
fxReverse project documentation

For CASIO fx-9860G. Second revision.

Andreas Bertheussen <andreasmarcel@gmail.com>

Simon Lothar <Lothar.Simon@simon-du.de>

February, 2010

Simon
Rechteck

Simon
Rechteck

Copyright ©2008-2010 Andreas Bertheussen
Copyright ©2008-2010 2009 Simon Lothar

The authors of this document are in no way aXliated with or endorsed by CASIO. CASIO is a registered
trademark of CASIO COMPUTER CO., LTD. SuperH is a trademark of Hitachi Ltd. All other trademarks
are the property of their respective owners.

LATEX (http://www.latex-project.org/) generated this Vle on February 9, 2010. Many thanks to the
developers of LATEX, and other open source tools like kile (http://kile.sourceforge.net/), pdftex
(http://www.tug.org/applications/pdftex/), kdvi (http://developer.kde.org/~kdvi/) and
evince (http://www.gnome.org/projects/evince/).

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
Unported License. To view a copy of this license, visit http: // creativecommons. org/ licenses/
by-nc-nd/ 3. 0/ .

2

http://www.latex-project.org/
http://kile.sourceforge.net/
http://www.tug.org/applications/pdftex/
http://developer.kde.org/~kdvi/
http://www.gnome.org/projects/evince/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Contents

3

4

Chapter 1

Introduction

The intention of this document is to pass on the results of our research, and also tie together information
that earlier has been lying spread. Simon Lothar and I started the work on this project late in February
2008, and a lot of interesting things have been found since then.

Ideas about reverse-engineering appeared at the Universal Casio Forum early 2006. An SDK for de-
veloping addins was released by CASIO early 2007, allowing users to write their applications in C, export
addins, and also debug them on an included emulator. This more information available to the community
about the calculators hardware, and also a supported1 method of running binary code on its processor.

The SDK by CASIO included a library with stardard C functions and other specialized functions for
printing text, drawing graphics etc. (see section 3.1). It was soon clear that the OS functions available
in the oXcial SDK were just a subset of a huge library. No real research had previously been done on
these system calls, and so it became a central part of the project. In contrast to the Revolution-FX project
(http://revolution-fx.sf.net), we do not intend to write new software but instead learn about the
existing software in the OS.

Work on the protocol and development of a Vle transfer app was done by Manuel Naranjo and
Andreas Bertheussen through analysis of logged communication by CASIO’s FA-124.

1Not oXcially supported, but it did provide reliable information.

5

http://revolution-fx.sf.net

6

Chapter 2

Hardware

The fx-9860G calculator appears to be a typical microprocessor system, based on the SuperH architecture
by Renesas (previously HITACHI). Most of the information on the hardware components was available
before this document.

2.1 Components and features

The CPU is a SuperH 3 core, very similar to the SH7705 model. There are some deviations from the
SH7705 such as ADC register and port addresses. We suspect that the die is customized by CASIO because
of undocumented functionality. The CPU identiVcation string changes also in the OS between hardware
generation I and II, from “SH7337” to “SH7355”. The CPU runs in big endian mode, at 14.74MHz and is
possible to software overclock to 58.96MHz1. It works natively with the datatypes long, word and byte
which are respectively 4, 2 and 1 bytes wide.

RAM: Amic LP62S16256F-T Series, 512k capacity.2,3

Flash memory: Spansion S29JL032H, 4MB capacity.4

LCD driver: A Toshiba T6K11 variant.5

The system also includes a keyboard, the LCD, battery level sensors and an interface for SD cards
(fx-9860G SD model). Serial and USB communication is provided by the CPU. In a hole next to the reset
“button” are two contacts on the calculators circuit board. Upon shortening these together, a program
starts for OS update.

RAM is mapped and accessed at address 0x88000000, the Wash at 0x80000000 and 0xA0000000 (cached
/ uncached). The start of Wash, 0xA0000000 is the CPUs reset vector, but the 0x80000000 range is the most
commonly used because of speed advantages. Access to the display driver is done through 0xB4000000
for register selection and 0xB4010000 for data read/write.

2.2 Input hardware

The electrical conVguration of they keyboard is a simple row-column setup. Default operation by the OS
for reading keys, is to pull each of the rows to high, and then read the columns to identify key press
shorts (0’s) in that row.

