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Figure 13.10 Illustration of the moving focus phenomena, for a pulse of duration tp. Each disk
represents a slice of the input pulse of certain power (darker shades correspond to higher powers).
Self-focusing leads to focusing at different locations depending on the power of a particular slice.

microemulsions [47,48]. In the case of pulsed radiation, the existence of filaments
has been questioned. Instead, it has been postulated that a “moving focus,” which
in solids leaves a filament-like trace, can be generated with pulses [49, 50].

Figure 13.10 illustrates the mechanism by which a self-focused pulse is
expected to create a moving focus. On the left of the figure the initial pulse is
shown at the beam waist characterized by w0. The pulse is divided in successive
slices of equal energy approximating the pulse profile. In the sketch of Fig. 13.10
the first and last slice start at the pulse FWHM. This first slice is assumed to be
sufficiently above the critical power to focus at point A at a distance zSF given by
Eq. (3.173); the central slice focuses at point B. The length AB = L is equal to
zF(Pmax/2)−zF(Pmax). It is interesting to note that the pulse intensity of the input
pulse is actually higher than the intensity in any plane within the focal region L for
fs pulses. For ns pulses, the opposite is true. While this can be shown numerically,
a simple model shall suffice to bring this point home.

Each slice of the original pulse gets focused at various (cylindrical) focal
volumes distributed along the line AB. The diameter of the cylinders (focus spot)
D is finite for the reasons discussed in Section 3.9.1; from experiments D ≈
100 µm [51, 52]. Because each of the focal volumes contains the same number
of photons as the original slice, the total energy in the cylindrical volume made
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up of all the focused slices is equal to the energy of the pancake shaped original
pulse. We neglect the contribution from the out-of-focus light in a particular
slice because the intensity is mainly determined by the in-focus components.
The total energy of the pulse is initially distributed in a volume of approximately
Vi = cτp ×πw2

0/2. This energy is thereafter distributed along the “focal volume”
of approximately Vf = πD2L/4, which controls the pulse intensity. For the
comparison of fs and ns pulse focusing let us assume that in both cases L = 1 m.
In the case of a 10 ns pulses of w0 = 1 cm, Vi is of the order of 0. 5 · 105 mm3,
while Vf is of the order of 10−3 mm3. A considerable increase in energy density
is thus taking place in the filament region, hence the filament like damage tracks
observed after high power nanosecond irradiation of solids.

In the case of fs pulses as sketched in Fig. 13.10, the pancake shaped initial
pulse volume is only Vi ≤ 0. 5 mm3, while the intense pulse sweeps a focal
volume of Vf ≥ 15 mm3. In the case of a fs pulse, there is thus less energy
density in the focal region than in the original pulse. Therefore, in the case of
self-trapping of fs pulses in air, the strong nonlinear phenomena such as conical
emission [41, 42] and multiphoton ionization [40] can only be explained if a
significant portion of the original pulse is trapped as a “light bullet” within the
filament as opposed to a moving focus.

We discussed in Section 3.9 possible mechanisms of beam trapping. In the
simple theory of steady-state self-focusing, the filament remains confined through
a balance of the self-focusing (term n2E2) and a self-defocusing [term n3E3 in
Eq. (3.179)] of opposite sign. The simple interpretation most commonly cited is
that the stabilizing higher order index produced by an electron plasma leads to
defocusing. In the case of air, the electron plasma is created by (multiphoton) ion-
ization. A second contribution to the negative index change stems from the shift
of the absorption edge toward shorter wavelengths (because of the replacement
of neutral molecules by ions).

The physical reality is more complex, because numerous effects other than
the negative lensing of an electron plasma contribute to compensate self-
focusing. Some of these effects are illustrated in a model of filamentation without
ionization [53]. Any nonlinear phenomenon (of order higher than 3) that limits
the pulse intensity will have a stabilizing influence on the filament. One example
is third harmonic generation, that has been shown to be quasi-phase matched
and to play a role in sustaining the propagation of filaments produced by IR
pulses [54–56]. At the opposite end of the spectrum, optical rectification has
been observed and—because of the short duration of the propagating optical
pulse—has resulted in the generation of THz radiation. The experimental obser-
vation of a THz pulse emitted by a filament was explained as being the result of
a longitudinal plasma oscillation created by the Lorenz force [57, 58]. Both of
these nonlinear effects reduce the n2E2 term by drawing power from the beam,
hence acting similarly as a saturation of the focusing term.
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A similar saturation effect can occur as a result of pulse splitting [59].
Multiple pulse splitting results from SPM and dispersion only, far below the
power required for plasma formation, as demonstrated by Bernstein et al.
[60, 61] in a measurement of the pulse temporal and spatial profiles for a self-
focusing beam. Because the beam, with an initially Gaussian profile (4 mm
diameter FWHM) focused down to not less than 1 mm over 23 m, the intensity
never reached a level at which conical emission, harmonic generation, or ioniza-
tion become significant. Therefore, the multiple pulse splitting that was observed
resulted purely from phase modulation and dispersion. The phase modulation
leads to a lower frequency of the pulse leading edge and to a higher frequency
at the pulse trailing edge. Because of the normal dispersion of air, the leading
edge travels faster than the trailing edge, resulting in pulse splitting. As the pulse
splits, the peak intensity is reduced, resulting again in an apparent saturation of
the self-focusing effect.

13.2.2.1. Application to Remote Sensing

Associated with the filaments is an intense white light or conical emission,
which can be used to probe remotely the atmosphere [62,63]. Two physical phe-
nomena giving rise to that white light emission are illustrated in Figure 13.11.
Figure 13.11(a) is the pulse intensity profile. SPM results in a similar phase
modulation profile [Fig. 13.11(b)], leading to a frequency sweep [Fig. 13.11(c)].
The latter frequency excursion adds frequency components to the pulse, thereby
broadening its spectrum. In combination with normal dispersion, the SPM results
in pulse splitting. The low frequency components generated in the leading edge
of the pulse propagate faster than the high frequency components generated in
the tail of the pulse. This mechanism accounts for spectral broadening in the for-
mation stage of filaments. As filamentation sets in, further spectral broadening is
mainly because of amplitude modulation rather than phase modulation [64, 65].
This results from the self-steepening effect because of the first-order correction to
the SVEA (∂PNL/∂t), as detailed in Section 3.6.3 and illustrated in Figs. 13.11(d)
through (f). The responsible nonlinear polarization is sketched in Fig. 13.11(d).
Its impact on the propagating pulse can be illustrated by subtracting a field
distribution of shape similar to curve (e) from the original pulse, leading to
Fig. 13.11(f).

The white light emission of filaments has been studied extensively both theo-
retically and experimentally (see for instance Aközbek et al. [65] and Kasparian
et al. [66]). Launched vertically, the white light emission has been used to
irradiate the atmosphere up to 13 km altitude [62, 63]. Spectral analysis of
the time-gated return provides a means to study the composition of the atmo-
sphere [67]. Measurements of the angular distribution of the supercontinuum
emission show that it is peaked toward the backward direction, an effect that could
be attributed to an inversion created in multiphoton excited nitrogen [68, 69].
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Figure 13.11 Left: illustration of the influence on pulse propagation of the Kerr effect nonlinear-
ity. The pulse intensity represented in (a) gives rise to a nonlinear index (b), hence the frequency
modulation shown in (c). Right: influence of the shock term, proportional to the derivative (e) of the
nonlinear polarization (d), leading to the asymmetric shape (f) for the field.

13.2.2.2. Application to Laser-Induced Discharges

The ionizing properties of a filament, combined with the relatively long spatial
extension, should make the filament an ideal tool for laser-induced discharges.
The process by which seeding of a low density of charges in a uniform electric
field results in a discharge has been investigated theoretically and experimen-
tally [40]. High voltage electrical discharges were triggered and guided with
UV pulses (248 nm) of only a few mJ energy over a gap of the order of 0.5
meter [70, 71]. The gap or reduction in breakdown voltage do not scale with
the pulse energy. Even with 400 times higher pulse energies, the length over
which a discharge could be guided reliably was only 2 or 3 times longer [72].
Plasma interferometry measurements have shown that the ionization created in
air by a filament exists for only 200 ps [73]. A typical electron density of 1017

cm−3 in air causes a decrease in the index of refraction, which lasts for about
200 ps because of electron–ion recombination and the attachment of electrons
to oxygen. There is a subsequent decrease in the index of refraction because of
expansion of the air heated by the laser excitation. The rarefied air can provide
a preferential path for the discharge, but does not efficiently reduce the mini-
mum field required to produce a discharge over a given gap. This explains the
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difficulties in achieving breakdown reduction and discharge guiding over large
gaps. A solution to the problem of triggering and guiding discharges over long
distances is to maintain the ionized channel created by the UV or IR filament
through inverse Bremstrahlung (plasma heating) and photodetachment of oxy-
gen. Pulse intensities ranging from 1 to 10 MW/cm2 have to be maintained in
the channel, for the time duration required to trigger the discharge [71].

The ability to trigger a discharge depends also on the initial electron density
deposited by the fs pulse in the filament path. Various evaluations of the elec-
tron density have been based on conductivity measurements. The values reported
vary between 1012 cm−3 [74], 1014 cm−3 [51], and 1016 cm−3 [75]. Measure-
ments performed with the same setups and 1-ps UV pulses (250 nm) and 100-fs
IR pulses (800 nm) [51] indicate a 20 × larger conductivity induced by the
UV filament than by an IR filament, the latter produced by a 10 × more ener-
getic pulse. The larger conductivity in the UV filament is important for laser
discharge applications and is attributed to the fact that the nonlinear ionization
is only a three-photon process compared to a 9- to 10-photon process for the IR
filaments. In both cases a diameter of the filaments of 100 µm was obtained,
implying an intensity of 1 TW/cm2 in the UV filament versus 100 TW/cm2 in
the IR filament. Using these intensities and typical cross sections for the mul-
tiphoton absorption one estimates electron densities that are consistent with the
conductivity measurements.1

13.2.3. Spatial and Temporal Solitons

The GVD parameter k′′
	 of air is approximately 0.15 fs2/cm at 800 nm [78,79].

For a 50-fs pulse that is often used to produce filaments, this dispersion corre-
sponds to a characteristics distance [as defined by Eq. (1.128)] of LD ≈ 160 m.
All dispersion effects of the atmosphere are thus negligible at that wavelength.

If we consider instead the dispersion of air at 248 nm, k′′
	 ≈ 1 fs2/cm and for

a 50-fs pulse LD ≈ 25 m. Thus pulse broadening should occur over distances of
the order of 10 m with UV fs pulses. Therefore, the existence of filaments over
tens of meters requires that the pulse be trapped in space and in time.