1http://www.casiocalc.org?s=&showtopic=3782&view=findpost&p=43877
2http://www.amictechnology.com/pdf/LP62S16256F-T.pdf
3Not identiVed for GII due to glob-topped chip
4http://www.spansion.com/products/S29JL032H.html
5http://www.ortodoxism.ro/datasheets/toshiba/1952.pdf

7

http://www.casiocalc.org?s=&showtopic=3782&view=findpost&p=43877
http://www.amictechnology.com/pdf/LP62S16256F-T.pdf
http://www.spansion.com/products/S29JL032H.html
http://www.ortodoxism.ro/datasheets/toshiba/1952.pdf

In addition to the key PCB, there are several exposed pads on the main PCB that can be shorted,
though these are not intended for users. If the battery lid is oU, a hole in the shell exposes two of these
contacts. When shorted, they will start an OS update program which ignores the version of the new
Vrmware.

8

Chapter 3

Software

The ROM software/Vrmware is upgradeable through a USB connection to a computer. The latest OS
version at time of writing for all fx-9860G variants, is 2.00.

3.1 System call table

To allow Addins to function properly between OS versions, the OS has a table of pointers to all of
the API functions. This is common for all OS versions, and the code to access it lies at ROM address
0x80010070. A few entries in the table are pointers to strings, not functions, and could cause unex-
pected behavior if called. Version 1.04 increases the number of entries, adding syscall 0x1032 – named
Bkey_GetKeyTableInfoJumpFunc() in the oXcial SDK libraries.

The functions use the Renesas calling convention, Vrst four arguments in registers r4 to r7, and
additional arguments on the stack:

1 mov.l syscall_number , r0

2 mov.l syscall , r2

3 jmp @r2

4 nop

5 syscall : .long 0x80010070

Several of the functions pointed to in this system call table table are documented in chapter ?? with
their corresponding syscall_number.

3.2 Applications

The standard fx-9860G is equipped with several integrated applications that are accessible from the main
menu. See table 3.1 for a listing. We do beleive that common functionality used in these applications, like
expression parsers and input routines, are accessible through system calls - but these have so far been
hard to understand or document properly.

Usage documentation for the applications can be found at CASIOs documentation site,
http://world.casio.com/calc/download/en/manual/. Refer to section ?? for information on how
to execute these applications from an addin application.

9

http://world.casio.com/calc/download/en/manual/

Table 3.1: List of applications
“Mode” name Internal name Description
RUN·MAT @RUNMAT Main mathematic expression evaluator interface
STAT @STAT Perform statistical calculations on input data
e·ACT @EACT Notebook and documentation tool
S·SHT @SSHEET Basic spreadsheet
GRAPH @GRAPH Plot and work with function graphs
DYNA @DYNA Graph with “animation”
TABLE @TABLE Generate function tables
RECUR @RECUR

CONICS @CONICS

EQUA @EQUA A solver for simultaneous, polynomial or general equations
PRGM @PRGM Create and run BASIC-like programs
TVM @FINANCE Perform common Vnancial calculations
LINK @LINK Calculator→calculator or calculator→PC communication
MEMORY @MEMORY RAM, Wash (and SD card) memory management
SYSTEM @SYSTEM General calculator settings and information

3.3 File formats

Data in the MCS (RAM Vlesystem) can both be stored to and loaded from “Vles”, typically with the Vle
name extension .g1m. Users also have the ability to store Addins (.g1a extension) in the storage memory.
An icon will appear in the main menu if the Addin is in the correct format.

3.3.1 Header

All Vle formats that are read or written by the calculator share a common header format. This header is
inverted before being written and read, so a description of the inverted Vle data make more sense than
the normal Vle data:

OUset (b) Size (b) Description
8 File identiVer: “USBPower”

8 1 File type identiVer
9 5 {0x00, 0x10, 0x00, 0x10, 0x00}

0xE 1 Control byte: (LSB of Vlesize (at oUset 0x13)) + 0x41
0xF 1 0x01
0x10 4 Total Vle size as unsigned integer, big endian format
0x14 1 Control byte: (LSB of Vlesize (at oUset 0x13)) + 0xB8
0x15 0x9 Unknown purpose, appears insigniVcant
0x1E 2 Number of objects contained, if Vle is of type G1M or G1R
0x20 . . . Subheader depending on particular Vle type

Known Vle types are:

Value Type
0xF3 Addin
0x31 General MCS memory Vle
0x49 E-Activity

10

3.3.2 Addin subheader

Refer to table 3.2 for the Velds in the addin subheader. Upon execution, the addin Vle is loaded to
0x00300000, and the OS jumps to address 0x00300200 (“Addin code”). The addin code should use
0x08100000 for its .bss and .data sections. CASIOs SDK will automatically add initialization code
that loads the .data section and performs various system calls. For a working reimplementation of this
code for the GCC compiler, visit the fxSDK project (http://fxsdk.sourceforge.net/wikka.php?
wakka=BinaryFormat).

Table 3.2: Addin subheader Velds
OUset (b) Size (b) Description
0x20 8 “Internal” name, on the form “@APPNAME”
0x2B 1 Number of estrips
0x30 0xA Version on the form “01.23.4567”, Vrst 5 bytes appear in SYSTEM app
0x3C 0xE Creation date on the form “YYYY.MMDD.HHMM”
0x4C 0x44 A 30×18 pixel menu icon bitmap. Logical “1” is black, “0” is white“
0x1D4 8 Program title. Appears in SYSTEM app
0x1F0 4 Filesize as unsigned long, big endian.
0x200 . . . Addin code

Some of the unlabeled memory above is related to e·Activity strips and their icons, but the function is
not clear.

11

http://fxsdk.sourceforge.net/wikka.php?wakka=BinaryFormat
http://fxsdk.sourceforge.net/wikka.php?wakka=BinaryFormat

12

Chapter 4

Communication protocol

The CASIO fx-9860G can be connected with a computer or another compatible calculator. The calcula-
tor software allows Vle transmission, OS update, real-time screen picture transmission and many other
functions. The PC software FA-124 by CASIO gives access to some of these.

4.1 Transport protocol

Two interfaces can be used to connect to the calculator:

• A 3-pin serial interface

• A USB 1.1 interface

Mentioned 3-pin serial interface is a EIA232/RS232-like interface, with the voltage level +4.2V used
for logical 1, and 0V (GND) for logical 0. A voltage converter like the MAX232 chip is needed to use the
interface with an EIA232-compatible device. The connector used is a 3-wire 2.5mm minijack, and Rx and
Tx are the contacts near the tip. The cable is crossed so that Rx and Tx on one side is switched on the
other side. Default setting for the interface is 8-bit bytes and a baud rate of 9600 bps.

The calculator can be located on the USB bus by the product ID 0x6101 and the provider ID 0x07CF.
Some USB control messages must be sent to initiate the connection. Here is an example using libusb1:

1 int init_connection() {

2 char *buffer = calloc(0x29, sizeof(char));

3 usb_control_msg(usb_handle, 0x80, 0x6, 0x100, 0, buffer, 0x12, 200);

4 usb_control_msg(usb_handle, 0x80, 0x6, 0x200, 0, buffer, 0x29, 250);

5 usb_control_msg(usb_handle, 0x41, 0x1, 0x0, 0, buffer, 0x0, 250);

6 free(buffer);

7 return 0;

8 }

You should provide error checking of the calloc() and usb_control_msg() calls yourself.

4.2 Packets and packet Wow

The protocol uses packets for communication. Packets are structured as in table 4.1, the top of the table
indicates the beginning of the packet.

1http://libusb.sourceforge.net/

13

Table 4.1: Packet layout
Size Field name Description Values
1 b Type (T) The basic purpose of the packet 0x00 to 0x1F
2 b Subtype (ST) The speciVc function of the packet “00” to “57”
1 b Extended (EX) Decides if DS and D Velds follow ’0’ - no, ’1’ - yes
(4 b) Data size (DS) Size of D Veld “0000” to “FFFF”
(n b) Data (D) Additional data related to packet function
2 b Checksum (CS) Checksum for integrity check “00” to “FF”

The uppermost part of the table are the Velds transferred Vrst.