A similar situation arises with filaments created at 800 nm with pulses of less
than 10 fs duration: the dispersion length in air is now only LD ≈ 6 m. Using
gases other than air (such as Ar) at higher pressure the characteristic length
can be made of the order of tens of cm, and spatial-temporal soliton formation is
possible. A recent application of filaments involves compressing intense fs pulses

1Couairon and Bergé [76] using the Keldysh formula [77] for the evaluation of the three-photon
ionization of oxygen, infer from their calculations a beam diameter of 40 µm for the UV filament
and 200 µm for the IR, leading to the same intensity in UV and IR filaments.
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(i.e., <20 fs, ≈1 mJ) down to a few fs (5.7 fs to 5.1 fs reported in Hauri
et al. [80, 81]). This mechanism of (soliton) compression is based on phase
modulation and dispersion, as explained in Chapter 8. Numerical simulations
relating to this compression mechanism have been published by Couairon [82].

13.3. SENSORS BASED ON FS LASERS

13.3.1. Description of the Operation

This section is dedicated to some applications of femtosecond lasers as sen-
sors. Rather than to use the beam radiated by the laser to perform measurements,
this type of metrology uses the laser as a differential interferometer. Two or more
pulses that are circulating in the laser resonator are made to interfere and a beat
note is measured. A form of amplitude coupling is required to ensure that the
pulses cross at the same two points during each roundtrip, which also ensures
that the two output pulse trains corresponding to each of these pulses have the
same repetition rate. Any phase coupling (for instance backscattering from one
pulse into the other) at a crossing point should be avoided, because it leads to fre-
quency locking of the two pulses, which washes out the differential measurement.
Two possible ways to achieve the desired two pulse per cavity roundtrip
operation are:

(1) inserting of a saturable absorber flowing dye jet in the laser resonator and
(2) use of an intracavity pumped Optical Parametric Oscillator (OPO).

The first method is relatively straightforward but limited to laboratory appli-
cations [83, 84]. The pulses meet at the saturable absorber, because this is
the configuration of minimum loss, because—as discussed in Section 5.3.2—
standing wave saturation is more effective than traveling wave saturation.
To prevent locking of the two pulse frequencies to each other, liquid jet saturable
absorbers are used, because the phase of the backscattered pulse is averaged
out [83]. In the case of a ring laser (Figure 13.12) the two pulses circulate in
opposite directions in the cavity. The pulse crossing point is “imaged” on a detec-
tor via a “detection interferometer” (the optical path for the two pulses from the
crossing point to the detector is the same).

The second method consists essentially in having a fs pump laser, in the
cavity of which an OPO crystal is inserted (Figure 13.13). That same crystal is
also part of the signal cavity [85]. At each passage of the pump pulse through the
OPO crystal, a signal pulse is generated. There are therefore two signal pulses
per cavity roundtrip time. The repetition rate is the same for both pulse trains,
because it is uniquely determined by the length of the pump cavity (τRT = Lp/νgp

where Lp is the pump cavity length, and νgp the group velocity averaged over
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Figure 13.12 General configuration of sensors based on interfering the outputs of a laser with
two intracavity pulses per roundtrip, in a ring configuration. A saturable absorber dye jet sets the
intracavity pulse crossing point. An extracavity detector is located at equal optical path from the
pulse crossing point in the cavity. The gain medium is located at 1/4 cavity perimeter from the pulse
crossing point to ensure equal gain recovery after each pulse passage. S is a possible sample of which
certain properties are to be measured (sensed). For this an excitation can be applied synchronized to
the pulse roundtrip if needed.

one round-trip) in the pump cavity. In the case of the intracavity pumped OPO,
it is the fixed repetition rate for the two pulses that results in a fixed crossing
point.

Whether in a linear or a ring cavity, two circulating pulse trains (labeled by
the index “1” and “2” below) of identical repetition frequency 
 are generated,
which, in the frequency domain, correspond to mode combs of frequency

vm,1 = f0,1 + m


and

vm,2 = f0,2 + m
,

as discussed in detail in Chapter 5 [cf. Eq. (5.11)]. Mixing these frequencies
in a quadratic detector (photodiode) produces a beat note 
v at the difference
frequency of the two carrier to envelope offsets:


v = |f0,1 − f0,2|. (13.5)
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Figure 13.13 Linear cavity configuration of an intracavity pumped OPO. An OPO crystal is
common to the pump and signal cavities. The two pulses generated in the signal cavity cross at
the two points marked by a dot. As in Fig. 13.12, the two outputs are made to interfere after an
appropriate delay line at the detector D.

Let us now assume that by some process (to be defined later) the dispersive
properties of sample S (Fig. 13.12) are different for each circulating pulse, which
changes the effective index of the cavity n(v) defined in Eq. (5.1). As a result the
mode combs become

v′
m,j = f ′

0,j + m
′

resulting in a new beat note of


v = |f ′
0,1 − f ′

0,2|, (13.6)

because the repetition rate 
′ is locked to the same value for either train of
pulses. Experiments have shown that the difference |f ′

0,1 − f ′
0,2| is proportional to

the phase difference 
ϕ between the two pulses experienced at each roundtrip:


v ∝ 
ϕ

2πτRT
. (13.7)

In many cases the constant of proportionality is close to one, some examples will
be discussed below. Thus, the sensor described in this section is basically a phase
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detector (
ϕ). In contrast to standard techniques that convert a phase difference
into an amplitude difference in an interferometer, this method converts the phase
difference into a beat frequency. As we saw in Fig. 5.6, even with an unstabilized
laser it is possible to record a change in 
v of 1 Hz, which, according to Eq. (13.7)
corresponds to a phase sensitivity of 10−7 in a cavity of τRT = 16 ns. If—as is
often the case—the phase difference is because of a differential change in cavity
length or perimeter 
P: 
ϕ = k	
P, then Eq. (13.7) can be written:


v

v
= 
P

P
. (13.8)

With v ≈ 3 · 1014 Hz, 
v ≈ 1 Hz and a cavity perimeter P (corresponding to
2L for a linear cavity), of the order of 1 m, this sensor should be sensitive to
changes of cavity length of the order of 10−15 m.

The different types of sensors distinguish themselves by the particular process
of converting a physical quantity into a phase shift. Some examples will be given
next, pertaining to two categories of detectors:

1. Detector of nonreciprocal effects. The “sample” can be the laser itself
(rotation sensing), a flowing fluid (motion measurement by Fresnel drag),
a material with a high Verdet constant (magnetic field measurement), or
a resonant atomic vapor (intracavity phase spectroscopy). This type of
response exists also with cw lasers, but, with mode-locked ring lasers,
the sensitivity is not limited by a dead band.

2. Detector of changes of the optical cavity length externally synchronized
by processes such as the electro-optic effect or the displacement of reflect-
ing surfaces by phonons or the change in cavity length due to nonlinear
indices.

The latter type of measurement is unique to mode-locked lasers, because it
exploits the property that the two intracavity pulses occupy different positions in
the cavity at different times and can thus be distinguished. This is not the case if
the cavity is filled uniformly by a cw beam, as is the case in a He–Ne ring laser
for instance.

13.3.2. Inertial Measurements (Rotation and
Acceleration)

13.3.2.1. Rotation

The mechanical gyroscope (gyro) is an instrument based on the conservation
of angular momentum of a spinning wheel. The fixed orientation of the angular
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momentum provides information on the motion of a moving frame of reference.
An optical gyro based on a fs laser is essentially the instrument sketched in
Fig. 13.12, without any intracavity addition.

There are three possible descriptions of the operational principle of this instru-
ment that were initially introduced for cw lasers. It turns out that, with some
caution, one can also apply the same arguments to explain the behavior of mode-
locked laser gyros. The key is that an intracavity element always ensures that the
pulse roundtrip time τRT remains the same for both pulse trains. Let us assume
a ring laser of diameter R and rotating with angular velocity �. The first model
considers the interference pattern created by the two “counter-rotating” beams.
The two beams having the same frequency, this standing wave pattern (of period
λ	/2) is fixed in an absolute (i.e., nonaccelerating) frame of reference. A detec-
tor in the rotating laboratory frame will produce a sinusoidal signal from these
interference fringes passing by at a rate 2R�/λ.

A second approach is to consider that, for the observer in the laboratory frame
rotating at the angular velocity �, the two circulating beams will be Doppler
shifted up and down by v	R�/c, resulting in a total shift (or beat note) of 
v =
4A�/(Pλ	) (A and P being the area and perimeter of the ring, respectively). The
factor R = 4A/(λP) is called the “scale factor” of a ring laser and is valid for
cavities of arbitrary shape [86, 87].

A third point-of-view, now with the laboratory frame at rest and the laser
rotating, is that the two counter-rotating beams are resonating in a cavity that
is lengthened in the sense of rotation (cavity perimeter P2), shortened in the
other direction (cavity perimeter P1). Hence, the corresponding mode combs [cf.
Eq. (13.6)] will be shifted in frequency by the amount 
v = |f ′

0,1 − f0,2| =
v	(P2 − P1)/c = 4A�/(Pλ	).

Compact single-mode He–Ne ring lasers are extensively used as navigation
gyroscopes in commercial aircrafts. CW laser gyros are plagued by a phenomenon
called lock-in: the response of CW laser gyros is zero for a range of small
rotation rates. This dead band is because of the scattering of one circulating beam
of the ring laser into the other direction. This weak coupling may “injection lock”
the counter-propagating modes, i.e., force each of them to operate at the same
frequency as radiation injected from the other mode.2

The “lock-in” problem can be avoided with ultrashort pulse lasers, where the
two counter-propagating pulses meet in only two places. If the phase coupling
at these meeting points is avoided, (as is the case in the examples presented
so far), the dead band is eliminated. There is no phase coupling in the case of
an intracavity pumped OPO such as sketched in Fig. 13.13. Such is also the case

2Hence the label mode-locking, which is sometimes given to this effect, because the scattering of
one circulating mode locks the frequency of the other. This is not to be confused with the mode-locking
creating ultrashort pulse trains.
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for a phase conjugated interaction through degenerate four wave mixing, such as
occurs in a saturable absorber dye jet as in Fig. 13.12 [88]. This lock-in problem
will be dealt with in more detail in Section 13.3.3.1 to follow.

13.3.2.2. Acceleration

We have seen in the previous section that the ring configuration of Fig. 13.12
leads naturally to a form of inertial sensing of rotation. Similarly, the linear
configuration of Fig. 13.13 has an inertial response as accelerometer. Let us
consider indeed that the whole laser is accelerating along the direction BA (the
laser cavity is rigid, and the distance from A to B is L). Let us consider a pair
of pulses issued at the crossing point at a distance 	 from mirror B. One of the
two intracavity pulses traveling to the right hits mirror B, receives a Doppler
shift v	ν/c, before proceeding to the left and sending an output to the delay
line. Meanwhile, the other pulse travels to the right, receives a Doppler shift
v	[ν + a(L − 2	)/c]/c, before proceeding to the right and sending an output to
the detector, to interfere with the other output. The measured beat note is thus

v = a(L − 2	)v	/c2. If the detection delay arm is increased by the amount
NτRT , where N is a large integer, the beat note is


v = a[NτRT + (L − 2	)/c]v	/c. (13.9)

13.3.3. Measurement of Changes in Index

In this subsection we will describe how a change in refractive index synchro-
nized to the cavity repetition rate can be sensed. A straight forward measurement
is that of the nonlinear index of a sample inserted in the cavity of Fig. 13.13.
The sample can be the lithium niobate crystal of the OPO itself [89]. If the two
pulses circulating in the OPO cavity have an intensity I1 and I2, a beat note
appears because of the different phase shift introduced by the nonlinear index of
LiNbO3. The beat note frequency


v ∝ 2π

λ	

n̄2〈I2 − I1〉 (13.10)

is proportional to the nonlinear index of the crystal. 〈〉 denotes averaging over
the pulse and beam profile.

In Fig. 13.12, an arrow at the sample S indicates a possibility to change some
property of a cavity element by an external signal that has the same periodic-
ity as the pulse rate. An example is a voltage applied to a Pockels cell. The
synchronization can be ensured by using the voltage from a photodetector mon-
itoring the pulse train. To demonstrate the concept, a Pockels cell oriented as a
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Figure 13.14 The output of the clockwise pulse of the ring cavity reaches the avalanche photodiode
shortly before the time of arrival of the counterclockwise pulse in the Pockels cell. The electrical
pulse from the photodiode is applied to the Pockels cell, resulting in a change in index, and therefore
also in cavity length for the counter-clockwise pulse.

phase modulator is inserted in the cavity as shown in Figure 13.14. An avalanche
photodiode detects the pulse train from the laser and applies an electrical pulse
to the Pockels cell. Appropriate optical delay ensures temporal coincidence of
the electrical pulses and one of the cavity pulses at the electro-optic crystal.
Because the other cavity pulse always reaches the Pockel’s cell between elec-
trical pulses, the two counter-propagating pulses experience different indices in
the cell. The optical length of the cavity is therefore different for the two senses
of circulation of the intracavity pulses. Therefore, interfering the two outputs on
a detector will result in a beat frequency between the two outputs that is equal
to the difference in the CEO frequencies. The voltage V0 cos(2πt/τRT ) applied
across the thickness e of the electro-optic crystal results in a change of index

n = (deff V0/e) cos 2πt/τRT over a crystal length 	. The resulting beat note is:


v = K

n	

λ	τRT
= K

V0deff 	

eλ	τRT
, (13.11)

where K is a constant of proportionality shown to be close to one in this
experiment and deff is the electrooptic constant.

Figure 13.15(a) shows a plot of the beat frequency versus the amplitude of
the electric pulse applied to the modulator. By varying the optical delay, one can
record the temporal response of the detector–electro-optic crystal combination as
shown in Fig. 13.15(b). The temporal resolution is that of the detector–crystal
combination. The particular measurement reproduced here was performed with
an avalanche photodiode and 1 m cable delay to the crystal [83]. Figure 13.15(b)
shows a resolution of about 300 ps. The intrinsic resolution of the method,
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Figure 13.15 Beat note versus amplitude of the signal from the avalanche photodiode (a), all other
parameters being kept constant. (b) Change in beat note versus the optical delay of the pulse impinging
on the photodiode.

however, is in the fs regime, limited only by the pulse duration. This arrange-
ment is a fast and sensitive tool for studying the intrinsic response of photo-
detectors (by measuring directly the change of index because of the generated
carriers) or photodetector–modulator combinations. The best sensitivity in these
measurements can be achieved when all other contributions to the beat note (such
as rotation [90] or air currents [91]) can be eliminated. The linear laser is there-
fore to be preferred for this class of measurements. There is no “bias beat note”
in the linear laser, because the intracavity circulating pulses travel through the
same optical elements in the same order.

13.3.3.1. Dead Band and Measurement of Low-Level Scattering

If there is an optical element at one of the crossing points of the two intracavity
pulses, the fields may couple into each other. This injection lock-in modifies the
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otherwise linear relationship between beat note and mode spacing between the
two pulse trains generated by the laser, leading to what is known as the “dead
band” in cw laser gyros. This problem is similar to frequency pulling and locking
though injection seeding. Theoretical treatments for the cw case can be found in
Siegman [92] for example. With small modifications they can also be applied to
mode-locked lasers as described below.

The phenomenon of coupling in the case of the mode-locked laser with two
intracavity pulses can be modeled best by considering the time evolution of the
spectral modes of the pulse trains. We note that this problem involves only one
time scale t: the time scale of the evolution of the phase and amplitude of the
pulses from the two trains over a large number of roundtrips. Obviously this time
scale is much larger than the pulse duration. It is because of this that the main
characteristics of the cw models apply.

We consider each of the pulses of index i = 1, 2 to be represented by their
spectral field envelope Ẽi(�, t) exp[iφi(�, t)]. If r̃ is the complex scattering coeffi-
cient for one field into the counter-propagating field, at each roundtrip, a fraction
r̃Ẽ1 of the field Ẽ1 of pulse 1 is injected into the field Ẽ2, and vice versa. We
make the approximation that the pulses are unchirped, and preserve their shape.
The pulse belonging to train i can be written as:

Ẽi(�, t) ei[φi(�,t)] ≈ Ẽ(�)
[
E0,i(t) e[iφi(t)]

]
. (13.12)

The equations of (slow) motion for each frequency mode of each pulse are:

dE0,1(t)ei[φ1(t)]

dt/τRT
= α1

2
E0,1(t)ei[φ1(t)] + reiθE0,2(t)ei[φ2(t)]

dE0,2(t)ei[φ2(t)]

dt/τRT
= α2

2
E0,2(t)ei[φ2(t)] + reiθE0,1(t)ei[φ1(t)] (13.13)

where r̃ = r exp(iθ) is the (complex) backscattering coefficient coupling the two
pulses at their meeting point. The net gain coefficient αi at each roundtrip is
defined as the difference of the saturated gain and the loss–roundtrip. Separating
real and imaginary parts leads to the system of equations:

d
(
E0,1/E0,2

)
dt/τRT

= r cos(θ − ψ) − r
E2

0,1

E2
0,2

cos(θ + ψ) (13.14)

dψ

dt
= 
ω + r

τRT

[E0,2

E0,1
sin(θ − ψ) − E0,1

E0,2
sin(θ + ψ)

]
, (13.15)



Sensors Based on fs Lasers 607

where ψ = φ1−φ2, and we made the approximation that α1 ≈ α2, consistent with
a laser with a high Q cavity. The term 
ω on the right side of Eq. (13.15) is the
externally imposed relative shift between the two mode combs. The instantaneous
angular beat note frequency is thus ψ̇ = 2π
vb as defined by Eq. (13.15).
Instead of a linear relation between the differential CEO and the beat note of
Eq. (13.6), the coupling through the scattering results in a smaller beat note
signal characteristic for frequency pulling:


vb = 
ω

2π
+ r

2πτRT

{√
I0,2

I0,1
sin(θ − ψ) −

√
I0,1

I0,2
sin(θ + ψ)

}
, (13.16)

where we have substituted the intensities for the fields. Note that these intensities
have the meaning of average pulse intensities changing on a time scale of several
roundtrips. If the scattering occurs through randomly moving scatterers (such as
in a dye jet), expression (13.16) has to be averaged over r and θ. For a given r,
the largest coupling occurs for θ = 0. For this case and steady-state where the
time derivatives in Eqs. (13.14) and (13.15) are zero, we find a particular solution:

ψ = 0 and
I0,1

I0,2
= 1 for

|
ω|
2π

≤ r

τRT
. (13.17)

This steady-state with its zero beatnote frequency relates the width 
ω of the
dead band to the magnitude of the backscattering coefficient.

Measurements such as those shown in Figure 13.16 yield the largest value of

ω = 
ωmax for which the beat note response 
vb = 0. This value corresponds
to the equal sign in the last expression of Eq. (13.17), and thus leads directly to
the measurement of the scattering coefficient r [93]. As shown in the example of
Fig. 5.6 the beat note resolution corresponds to 1 Hz in a laser with a roundtrip
time of 10 ns. Therefore one can resolve an intensity backscattering coefficient of
r2 ≈ 10−16. Figure 13.16 shows the change in linear response of the beat note,
when a dielectric mirror is inserted at a pulse crossing point. The observed dead
band corresponds to an intensity backscattering coefficient of that mirror of about
2 · 10−11, obtained when the mirror was used at an angle of incidence of 20°.

13.3.3.2. Reduction of the Beat Note Bandwidth
through Stabilization

The 1-Hz linewidth of the beat note noticed in the previous example originates
mainly from vibrations of the mirrors. Let us consider a particular mirror of the
cavity, vibrating with an amplitude a ≈ 0. 1 µm, at a mechanical resonance
frequency corresponding to a period Tb ≈ 10 ms. The vibration of the mirrors
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Figure 13.16 Beat note versus amplitude of the signal applied to the Pockel’s cell (artificial rota-
tion). The straight line is the empty cavity response. With a mirror inserted at 20◦ at the pulse crossing
point, the beat note characteristics shows a dead band due to a small amount of backscattering from
the mirror.

contribute to the bandwidth 
vlaser of the individual modes of the two frequency
combs emitted by the laser. The maximum possible change in phase per roundtrip
because of vibration is 8πa/λ; for a mean value averaged over many roundtrips
and vibration periods let us use a/λ. The broadening of a laser mode can now be
estimated:


vlaser = a

λτRT
= v	a

P
. (13.18)

Obviously, this bandwidth depends on the pulse repetition rate or the perimeter
(P = 2L for a linear cavity) of the cavity.

During the short time of a pulse roundtrip, the two pulses hit the vibrating
mirror at a different location. Hence a slightly different cavity perimeter 
Pb

seen by the two pulses. If δt is the difference in time of arrival at the mirror,
a corresponding cavity length difference of 
Pb ≈ a × 2πδt/Tb results. For
instance, to δt = 1 ns there corresponds a mirror displacement between the two
pulses of 2π · 10−14 m. The cumulative effect of interfering the two pulse trains
on the detector results in a beat note bandwidth 
vb:


vb ≈ 
Pbv	
P

= aτRT

Tb

v	
P

=
(
τRT

Tb

)

vlaser (13.19)



Stabilized Mode-Locked Lasers for Metrology 609

where we have made use of Eq. (13.18). The beat note bandwidth is thus typ-
ically three orders of magnitude smaller than that of an isolated mode of the
laser. Because the beat note is proportional to the laser bandwidth, a stabi-
lization that reduces the laser mode bandwidth by three orders of magnitude
will also reduce that of the beat note by the same amount, hence a sensitiv-
ity to rotation of the order of 10−4 degrees per hour can be expected. The
stabilization should be applied to both pulses circulating in the cavity simul-
taneously. This requirement puts some constraints on the geometry of the cavity
and the location of the control elements. For example, in the OPO configuration
of Fig. 13.13, the beat note bandwidth of the signal can be reduced by mode
stabilization, provided the correction to the cavity length is applied symmetri-
cally with respect to the pulse crossing point (in such a configuration, both pulses
traveling in opposite direction receive the same modification at various points of
the cavity).