An extended packet has the EX Veld set to ’1’, and will also contain the DS and D Velds. The DS Veld
speciVes the size of the D Veld, in ASCII-hex format (see below).

There are some restrictions on the content of a packet:

• Numeric values (except for T Veld) are encoded as ASCII characters, in hexidecimal base. Charac-
ters ’0’→’9’ and ’A’→’F’ are valid. Indicated by double quotes, like “BEEF” where numeric values
are obvious, or by the term ASCII-hex.

• Bytes in the range 0x00→0x1F can not occur in the D Veld. Bytes with those values must be oUset
by 0x20 and preVxed with a 0x5C (’\’) byte. E.g. 0x0A (LF) becomes 0x5C2A. Any 0x5C bytes alone
must be sent as 0x5C5C.

Checksums are computed by summing individual bytes in the ST and following Velds, and then
adding 1 to its bitwise complement. The following example in C shows how to compute the checksum,
but the sum will have to be converted to ASCII-hex format before being used in a packet.

1 /* 'buffer' is a pointer to the packet structure with length 'length' */

2 int i;

3 char sum;

4 for (i = 1; i < length; i++) { /* skips T field */

5 sum += buffer[i];

6 }

7 sum = (~sum)+1;

4.2.1 Packet types (T)

Seven packet types are known, listed in table 4.2.

Table 4.2: Various packet types
T ’Name’ Description

0x01 Command Used to perform or request actions. ST Veld selects the action.
0x02 Data Carries ’raw’ data in the context of a command. E.g. Vle data.
0x03 Roleswap Causes devices to switch roles. Active becomes passive and vice versa.
0x05 Check Used to verify if the devices are still connected.
0x06 Ack Default response at successful packet reception.
0x15 Error Default response if problems occur.
0x18 Terminate Terminates communication

14

4.2.2 Flow patterns

A device can be either the primary (active) or secondary (passive) device on a link. (You can easily set
the calculator in passive mode by selecting “RECV” in the LINK program.) This decides which device has
the right to start sending commands. See table 4.3 for examples on Wow patterns. Some of the protocol
commands, like Vle transfers, exist in two forms; one that precedes the sending of data, the other type is
a request for the passive side to perform that command. When the request command is sent, the active
side sends the roleswap packet, and the previously passive side proceeds with the command that was
requested by the now passive side.

Table 4.3: Usual packet Wow patterns
Pattern Primary Secondary

Initialization
Check =⇒

⇐= Ack

(1) Single command
Command =⇒

⇐= Ack

(2) Command+data

Command =⇒
⇐= Ack

Data packet 1 =⇒
⇐= Ack

.
Data packet n =⇒

⇐= Ack

(3) Request 1

Request-command =⇒
⇐= Ack

Roleswap =⇒
⇐= Requested command

Ack =⇒
⇐= Roleswap

(4) Request 2

Request-command =⇒
⇐= Ack

Roleswap =⇒
⇐= Requested command

Ack =⇒
⇐= Data packet 1

Ack =⇒
.

⇐= Data packet n
Ack =⇒

⇐= Roleswap

Termination
Terminate =⇒

⇐= Ack
(End of communication)

4.2.3 Timeouts and transmission problems

If no response is returned on the initial connection check, communication should stop. The passive side
should close the interface if inactive for more than 6 minutes. This means that the active side must ’ping’

15

the passive with a check packet at least every 6 minutes during idle periods. If the time between bytes for
a packet is more than 2 seconds, it is considered invalid, and must be requested again.

Possible problems that can occur during transmission are:

• Corrupted data.

• “Deaf” passive side.

• “Deaf” active side.

Data corruption is easily detected by a bad checksum. Upon discovering this, the appropriate Error
packet is sent to request a retransmission. If no response packet to a sent command is received within 10
seconds, a check packet is sent. If the passive side receives the check packet, an error packet is returned as
a retransmission request, the active side resends the packet and communication continues. If no response
to the check packet is returned in 10 seconds, another one is sent. It must be answered within 10 seconds
before communication is ended.

4.3 The command packet

There are three groups of commands:

• System commands

• MCS (RAM Vle system) commands

• Flash Vle system commands

4.3.1 Command packet data Veld layout (D)

The D subVelds of a command packet are shown in table 4.4. You don’t have to include a D Veld in
commands that don’t use any of its Velds.