13.4. STABILIZED MODE-LOCKED LASERS
FOR METROLOGY

In Chapter 5 we explained the ability of a stabilized fs laser to act as an
extremely sensitive frequency ruler and most accurate clock at the same time.
Recall that the frequency comb describing the laser output in the spectral domain

vm = f0 + m
 (13.20)

relates optical frequencies vm to radio frequencies 
 = 1/τRT . As is obvious
from this relation, two parameters are required to define the femtosecond fre-
quency comb corresponding to a mode-locked pulse train. Likewise, to stabilize
the comb, two parameters must be controlled (and stabilized) independently.
These two parameters can for instance be the pulse repetition rate, and the exact
frequency of a particular optical mode. A second option is to make an exact mea-
surement of the frequency of two modes, which requires two optical standards
within the bandwidth of the pulse. A third option is to measure one optical mode
and the carrier to envelope offset (CEO). Only one calibrated measurement is
required, if the carrier to envelope offset can be measured, controlled and set
to a constant value. We will next present the technique to measure the CEO.
As will be shown in the next two sections, this technique is limited to pulses
shorter than 100 fs. For picosecond pulses, the CEO can be extracted from a
precise measurement of the repetition rate and one optical mode. At the end of
this section we will then describe how a fs laser can be stabilized to external
cavities.
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13.4.1. Measurement of the Carrier to Envelope
Offset (CEO)

We will first describe the most commonly applied techniques to measure the
CEO based on “f to 2f interferometry.” We will then introduce a technique to
produce the required octave-spanning spectrum using continuum generation in
special fibers.

13.4.1.1. f to 2f Interferometry

This is a self-referencing method, in which a mode from the high frequency
part of the spectrum (mode number mh) is made to interfere with a fre-
quency doubled mode from the low frequency portion of the spectrum
(mode number ml) [94]. The lowest component of the beat note spectrum


v = |2(f0 + ml
) − (f0 + mh
)| = |f0 + (2ml − mh)
| (13.21)

is the CEO f0.
An experimental setup of this self-referencing technique is shown in

Figure 13.17. A two-prism spectrometer is used to separate the red and blue
parts of the spectrum. An aperture A selects the desired blue portion of the spec-
trum, which is retro-reflected through the two prisms before being sent by a
beam splitter to the f/2f interferometer. In one arm of the interferometer, a non-
linear crystal is inserted to frequency double the infrared pulse (shown as dotted
line in Fig. 13.17). With a frequency doubling crystal type I, (BBO crystal phase
matched for the infrared end of the pulse spectrum) the second harmonic is polar-
ized orthogonally to the fundamental and can thus be combined with a polarizing
beam splitter with the blue portion of the fundamental pulse. A polarizer oriented
to project equal components of the two orthogonally polarized signals along its
axis ensures maximum contrast of the beat signal on the photodetector APD.

There is no need for a wavelength selective aperture in the infrared portion of
the spectrum, because the phase matching condition of the SHG crystal will pro-
vide the required spectral selection. Ideally, the two prisms should be configured
for zero GVD, according to the calculations of Section 2.5.5, to prevent pulse
broadening and phase modulation because of dispersion. The amount of intra-
cavity glass and the prism separation can be selected for zero GVD according to
Eq. (2.101).

13.4.1.2. Creating Pulse Spectra Spanning an Octave

There are two main approaches to produce pulses whose spectra span a full
octave—(a) build lasers that emit extremely short (5 fs in the NIR) pulses, and
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A

Polarizer

SHG

τd

Figure 13.17 Measurement of the CEO frequency of a fs comb by f to 2f interferometry. The
relevant high and low frequency parts of the spectrum are selected by a prism spectrometer with zero
GVD. A high frequency part of the spectrum is selected by an aperture A. The pulses from the blue
and IR part of the spectrum are sent to a Mach–Zehnder interferometer. The beams are reflected after
the prism pairs at a lower level, so that they can be picked up by a mirror diverting them toward
the Mach–Zehnder interferometer. A frequency doubling crystal (phase matched for SHG type I)
is inserted in one arm of a Mach–Zehnder interferometer. The orthogonally polarized blue part of
the pulse spectrum and the second harmonic of the infrared are combined with a polarizing beam
splitter (PBS). An adjustable delay τd ensures that these two orthogonally polarized pulses meet on
the beam splitter. A polarizer selects an equal component of both pulses to record their beat note with
an avalanche photodetector (APD).

(b) broaden the spectrum of longer pulses outside the laser oscillator without
destroying the mode structure and coherence. Because the first approach was
described in Section 6.7.2 we will concentrate now on the spectral broadening.

Techniques based on optical fibers to generate a broad spectral continuum,
while preserving the coherence of the comb, have been developed, cf. Section 3.7.
Microstructured fibers [95], tapered fibers [96], and highly nonlinear dispersion
shifted (HNLF) fibers [97–99] have been used to demonstrate octave-spanning
continua. Figure 13.18 compares the dispersion of microstructered fibers and
HNLFs. In all these fibers the crucial issue is low dispersion at the wavelength of
the input pulse allowing for long interaction lengths. This together with the small
confined beam diameter (guided mode) can produce large nonlinear effects, like
continuum generation, with the relatively low pulse energies available from laser
oscillators. Some characteristic parameters of fibers for continuum generation
with low power lasers are listed in Table 13.1. The HNLF are ideally suited for
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Figure 13.18 Dispersion of a typical small-core microstructured fiber in relation to the Ti:sapphire
wavelength, compared to HNLF dispersion and an Er fiber laser (from Nicholson et al. [99]).

Table 13.1

Some characteristic parameters of fibers used for continuum generation compared
to standard single-mode silica fibers (SMFs). The last column lists the Kerr

nonlinearity in terms of parameters introduced in Chapter 3. The parameter γ is
related to the nonlinear phase shift �NL that is induced by a laser power P over a
propagation distance L by γ = �NL/(PL) = ωn̄2/(cAeff ), where Aeff is the effective

fiber cross section, cf. Chapter 8 .

Type Wavelength GVD Nonlinearity
(nm) ps/(nm km)

Standard SMF 800 −110 n̄2 = 310−16 cm2/W
Microstructure 770 0

780 10 γ = 0. 07 W−1m−1

900 70
Tapered 850 122 LNL = 0. 6 mm
HNLF 1550 2.2 γ = 9 W−1m−1

the continuum generation with Er-based fiber lasers operating at pulse durations
in the range of 50 fs to 200 fs.

The nonlinear Schrödinger equation, (3.190), has been used successfully to
simulate the pulse propagation and broadening in microstructure fibers [100, 101].
It is observed that the broadest continuum is generated when the laser pulse is in
the anomalous-dispersion regime of the fiber, cf. Fig. 13.18.

The method of f to 2f interferometry requires that some phase correlation
between the pulse, and the train is maintained in the continuum generation.
One method to study the coherence properties of the continuum is to interfere
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independently generated continua. Two possible setups to perform such experi-
ments are sketched in Figure 13.19. A continuum is generated in each branch of
a Michelson interferometer [Fig. 13.19(a)]. The length of one arm can be var-
ied to introduce a delay τd between the spectrally broadened pulses entering the
spectrometer. This delay is observed as fringes across the combined spectrum
of the pulses (spectral interferometry). The visibility of fringes recorded as the
spectrum is being scanned is measured. The modulation depth of these fringes
is a measure of the coherence. Bellini and Hänsch [102] performed a coherence
experiment with continua generated in microstructure fibers by a Ti:sapphire laser
using Young’s double slit instead of the spectrometer. There, the visibility of the
spatial fringe pattern was analyzed.

The configuration shown in Fig. 13.19(b) with an integrated fiber interferome-
ter was used to study the coherence of continua produced by fiber lasers operating
at 1550 nm [103]. The result of the measurements of Bellini and Hänsch [102]
and Nicholson and Yan [103] is that the continuum can be highly coherent (fringe
visibility ≈ 1) when generated by ultrashort pulses (<150 fs). The fringe structure
disappeared in a broad continuum generated by 1-ps pulses.

Experimental investigation of pulses of 190-fs duration in microstructure
fibers shows that the pulse initially begins to self-Raman shift to longer wave-
lengths [104]. The interplay of anomalous dispersion and Kerr nonlinearity

Spectrometer

D

Spectrometer

D

S

Wavelength

τd

τd

τRT

(a) (b)

Figure 13.19 Spectral interferometry applied to the study of the coherence of the continuum.
(a) The continuum is generated in each arm of the interferometer. (b) The continuum is gener-
ated outside the interferometer, but the relative delay of the two arms is close to the delay between
successive pulses of the train. Therefore, it is the coherence between the continuum generated by
two successive pulses that is being analyzed.
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enables the formation and propagation of solitons propagating at different veloc-
ities. As these higher-order solitons break up, parametric four wave mixing
generates frequencies at wavelengths shorter than the zero dispersion wavelength,
eventually leading to an intense blue radiation coexisting with a broad infrared
supercontinuum [104]. One conclusion was that special fibers can only be used
to extend the frequency comb of sub-150-fs pulse trains.

13.4.2. Locking of fs Lasers to Stable
Reference Cavities

Earlier stabilization experiments with mode-locked lasers often used short
Fabry–Perot etalons to stabilize the average position of the comb, directly
employing the techniques developed for single-mode lasers [105, 106]. More
recent experiments have used external Fabry–Perot cavities as “mode filters,”
transmitting every 20th comb component, such that any individual mode of the
comb can be unambiguously identified with a wavemeter [107, 108]. Ultimate
stability is reached by stabilizing one mode to an atomic resonance while at the
same time keeping the CEO f0 constant. The use of the frequency comb as a
“ruler” has been introduced by the group of Hänsch as a powerful means to
compare frequency standards [108–110]. It was first applied to a measurement
of the cesium D1 line using a mode-locked laser [107].

Another example of the application of a frequency ruler involves linking the
ytterbium to the iodine standard. The beat frequency between one mode of the
comb and a frequency standard such as an Yb+ stabilized laser at 871 nm provides
a calibration of the entire comb. Another mode of the same comb is made to
beat with an I2 stabilized laser at 1064 nm. This measurement thus provides
the ratio of the two frequency standards [111]. The noise in this direct ratio
measurement is the same as that of a direct comparison between two independent
I2 standards, indicating that this ratio measurement was limited only by the noise
of the I2 stabilized laser. It is estimated that the excess fractional frequency noise
introduced by the comb can be as low as 10−19 [112].

A building block of this time and frequency standard is a fs laser stabilized
to an external Fabry–Perot cavity. A close-up of such an experiment is shown
in Figure 13.20 [113]. The reference cavity is a long (62.5 cm) Fabry–Perot
resonator made of a solid block of ultralow expansion quartz, with high reflec-
tivity mirrors of the same substrate material optically contacted on both ends.
The cavity was placed in a vacuum chamber to isolate it from thermal and acous-
tic noise and, if needed, to control the ambient pressure. The vacuum chamber
usually kept the pressure inside the reference cavity below 15 mTorr. The laser
cavity length is twice the length of the reference cavity, so that every other fs
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Figure 13.20 Stabilization of a mode-locked laser to a reference cavity. A phase modulator (EO)
produces sidebands of opposite sign for each mode of the laser. The beam is mode-matched to the
reference cavity. The beam reflected off the reference cavity is dispersed by a grating. The spectral
component picked up by detector PD1 is mixed with the modulation signal (which was applied to the
phase modulator) to produce an error signal which is amplified and added as a correction frequency
to the laser via an acousto-optic modulator. The difference between the signals from PD2 and PD1
provides an error signal for the repetition rate. The group velocity correction is either a tilt of an end
mirror (following a prism sequence in the laser cavity) or an intensity adjustment of the pump laser
of the fs laser.

laser mode can be transmitted.3 The Kerr lens mode-locked laser produced pulses
of ≈ 40-fs duration.

The standard technique to stabilize a single-mode laser is the Pound-Drever-
Hall method [114]. The basic principle is to create sidebands (of opposite phase)
of the laser with a phase modulator (EO Mod. in Fig. 13.20). The phase modulated
signal is detected after reflection by the reference cavity, and the detector output
is mixed with the original modulation signal (not shown). At exact resonance
(between laser and reference cavity mode), the reflected signal has still equal
and opposite sidebands, and the result of the mixing is a null signal. The balance
between the two sidebands is lost outside of resonance, resulting in a negative
or positive mixing signal below or above resonance, which is the error signal to

3A shorter cavity is not desirable: if N is the ratio of the laser to reference cavity lengths, the
effective cavity finesse is reduced since the intensity of the pulse in the reference cavity is reduced
by a factor (1 − R)N between incident laser pulses due to reflections at the mirrors.
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apply as correction to some controlling element within the laser. In the case of
a single-mode laser, this will generally be a piezo-element (PZT) controlling the
cavity length.

As we saw in Chapter 5, in the case of the mode-locked laser, both the rep-
etition rate and the carrier frequency have to be stabilized. A single mode can
be stabilized using the same Pound-Drever-Hall [114] technique as for the cw
laser, by selecting a single mode with a grating.4 The single mode error signal is
obtained by mixing the signal from the detector PD1 with the phase modulation
(at fEO = 10. 7 MHz, for example). Ideally this error signal should be applied
to an element that only corrects the mode frequency, without affecting the rep-
etition rate. Such a correcting intracavity element does not exist. A PZT on an
end-cavity mirror does offer good control of the mode position, but not without
affecting the repetition rate somewhat. An acousto-optic modulator outside the
laser cavity can be used as a fast frequency shifter, which does not affect the
repetition rate.

Two techniques are commonly used to apply a correction to the laser repetition
rate, with minimum perturbation on other parameters. The first one is to tilt
(using PZT) the end mirror that follows the prism sequence [108]. This technique
modifies the group velocity through the prism sequence and affect the cavity
length (mode spacing) only to second order. A major disadvantage for some
applications is that it also affects the overall spectrum of the pulse train. A second
technique is to act on the pump beam intensity [115].

Once a mode of the laser comb has been “locked” to a mode of the reference
cavity, the mode comb is still free to “breathe” about that central mode. Fluctu-
ations in the laser repetition rate result in the largest mode frequency excursion
between the extreme ends of the spectrum. A convenient error signal is provided
by mixing the difference between the signals of PD1 and PD2 with the origi-
nal modulation at frequency fEO. The error signal obtained in this way is the
composite signal from all longitudinal modes detected within the spectral region
spanned by the detectors.

13.5. PROBLEM

Consider a range gating setup like that in Fig. 13.1, with SHG as gating
mechanism. Both the reference pulse and the backscattered radiation are focused,
with crossed polarization, into a SH crystal phase matched for SHG type II at
620 nm. The crystal is urea, with a nonlinear coefficient of d = 1. 04·10−23 C/V2,
and an index of refraction of 1.48. Given that both the reference beam and the
signal beam are collimated with a diameter of 0.7 mm and focused into the

4In practice it will be a group of modes that will be selected by the grating.
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crystal with a 2.5 cm focal distance lens, find the peak power of the reference
beam required to achieve single photon up-conversion. What should the crystal
length be? Given that crystal length, is there a limitation to the depth resolution
of this 3D imaging system? Is there a limitation to the transverse resolution?
Estimate these limits.
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Appendix A
The Uncertainty Principle

This demonstration of the uncertainty principle is an example of application
of various Fourier transform properties. We will give a simple derivation of the
uncertainty relation (1.57) that we wrote between the conjugated variables time
t and frequency �. This uncertainty relation and its derivation also apply in all
generality between any pair of conjugated variables, for instance between the
transverse beam dimension x and the corresponding wave vector k. To derive
the uncertainty relation (1.57), we will use a family of functions defined by the
relation:

g(t) = tf (t) + µ
d

dt
f (t) (A.1)

where t and µ are real variables. The total “energy” associated with that distri-
bution is proportional to:

∫ ∞

−∞
|g(t)|2 dt =

∫
t2 | f |2 dt + µ

∫ [
tf

df ∗

dt
+ tf ∗ df

dt

]
dt + µ2

∫ ∣∣∣∣df

dt

∣∣∣∣
2

dt

≥ 0. (A.2)

While the first term of the inequality defines the second order moment 〈t2〉,
∫

t2| f (t)|2dt = 〈t2〉
∫

| f (t)|2dt. (A.3)
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we can apply Parseval’s theorem to the last term to obtain:

∫ ∞

−∞

∣∣∣∣df

dt

∣∣∣∣
2

dt = 1

2π

∫ ∣∣∣∣F
(

df

dt

)∣∣∣∣
2

d�

= 1

2π

∫
�2| f (�)|2d� = 〈�2〉

∫
| f (t)|2 dt. (A.4)

If the function | f | has finite boundaries so that limt→±∞
(
t| f |2) = 0, as is true

for the modulus of the electric field of a laser pulse for example, one can write:

∫ ∞

−∞
d

dt

[
tf (t) f ∗(t)

]
dt =

∫ ∞

−∞
| f (t)|2 dt +

∫ ∞

−∞
tf ∗(t)

df

dt
dt

+
∫ ∞

−∞
tf (t)

df ∗

dt
dt = 0. (A.5)

Substituting the terms of Eqs. (A.4), (A.3), and (A.5) into the inequality (A.2)
leads, after division by

∫∞
−∞ | f (t)|2 dt, to:

〈�2〉µ2 − µ + 〈t2〉 ≥ 0. (A.6)

The left-hand side of the inequality is a quadratic polynomial in µ. Because
〈�2〉 > 0, the polynomial is nonnegative if the ordinate of the vertex of the
parabola is ≥ 0. This is the case if

1 − 4〈t2〉〈�2〉 ≤ 0, (A.7)

which is equivalent to the uncertainty relation (1.57).



Appendix B
Phase Shifts on Transmission
and Reflection

B.1. THE SYMMETRICAL INTERFACE

Let us consider first the simple situation sketched in Figure B.1. The interface
can be a mirror with a reflecting coating on the front face and an antireflection
coating on the back face. We are only interested in fields propagating outside the
mirror. The energy conservation relation between the reflected (field reflection
coefficient r̃) and transmitted (field transmission coefficient t̃) waves implies:

|r̃|2 + |t̃|2 = 1, (B.1)

where we assumed a unity field amplitude.
Another relation can be found by adding another incident field of amplitude 1

(beam 2 in the figure), and taking advantage of the symmetry. Summing the
intensities:

|r̃ + t̃|2 + |r̃ + t̃|2 = 2. (B.2)

Combination of Eqs. (B.1) and (B.2) leads to

2[r̃ t̃∗ + r̃∗ t̃] = 0, (B.3)

which implies that the phase shifts on transmission and reflection are com-
plementary:

ϕr − ϕt = π

2
. (B.4)

625



626 Phase Shifts on Transmission and Reflection

1

Figure B.1 Reflection and transmission by a plane mirror between two identical media.

It is because of the latter phase relation that the antiresonant ring reflects back
all the incident radiation and has zero losses if |r̃|2 = |t̃|2 = 0. 5.

B.2. COATED INTERFACE BETWEEN TWO
DIFFERENT DIELECTRICS

Let us consider—as in Figure B.2—a partially reflecting coating at an interface
between air (index 1) and a medium of index n. A light beam of amplitude E1 =
1/

√
cos θ1 is incident from the air, at an angle of incidence θ1. The transmitted

beam is refracted at the angle θ2 and has an amplitude t̃1/
√

cos θ1. The reflected
beam has an amplitude r̃1/

√
cos θ1. Energy conservation leads to the relation:

|r̃1|2 + |t̃1|2 n cos θ2

cos θ1
= 1, (B.5)

where we took into account the change in beam cross section on refraction.
We have a similar energy conservation equation for a beam of amplitude
E2 = 1/

√
n cos θ2 incident at an angle θ2 on the dielectric–air interface:

|r̃2|2 + |t̃2|2 cos θ1

n cos θ2
= 1. (B.6)

The amplitude of the reflection coefficient is equal on both sides of the interface.
For the phase, the only sign relation consistent with energy conservation in a
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Figure B.2 Reflection and transmission at an interface.

Gires–Tournois interferometer and with the known phase shift on pure dielectric
interfaces, is:

r̃1 = −r̃∗
2 , (B.7)

or, r1 = r2, with the relation between phase angles:

ϕr,1 = −ϕr,2 − π. (B.8)

To find a relation between the phase shift on transmission and reflection, we
consider the energy conservation for light incident from the upper half of the
figure (the axis of symmetry being the dashed normal to the interface):

1 + 1 = cos θ1

∣∣∣∣ r̃1√
cos θ1

+ t̃2√
n cos θ2

∣∣∣∣
2

+ n cos θ2

∣∣∣∣ r̃2√
n cos θ2

+ t̃1√
cos θ1

∣∣∣∣
2

. (B.9)

Taking into account the energy conservation relations (B.5) and (B.6) leads to
the following trigonometric relations between phase shifts on transmission and
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reflection:

cos(ϕr,1 − ϕt,2)

cos(ϕr,2 − ϕt,1)
= −1, (B.10)

which leads to the relation between phase angles:

ϕt,2 − ϕr,2 = ϕr,2 − ϕt,1 + (2n + 1)π. (B.11)

A direct consequence of this phase relation is:

t̃1 t̃2 − r̃1r̃2 = 1. (B.12)



Appendix C
Slowly Evolving Wave
Approximation

The derivation here essentially follows Brabec and Krausz [1]. We start with
the wave equation in the frequency domain for a scalar electric field propagating
in the z direction, including a nonlinear polarization and the diffraction term

[
∂2

∂z2
+ ∇2⊥ + k̃2(�)

]
E(x, y, z,�) = µ0F

{
∂2

∂t2
PNL(t, x, y, z)

}
(C.1)

where ∇2⊥ = ∂2

∂x2 + ∂2

∂x2 . Note that the effect of the linear polarization is included

in k̃2(�) = �2ε(�)µ0 = �2n2/c2. We start with the following ansatz for the
electric field and the nonlinear polarization:

E(�) = 1

2
Ẽ(� − ω	, x, y, z)e−ik	z + c. c. (C.2)

P(t) = 1

2
P̃(t, x, y, z)ei(w	t−k	z) + c. c. (C.3)

and neglect processes leading to backscattering, that is, coupling of opposite
propagation directions. This ansatz inserted in Eq. (C.1) yields

[(
∂

∂z
− ik	

)2

+ ∇2⊥ + k̃2(�)

]
Ẽ(� − ω	) = µ0F

{
eiω	t

(
∂

∂t
− iω	

)2

P̃(t)

}
.