Table 4.4: Command packet subVelds
Size Field name Description Values
2 b Overwrite (OW) Mode of operation if a Vle exists. “00” to “02”
2 b Data type (DT) The data type Unknown, but likely ASCII-hex
8 b Filesize (FS) Size of Vle being transferred ASCII-hex
2 b SD1 Size of D1 ASCII-hex
2 b SD2
2 b SD3
2 b SD4
2 b SD5
2 b SD6 Size of D6 ASCII-hex

(SD1 b) D1 First command argument Veld
(SD2 b) D2 . . .
(SD3 b) D3 . . .
(SD4 b) D4 . . .
(SD5 b) D5 . . .
(SD6 b) D6 Last commandargument Veld

Field OW speciVes how to act in cases where a Vle exists:

16

• “00” Request user conVrmation before overwriting.

• “01” Terminate if Vle already exists.

• “02” Force overwrite.

4.3.2 System command reference

The number in parentheses indicate the communication pattern it follows (see table 4.3).

“00”: Restart/reset (1)

Resets or restarts the equipment.

“01”: Get device info (1)

Returns device info in an extended Ack. See section ??.

“02”: Set link settings (1)

D1 Baud rate as ASCII string: e.g. “9600” or “19200”.
D2 Parity: “ODD”, “EVEN” or “NONE”.
D3 Stop bits: “1” or “2”.

4.3.3 MCS command reference

Refer to table ??, and remember that they operate on the RAM Vlesystem, and not the Wash storage
memory.

4.3.4 Flash command reference

Flash commands operate on the Wash memory Vle system (device name “Ws0”). Usage of these operations
on the SD card (device name “crd0”) has not been tested. See table ?? for the listing.

4.4 The data packet

This packet type is used for transfer of “raw” data. The maximum safe amount of data transmitted
with a data packet is 256 bytes. Because some bytes have to be escaped, 512 bytes is the maximum
transmittable amount. Keep the data packets ST Veld identical to the ST Veld of the command that the data
is transmitted in context with. The D Veld layout is shown in the following table, where the uppermost
parts of the table are the Velds that are transferred Vrst:

Size Field name Description Values
4 b TN Total number of data packets in transmission “0001”-“FFFF”
4 b CN Current packet number “0001”-“FFFF”

0-512 b DD The data

4.5 The roleswap packet

Roleswapping can only be done in one way, so its subtype will always be “00”. Its usage as shown in
4.2.2, is to transfer control to the secondary side once a command has been requested with one of the
request-commands.

17

T ST EX CS
Hex 0x03 0x30 0x30 0x30 0x37 0x30
Char . ’0’ ’0’ ’0’ ’7’ ’0’

4.6 The check packet

The two diUerent types have the subtypes “00” and “01”. The Vrst is always used on start of communi-
cation (see section 4.2.2 for typical packet Wow), the second type is the type used during communication,
on timeouts and similar occasions where it is necessary to verify the connection.

4.7 The ack packet

The default ack response uses the subtype “00”. The subtype “01” is used to conVrm a request for Vle
overwriting. The last ack type “02”, is the extended ack, used to transmit varying information about the
calculator as a response to command “01” - “Get device info”. Only the extended ack packet uses the
packets D Veld, its layout is seen in table ??. Skipped Velds contain 0xFF bytes.

4.8 The error packet

The error packet is used to indicate problems during communication.
ST Description
0x00 Default
0x01 Resend request
0x02 Overwrite request if Vle exists
0x03 “No”-response to an overwrite request
0x04 Overwrite impossible
0x05 Memory is full

4.9 The terminate packet

This packet is used to reset any active commands or transfers, and must be respected by both the primary
and secondary side.

ST Description
0x00 Default
0x01 User requested termination
0x02 Termination caused by timeouts
0x03 Termination on overwrite request

4.10 Packet and Wow examples

All examples will be given in hexadecimal base with spaces separating the Velds. The left part is the part
of the packet that is sent Vrst. As a reminder, the common Velds for packets are; T, ST, EX (DS D) and CS.
We assume the PC is the primary side and the calculator is the secondary.