(C.4)
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We now expand the complex k̃(�) = k + iα/2 into a Taylor series about ω	

k̃(�) = k	 + i
α0

2
+ k1(� − ω	) + D̃(�), (C.5)

where

D̃(�) = i
α1

2
(� − ω	) +

∞∑
m = 2

km + iαm/2

m! (� − ω	)m (C.6)

with

km = ∂m

∂�m
Re(k̃)

∣∣∣∣
ω	

(C.7)

αm = ∂m

∂�m
Im(k̃)

∣∣∣∣
ω	

. (C.8)

The quantities αm are related to linear loss coefficients for the field intensity. The
next step is to insert Eq. (C.6) into Eq. (C.4) and inverse Fourier transform the
resulting expression into the time domain. For this step we use the fact that an
expression of the kind (� − ω	)mA(� − ω	) transforms into

(−i ∂
∂t

)m
A(t) where

A(t) = F−1 {A(� − ω	)}. The resulting wave equation now reads

{(
∂

∂z
− ik	

)2

+ ∇2⊥ +
[

k	 − ik1
∂

∂t
+ i

α0

2
+ D̂(t)

]2
}

Ẽ(t)

= µ0

(
∂

∂t
− iω	

)2

P̃(t), (C.9)

where

D̂(t) = α1

2

∂

∂t
+

∞∑
m=2

km + iαm/2

m!
(

−i
∂

∂t

)m

. (C.10)
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The terms in Eq. (C.9) can be regrouped, factoring out the operator (1 − i
ω	

∂
∂t ).

To this end, the third term in Eq. (C.9) can be written as:

[
k	 − ik1

∂

∂t
+ i

α0

2
+D̂(t)

]2

= k2
	 − 2ik	k1

∂

∂t
+ 2ik	

(
1 − i

k1

k	

∂

∂t

)(α0

2
− iD̂

)

+ iα0D̂ − k2
1
∂

∂t
− α2

0

4
+ D̂2

= k2
	 − 2ik	k1

∂

∂t
+ 2ik	

(
1 − i

ω	

∂

∂t

)(α0

2
− iD̂

)

+ 2ik	

(
i

ω	

)(
1 − c

nνg

)
∂

∂t

(α0

2
− iD̂

)
+ iα0D̂ − k2

1
∂

∂t
− α2

0

4
+ D̂2.

(C.11)

We use a retarded frame of reference, i.e., the transformation ξ = z and η =
t − z/νg as in Chapter 1, Eqs. (1.86) and (1.87). We note that the first squared
expression in Eq. (C.9) is:

(
∂ξ − 1

νg
∂η − ik	

)2

= − 2ik	

(
1 − i

k	νg
∂η

)
∂ξ − k2

	 + 2ik	
1

νg
∂η

= − 2ik	

(
1 − i

ω	

∂η

)
∂ξ − k2

	 + 2ik	
1

νg
∂η

+ 2

(
n

c
− 1

νg

)
∂ξ∂η. (C.12)

Substituting Eq. (C.11) and Eq. (C.12) into Eq. (C.10) yields:

(
1− i

ω	

∂

∂η

)[(
∂

∂ξ
− α0

2
+iD̂

)
Ẽ+i

ω	cµ0

2n0

(
1− i

ω	

∂

∂η

)
P̃
]
− 1

2ik	
∇2⊥Ẽ

=
(

1− c

nvg

)
i

ω	

∂

∂η

(
∂

∂ξ
− α0

2
+iD̂

)
Ẽ− 1

2ik	

(
∂2

∂ξ2
+D̂2− α2

0

4
+iα0D̂

)
Ẽ .

(C.13)
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So far the propagation equation is still exact, and no approximations have been
made. The terms on the right-hand side are small compared to those on the left-
hand side and can be neglected if Eqs. (3.94)–(3.96) are satisfied. In this case we
obtain Eq. (3.97). One should exercise caution in the application of Eq. (3.97)
up to an arbitrary order in the expansion of D̂. Depending on the particular pulse
duration, the higher order terms in the expansion of D̂ on the right-hand side of
Eq. (C.13) may not be negligible as compared to the highest-order term of the
left-hand side of that expression.

Note, in the main text we frequently used t,z as local coordinates in a frame
moving with the group velocity.
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Appendix D
Four-Photon Coherent Interaction

The procedure to calculate the coherent four-photon resonant coherent inter-
action is detailed in Mukherjee et al. [1] and Mukherjee [2]. The density matrix
of the multilevel atomic system is reduced to a two-by-two matrix associated
with the resonant levels. The temporal evolution of the density matrix elements
associated with all the off-resonant levels is calculated by an adiabatic expan-
sion to fourth order [1,2]. We refer to the literature for the “straightforward
but tedious” derivation of the time evolution of the diagonal (ρ44, ρ00) and
off-diagonal [ρ04 =�04 exp(4iω	t)] elements. We will instead concentrate on the
physical meaning of the various terms entering these equations. In analogy with
the two-photon coherent interaction equations, we introduce an amplitude func-
tion for the four-photon excitation of the atom Q̃4 =2i�04. In addition to the
fundamental frequency ω	, fields at the third harmonic (ω3 =3ω	) and the fifth
harmonic (ω5 =5ω	) frequency are also generated.

One of the main driving terms of the electronic excitation ρ04 oscillating at
4ω	 is a term proportional to the fourth power of the applied field. The time
evolution of the amplitude Q̃4 of the harmonic electronic excitation of the atom
is given by the system of interaction equations:

{
∂

∂t
+i(ω04−4ω	+δω2)+ γ0+γ4

2
+ 1

T2

}
Q̃4 = (ρ44−ρ00)

{
Ṽ4

1

+ (ξ40+a3|Ṽ1|2)Ṽ1Ṽ3+(ζ∗
40+c∗

5|Ṽ1|2)Ṽ∗
1 Ṽ5+d∗

5 Ṽ2
1 Ṽ5Ṽ∗

3

}
(D.1)
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∂ρ44

∂t
+γ4ρ44+ ρ44

T1

=Re
{

Q∗
4[Ṽ4

1 +(ξ40+a3|Ṽ1|2)Ṽ1Ṽ3+(ζ∗
40+c∗

5|Ṽ1|2)Ṽ∗
1 Ṽ5

+d∗
5 Ṽ2

1 Ṽ5Ṽ∗
3 ]
}

(D.2)

∂(ρ44+ρ00)

∂t
=−γ4ρ44−γ0ρ00, (D.3)

where ξ40 is the ratio of the sum frequency (ω	+ω3) to four-photon excitation
coefficients, a3 being the intensity-dependent part of this ratio; ζ40 and b3 are
the ratio—and the intensity-dependent part thereoff—of the difference frequency
(ω5−ω	) to four-photon excitation coefficients; d5 is the ratio of the excitation
process via coupling of frequencies (2ω	+ω5−ω3) to the process (4ω	).

In the equations (D.1) through (D.3), the fields Ṽi are in units of the Rabi
cycle for the four-photon transition:

Ṽ4
i = 2r04

(2�)4
Ẽ4

i = p0f pfkpkjpj4

(ωj1−3ω	)(ωk0−2ω	)(ωf 0−ω	)

Ẽ4
i

8�4
, (D.4)

where Ẽi is the amplitude of the field at ωi	 = iω	, and the summation convention
over the repeated indices is assumed. Equation D.4 defines a complex parameter
r04. All the fields are expressed in frequency units through the conversion factor
(r04)1/4/�.

As in the case of the two-photon resonant two-level system, the detuning is
time-dependent through the Stark shift δω2:

δω2 =[α′
0−α′

4]|Ṽ1|2 (D.5)

where the “prime” indicates the real part of the normalized susceptibility αi

given by:

αi = 1√
r04

∑
k

[ |pki|2
(ωki −ω	)

+ |pki|2
(ωki +ω	)

]
. (D.6)
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The coherence is expressed by the function Q̃4 =2iρ04e−4ω	t , which will
be the main driving term of Maxwell’s wave equations. For instance, for the
fundamental:

∂Ṽ1

∂z
= µω	cN

2

2
√

2r04

�
[Ṽ∗3

1 Q̃4

+(ξ40+a3|Ṽ1|2)Q̃4Ṽ∗
3 +(ζ∗

40+c∗
5|Ṽ1|2)Q̃∗

4Ṽ5+2d5Ṽ∗
1 Ṽ3Ṽ∗

5 Q̃4

+ 3

4

α3

r04
Ṽ3Ṽ∗2

1 ρ11]+µω	cN

2
[α0(ω	)ρ00+α4(ω	)ρ44]Ṽ1, (D.7)

where α0 and α4 are the linear susceptibilities of levels 0 and 4, respectively.
In Eq. (D.7), α3 is the (complex) polarizability, responsible for nonresonant

third harmonic generation:

α3 = p0f pfkpkjpj0

(ωf 0−ω	)(ωk0−2ω	)(ωj0−3ω	)
. (D.8)

As source terms opposing or enhancing the fundamental field we recognize
in Eq. (D.7) all the combinations of amplitude terms for which the correspond-
ing phase factor is at the frequency ω	: Q̃4Ṽ∗3

1 (4ω	−3ω	), Q̃4Ṽ∗
3 (4ω	−ω3	),

Q̃4Ṽ∗
1 Ṽ3Ṽ∗

5 (4ω	+ω3	−ω5	−ω	), and Ṽ3Ṽ∗2
1 (ω3	−2ω	). The latter term, in

contrast to the formers, does not involve the resonant four-photon process, but is
a second-order Raman term associated with nonresonant third harmonic genera-
tion. The nonresonant third harmonic generation term can interfere constructively
or destructively with the resonant generation process, as can be seen in Maxwell’s
wave equations for the field at ω3	:

∂Ṽ3

∂z
= µω	cN

2

2
√

2r04

�
[(ξ40+a3|Ṽ1|2)Q̃4Ṽ1

+2d∗
5 Ṽ2

1 Ṽ5Q̃4

+ 3

4

α3

r04
Ṽ3

1 ρ11]+µω	cN

2
[α0(ω3	)ρ00+α4(ω3	)ρ44]Ṽ3. (D.9)

The objective of this display of equations is not to confuse the reader, but point
to interesting transient phenomena and intriguing possibilities of applications for
femtosecond pulses.
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Appendix E
Kerr Lensing in a Cavity

We will consider first the sequence of a nonlinear lens and an aperture
and discuss the transmission of such an element based on simple ray optics.
A more accurate description based on Gaussian beam propagation was given in
Section 5.4.3 . We will then apply Gaussian optics to study the effect of a non-
linear lens in a specific cavity. This is an example of the procedure outlined in
Section 5.5.3 .

E.1. ELEMENTARY KERR LENSING MODEL

The main ideas of an intensity dependent transmission based on a Kerr lens and
subsequent aperture can be understood with simple arguments based on paraxial
ray optics. We are assuming in the following uniform beam profiles to analyze the
transmission through an aperture. Because a flat top beam does not produce self-
lensing the nonlinear lens must be introduced somewhat artificially. To illustrate
the effect of Kerr lensing, we consider here only the simplest approximation of
paraxial geometric optics, applied to a nonlinear lens located in a collimated
beam of radius r0, as in Figure E.1. The transmission of the beam of radius r
through the aperture or radius ra is simply:

T =
(

ra

r0
· r0

r

)2

=T0

( r0

r

)2 =T0

(
1

1− L
fnl

)2

≈T0

[
1

1+CI0(t)

]2

, (E.1)
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r0

r

- f n l
L

ra

Ln l

Figure E.1 A simplified power limiter, including a nonlinear lens acting on a collimated beam of
radius r0, and an aperture of radius ra. At high power, the nonlinear lens acquires a focal length of
fnl . The example shown refers to a negative nonlinearity leading to defocusing.

where T0 = (ra/r0)2 is the transmission without the nonlinear lens, r = r0−Lr0/fnl,
and C is a positive constant (for defocusing). Clearly the transmission is maxi-
mum for low intensities and negligible self-lensing. If I0(t) represents a pulse
envelope the transmission decreases in the center, which may lead to pulse
broadening and limits the overall energy transmission.

E.2. EXAMPLE OF A NONLINEAR CAVITY AND
GAUSSIAN BEAM ANALYSIS

We proceed next to a numerical example of nonlinear lensing in a cavity using
the Gaussian beam analysis of Section 5.5.3 . Figure E.2 shows a ring cavity and
the equivalent unit cell of the unfolded (linear) cavity. The cavity contains two
identical focusing elements, a nonlinear lensing element and an aperture. We
choose the distance between L1 and L2, 2d1 =52.632 mm, and f =25 mm, and
the wavelength of the radiation λ=1 µm. The length of the cavity segment
between L1 and L2 that contains the aperture has a length L that we write as

L =	−2
d1f

d1−f
. (E.2)
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Figure E.2 (a) Ring cavity with a nonlinear lensing element NLE, two identical focusing mirrors
(M1 and M2) with focal length f , two flat mirrors (M3 and M4), and an aperture A. (b) Unit cell of
the equivalent unfolded (linear) cavity. For symmetry reasons two beam waists are formed, on either
side, halfway in between lenses (mirrors) L1 and L2, that is, a distance d1 and L/2 from lens L1.

We first determine the system matrix of this unit cell, M1, starting from the
position of the NLE:

M1 =
(

A1 B1
C1 D1

)
(E.3)

where the elements of the matrix are:

A1 =1+ 2d1

f
+ 2d1e

f (d−f )
+ 	

f
− (d1+e)(2f +	)

f 2
=2.324

B1 =
{[

2d1f

d1−f

]
−	

}[(
1− d1

f

)2

− e2

f 2

]
+2d1−2

d2
1 −e2

f
=−1.58 mm

C1 =−2

f
+ 2d1

f (d1−f )
− 	

f 2
=1.44 mm−1

D1 =1+ 2e+	

f
− 2d1e

f (d1−f )
− (d1−e)	

f 2
=−0.545. (E.4)

The numerical values correspond to e=1 mm and 	=50 mm.



640 Kerr Lensing in a Cavity

The stability criterium of the cavity takes the simple form:

∣∣∣∣A1+D1

2

∣∣∣∣=1− (d1−f )	

f 2
<1. (E.5)

The limit 	=0 marks a stability limit of the cavity, corresponding to a concentric
type cavity with a beam waist w0 →0. The parameter d1 determines the length of
the cavity [perimeter equal to 2d2

1 /(d1−f ) at the position of the NLE]. To obtain
a stable cavity we choose a cavity perimeter shorter by the amount 	 (50 mm in
our numerical example).

The eigenvalue of the system matrix is s̃1 = (0.909–0.2895i) mm−1, to which
corresponds a spot size of w1 =33 µm, and a radius of curvature of R1 =1.1 mm
at the position of the NLE, as given by the Eq. (5.118). We note that the non-
linear crystal (NLE) is outside the Rayleigh range of the beam waist, because
propagation by −1 mm shows a beam waist of about 7 µm.

The matrix for translating from the crystal to the aperture located at a distance
La from L2 is:

(
Am Bm

Cm Dm

)
=
(

1 La

0 1

)(
1 0

− 1
f 1

)(
1 d1−e
0 1

)

=
(

1− La
f (d1−e)− La

f (d1−f −e)

− 1
f − d1−f −e

f

)
(E.6)

If we choose as distance to the aperture from L2 a length La = 300 mm, we
find for the matrix:

(
Am Bm

Cm Dm

)
=
( −11 21.52 mm

−0.04 mm−1 −0.01264

)
(E.7)

The complex beam parameter at the location of the aperture, in the absence of
nonlinear lensing, is thus:

s̃m = Cm+Dms̃1

Am+Bms̃1
= (−0.0336−0.00258) mm−1, (E.8)

which corresponds to a beam parameter of wm = 350 µm. Let us first look at the
change in beam size induced by the nonlinear lensing at the location of the NLE,
as given by Eq. (5.122). We find that

δs̃= 1

fnl
(0.4521+0.6458i) . (E.9)
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We assume nonlinear lensing that produces a lens of focal length fnl =500 mm,
which gives for the change in the complex s parameter δs=0.0009+0.00129i.
From that, the relative change in beam waist δw1/w1 ∼0.5×0.00129/0.289 is
about 0.2%.

Application of Eq. (5.127) yields the change in complex beam parameter at
the location of the aperture:

δs̃m = 1

fnl

[
(0.4521+0.6458i)

(Am+Bms̃1)2

]
= 1

fnl
[−0.0042−0.0056i] . (E.10)

The relative change in beam waist at the aperture, for fnl = 500, is δwm/wm =
0.5×0.0056/(500×0.00258) and is about 0.2%.

The location of the aperture should be away from a beam waist. If we chose
for instance La =[2d1f /(d1−f )−	]/2=475 mm, which brings us close to the
second beam waist of the cavity, we find s̃m =0.001−0.16i, corresponding to a
beam waist of 45 µm, and δs̃m =0.017(1+i)/fnl. The relative beam waist change
δwm/(wm) is only 0.01%.
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Appendix F
Abbreviations for Dyes

Abbreviation Full name
RhB Rhodamine B or Rhodamine 610
Rh 110 Rhodamine 110 or Rhodamine 560
Rh6G Rhodamine 6G or Rhodamine 590
DODCI 3,3’-diethyloxadicarbocyanine iodide
DQOCI 1,3’-diethyl-4,2’-quinolyoxacarbocyanine iodide
SRh101 Sulforhodamine 101 or sulforhodamine 640
DOTCI 3,3’-diethyloxatricarbocyanine iodide
DCCI or DCI, 1,1’-diethyl-2,4’-carbocyanine iodide
DQTCI 1,3’-diethyl-4,2’-quinolthiacarbocyanine iodide
DDI = DDCI 1,1’-diethyl-2,2’-dicarbocyanine iodide
HITCI 1,1’,3,3,3’,3’-hexamethylindotricarbocyanine iodide
DaQTeC 2-(p-dimethylaminostyryl)-benzothiazolylethyl iodide
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List of Symbols

Frequently used symbols are listed in the table below. The list is neither
complete nor absolute: some duplication of notation takes place because of the
large amount of symbols required. The duplicate symbols are generally used in
different context and different chapters. To simplify notations we will often use
f (x′) as the Fourier transform of f (x), where x′ and x are the conjugate Fourier
variables.

Please note the distinction between the symbol italic v, ν, used to represent
velocities, and the symbol Greek nu, v, used to represent optical frequencies.

Physical parameter or constant Symbol Unit

Instantaneous real electric field E(t) V/m
Instantaneous complex electric field Ẽ+(t) or Ẽ(t) V/m
Complex electric field amplitude Ẽ(z, t) V/m
Electric field envelope (real) E(z, t) V/m
Intensity I(t) W/cm2

Pulse energy density W = ∫∞
−∞ I(t)dt J/cm2

Accumulated energy density W (t) = ∫ t
−∞ I(t′)dt′ J/cm2

Pulse energy W = ∫S WdS J
Phase of the electric field ϕ(z, t) radian
Average carrier frequency ω	 radian/s
Instantaneous frequency ω(t) = ω	 + ϕ̇ radian/s
Resonance frequency ω0 radian/s
Carrier to envelope offset (CEO) f0 s−1

Pulse duration (FWHM of intensity) τp s
Pulse duration (parameter of Gaussian) τG s
Detuning 
ω = ω0 − ω	 radian/s
Pulse bandwidth 
ωp radian/s
Frequency � radian/s
Spectral complex electric field Ẽ(�) Vs/m
Spectral complex field amplitude Ẽ(�) Vs/m
Spectral electric field envelope (real) E(�) Vs/m
Spectral phase of the field φ(�) radian
k -vector (magnitude) k(�) or k̃(�) m−1

k -vector (at ω	) k	 m−1

(Continued)
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646 List of Symbols

Physical parameter or constant Symbol Unit

Permittivity of free space ε0 F/m
Index of refraction n or n(�) dimensionless
Dielectric constant (complex) ε̃ or ε̃(�) = ε0n2 F/m
Dielectric constant, Real part εr F/m
Dielectric constant, Imaginary part εi F/m
Linear susceptibility χ(1) or χ dimensionless
Linear polarization P = ε0χ

(1)E Cm
Nonlinear index n2E2 n2 cm2/V2

Nonlinear index n̄2I n̄2 cm2/W
Phase velocity νp = �/k(�) m/s
Group velocity νg = d�/dk m/s
Parameter of group velocity dispersion k′′

	 = d2k/d�2|ω	 s2/m
Dispersion length LD = τ2

p0/|k′′
	 | m

Rayleigh range ρ0 m
Phase relaxation time T2 s
Energy relaxation time T1 s



Index

M2, 17

ABCD matrix, 325
aberration

chromatic, 83
spherical, 89

absorber
two-photon, 354

absorption, 153, 154
absorption coefficient, 153,

159, 229
accelerometer, 603
acoustic pulse, 557, 568
alexandrite, 364
amplification, 153, 154, 396

chirped pulse (CPA), 410
optical parametric chirped pulse

(OPCPA), 426
amplification coefficient, 159
amplified spontaneous emission (ASE),

404, 417
amplifier, 395

inhomogeneously broadened, 403
multi-pass, 418
multi-stage, 417
regenerative, 421
travelling wave (TWA), 422

amplitude and phase retrieval, 473
frequency resolved optical gating

(FROG), 480
from correlation and spectrum, 477
spectral phase interferometry for direct

electric field reconstruction
(SPIDER), 484

amplitude response, 42
angular dispersion, 99

approximation
harmonic oscillator, 249
paraxial, 46
rate equation, 155, 156, 165
slowly varying envelope, 25,

152, 195
area theorem, 230, 231
astigmatism, 328
attosecond, 568
autocorrelation, 91, 343

intensity, 458
interferometric, 462

of linearly chirped pulse, 462
autocorrelator

intensity, 469
interferometric, 472
single shot, 468

average frequency, 6, 237

ballistic component, 584
band gap, 544
beam parameter, 47
beam propagation, 46, 130
beam waist, 47
Bloch equations, 226, 235
broadening

homogeneous, 228, 234
inhomogeneous, 231, 234, 517
spectral, 442
temporal, 442

carrier frequency, 3
carrier to envelope offset, 284, 427,

447, 610
carrier to envelope phase, 3, 28
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648 Index

cavity
stability, 327

cavity modes, 280
chemical reaction, 540
Cherenkov radiation, 558
chirp, 19, 164, 271, 408
chirp amplification, 190
chirp compensation, 434
chirp reversal, 506
chirped, 5, 233
chirped mirrors, 80, 362
coherence, 221

pulse train, 286, 288
coherent interaction, 249
compression, 292, 433–451

Gaussian pulse, 441
in bulk materials, 450
soliton, 447

compression factor, 434, 442
compression mechanisms, 323
compressor

fiber-grating, 437, 446
hollow fiber, 446
ideal, 436
quadratic, 436

confocal parameter, 48
coplanar strip line, 574
coplanar transmission line, 560
correlation

intensity, 458
interferometric, 459

correlation, 145
background-free, 466
cross-, 271
intensity

higher-order, 459
with background, 466

correlation function, 65
correlation time, 145
correlator, 90
counterpropagating, 199
counterpropagating pulses, 320, 372
Cr:Cunyite, 366
Cr:Forsterite, 366
Cr:LiGAF, 364

Cr:LiSAF, 364
critical power, 205, 206, 409
cross-correlation, 90

intensity, 458
cross-section

emission, 405
interaction, 157

deconvolution of data, 493
degenerate four-wave mixing, 506
density matrix equation, 144
dielectric constant, 22, 38, 143
dielectric multilayers, 70
diffraction, 50
diffraction integral, 86
diffusion

measurement of, 505
dipole, 146
dipole moment, 225
dispersion

angular, 100, 124
prism, 102, 105

dispersion, 30, 32, 50, 323
angular, 94, 101
fused silica, 63
glass, 61
grating, 117
harmonic oscillator, 41
mirror, 79
nonlinear crystals, 63
quartz, 63
ZnS, 63

dispersion length, 34, 440
dispersion relation, 22
dissipative system, 144
distributed feedback, 570
duration–bandwidth product, 10, 12,

17, 163

eigenstate, 146, 245
electric field

pseudo-, 228
electric pulse, 571
electro-optic sampling, 574
electron–hole pair, 544
energy conservation, 230
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envelope, 3
slowly varying, 24

exciton, 545
extraordinary wave, 173

Fabry–Perot interferometer, 73, 74
fiber, 240, 378

single-mode, 437
filament, 597
fluorescence, 537

fs time-resolved, 509
Fourier spectrometer, 66
frequency comb, 283
frequency shift, 39, 238
frequency vs. wavelength derivatives, 32
FROG, 480

GaAs, 356
gain, 292

linear, 38
small signal, 404

gain coefficient, 229, 396
gain factor, 396
gain media, 400
gain narrowing, 402
gain saturation, 344
Gaussian beam, 47, 50, 84, 124, 325, 332
Gaussian pulse, 10, 11, 33, 50, 197

compression, 436
interferometric autocorrelation, 464

Gires–Tournois interferometer, 76
grating

GVD of, 117
transient, 503

grating vector, 504
group velocity, 24, 28, 67, 82, 95, 119
group velocity dispersion (GVD), 25, 32,

38, 85, 119, 302
in amplifiers, 402
through angular dispersion, 100

gyroscope, 601

harmonic oscillator, 40
heterodyning, 581

high harmonics (HH), 566
hole burning, 539
holography, 585

idler pulse, 189
imaging, 579

through scatterers, 583
incoherence, 222
incoherent radiation, 64, 68
index of refraction, 61
interaction matrix, 259
inversion, 153, 156, 226
isomerization, 550

Kerr gate, 580
Kerr-lensing, 320, 332

laser
alexandrite, 364
Cr:Fostertite, Cr:Cunyite, 366
Cr:LiSAF, Cr:LiGAF, Cr:LiSGAF, 364
dye, 371
fiber, 378
hybridly mode-locked, 373
mode-locked, 283
Nd:YVO, Nd:YLF, 370
Raman soliton, 378
semiconductor, 374
solid-state, 358
synchronously pumped, 342
Ti:sapphire, 292, 360
YAG, 367

lens, 82–92
achromatic doublet, 91

light-matter interaction, 143
line broadening

homogeneous, 148
inhomogeneous, 149
natural, 147

line shape factor, 156
linewidth, 150, 225
local oscillator, 271
loss, 292

linear, 38
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Mach–Zehnder interferometer, 515
matrix

ray, 130
ray-pulse, 131
resonator (ABCD), 325

mean square deviation, 16
melting

laser-induced, 549
metrology, 598
Michelson interferometer, 64–73, 90,

224, 459
microscopy, 586
miniature lasers, 373
mirror

dispersion, 70
focusing, 92
nonlinear, 349, 381

mode
longitudinal, 278, 283

mode spacing, 341
mode-locking, 283

active, 291
additive, 346
frequency domain, 283
hybrid, 291, 345
modes, 284
passive, 291
self-, 361
time domain, 290

modes
cavity, 325

molecular system, 253
molecular vibration, 518, 536
moment

first-order, 16
second-order, 16

multilevel system, 249
multilevel transitions, 245
multiphoton, 222, 243
multiphoton excitation, 255
multiphoton transition, 258
multiple quantum well (MQW), 315,

545
mutual saturation, 313

n2, 193
Nd:vanadate, 370
Nd:YAG, 367
Nd:YLF, 370
negative feedback, 352
nonlinear interaction length, 440
nonlinear mirror, 349
nonlinear polarization rotation, 318
nonlinear refractive index, 193
nonlinear Schrödinger equation, 208

occupation number, 146
OPCPA, 426
optical matrix, 130
ordinary wave, 173

parametric interaction, 188
parametric oscillator, 192
phase filter, 452
phase matching, 174, 189
phase memory, 155
phase modulation, 45, 56, 158

cross, 197
nonlinear, 192

phase modulator, 292, 434
phase response, 42
phase velocity, 26, 82, 95, 241
phonon, 520, 547, 569
photoconductive switch, 571
photon echo, 512
photon flux, 8
plasma, 565
polarization, 21, 143, 146,

155, 167
linear, 21
nonlinear, 21, 194
pseudo, 226, 241
resonant, 151

polarization rotation
transient, 500

polarization rotation, 351
prism, 94–117
probe pulse, 492
pulse

2π, 232, 239, 244, 512
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π, 233, 239, 244, 269, 512
steady-state, 239, 240, 294
zero-area, 253, 499, 515

pulse broadening, 19, 34
pulse duration, 11
pulse energy, 8
pulse front tilt, 185
pulse intensity, 8
pulse power, 6
pulse propagation, 53, 130
pulse shape, 72, 477
pulse shaping, 152, 160

in amplifiers, 400
intracavity elements, 314
through spectral filtering, 451

pulse spectra, 477
pump laser, 415
pump pulse, 404, 491
pump-probe experiment, 491, 494

Rabi frequency, 226
complex, 248
four-photon, 266
two-photon, 261

Raman laser, 379
Raman process, 264
Raman scattering, 518
range gating, 580
rate equations, 229, 305
Rayleigh range, 48
reconstruction

amplitude and phase, 473
rectification

optical, 559
reduced wave equation, 21, 26
refractive index, 153

effective, 438
nonlinear, 193, 407

regenerative feedback, 344
relaxation, 147

intraband, 500, 545
momentum, 501, 514

relaxation time
cross, 151
energy, 146, 148

measurement, 498
longitudinal, 146
phase, 146, 148, 155, 165, 221, 226

measurement, 512, 517
transverse, 146

resolution
depth, 588
temporal, 493, 497

resonator, 325
response

noninstantaneous, 168
response time, 65
retarded frame, 26
rotational spectroscopy, 563
rotational state, 254
round-trip model, 293
Rydberg state, 532

satellite pulse, 436
saturable absorber, 159, 356, 372
saturation, 159, 229, 315

amplifier, 399, 400
energy, 159, 301, 311
intensity, 160, 316

Schrödinger equation, 26, 439
nonlinear, 297, 592

second harmonic generation (SHG), 172,
183, 466

pulse front tilt, 185
type I, 173
type II, 183

seeding, 344
self-focusing, 194, 205, 240, 324

in amplifiers, 409
self-induced transparency, 232
self-lensing, 320
self-phase modulation, 194, 292, 317, 381,

407, 434
self-steepening, 198
self-trapping, 205
Sellmeier equation, 63
sensors, 598
shock wave, 559
signal pulse, 189
soliton, 295, 590

frequency-shift, 591
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soliton (continued)
fundamental, 448
spatial, 592
spatial and temporal, 597

soliton laser, 347
soliton propagation, 439
space–time analogy, 49
spatial frequency, 125
spectral amplitude, 3
spectral broadening, 19

in amplifiers, 407
spectral continuum, 611
spectroscopy

transient absorption, 497
SPIDER, 484
Stark shift, 260, 265
stimulated raman scattering

impulsive, 518
susceptibility, 167, 527

second-order, 168
third-order, 192

synchronous pumping, 190, 379

telescope, 122
terahertz radiation, 558
three-level system, 259
Ti:sapphire, 361
tilt of pulse fronts, 95
time lens, 51

transfer function, 42, 69, 452
prism and grating, 434

transient reflectivity, 548
transient transmission, 551
trapping, 209
two-level system, 146, 226, 234, 244
two-photon absorption, 312, 319
two-photon transition, 507

uncertainty relation, 17

vibration, 251
vibrational state, 254

walk-off, 175
wave equation, 20, 53
wave packet

angular, 534
dephasing, 543
radial, 532
revival, 534

white light, 64
white light continuum, 202, 418, 500
Wigner distribution, 12
Wigner function, 475

x-ray, 557
x-ray pulse, 565

Yb:YAG, 367
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