Packet data is either shown “raw”, like 0x18, or in ASCII form, like Somedata .

18

4.10.1 Initialization

Pri. Sec.
=⇒ 0x05 00 0 70 =⇒
⇐= 0x06 00 0 70 ⇐=

This is a connection check. A check packet is sent with subtype “00”, being typical for start of com-
munication. It is answered with an ack packet. Note that the checksum for any packet with ST and EX
Velds ’0’-ed, will alway be 0x3730, or the hex value 0x70 in ASCII form.

Pri. Sec.
=⇒ 0x01 01 0 6F =⇒
⇐= 0x06 02 1 00A4 omitted D-field E3 ⇐=

The Vrst command is the system command for requesting device information. Our secondary side
responds with an extended ack packet. This packet includes a DS and D-Velds as indicated by the EX Veld
being set to ’1’. If we read the 4 bytes of the DS Veld as a string, it will read “00A4”. 0x00A4 = 168, the
size of the following D-Veld. The content of this Veld is described in table ??.

4.10.2 Existing Vle situations

Command packets have an OW-Veld that dictates how the passive side should act if a Vle transmitted
already exists. It is also possible for the primary side to be notiVed if a Vle exists before deciding to
overwrite it, skip the Vle transfer or terminating communication. This mode of operation is the default
and is used when OW-Veld is set to “00”.

Pri. Sec.

=⇒ 0x01 45 1 0024 00 00 00000008
=⇒

00 08 00 00 04 00 FILENAME fls0 56

⇐= 0x15 02 0 6E ⇐=

A Wash Vle transfer is initiated with a Vle named “FILENAME”, and the OW-Veld set to the default
“00”. Because this Vle already exists for this example, the secondary side responds with an error packet
with a subtype indicating that it is an overwrite request. From this situation, the communication can
continue in three diUerent ways:

Overwrite accept

Pri. Sec.
=⇒ 0x06 01 0 6F =⇒
⇐= 0x06 00 0 70 ⇐=

=⇒ 0x02 45 1 0010 0001 0001 data1234 BF =⇒
⇐= 0x06 00 0 70 ⇐=

=⇒ Proceed with next command . . . =⇒

In this example, we accept the overwrite request by sending an Ack with ST of “01”. After this has
been acknowledged by the secondary side, we can continue to transmit the data packet(s) related to the
original command. The number of data packets depends on the size of the Vle - only one is needed for
this example.

19

Overwrite decline

Pri. Sec.
=⇒ 0x15 03 0 6D =⇒
⇐= 0x06 00 0 70 ⇐=

=⇒ Proceed with next command . . . =⇒

Terminate connection

Pri. Sec.
=⇒ 0x18 03 0 6D =⇒
⇐= 0x06 00 0 70 ⇐=

Communication end

4.11 Screen streaming

It is possible to set up the calculator to output the screen image continually. This is useful for demonstra-
tion purposes. The protocol for streaming does not require acknowledgement of received packets. Once
the calculator is set in the streaming mode (OHP), it will transmit bitmap images in the following format:

Size Contents
6 Type speciVer and image format: 0x0B TYP01

1024 Picture data, one row at the time from the top, from left to right. (like VRAM)
2 Checksum of the picture data, calculation shown earlier.

The only purpose of the checksum is to detect and discard potentially bad frames. No retransmission
functionality is available with this protocol. The images are not output at a onstant rate, but are instead
triggered by display operations that programs perform. This means that a frame ’in transit’ can be inter-
rupted by a new transmission of a frame. See the source code of the program screenstreamer2 for an
example implementation.

2http://sourceforge.net/apps/trac/fxsdk/wiki/screenstreamer

20

http://sourceforge.net/apps/trac/fxsdk/wiki/screenstreamer

Table 4.5: Overview of MCS commands

ST Name (pattern)
Field Description

“20” Create directory (1)
D1 The name of the directory

“21” Delete directory (1)
D1 The name of the directory

“22” Rename directory (1)
D1 The name of the directory
D2 New name for the directory

“23” Change working directory (1)
D1 The name of the directory

“24” File transfer request (4)
DT MCS data type
D1 The name of the directory
D2 The name of the Vle
D3 Group name

“25” File transfer (3)
OW As described in section 4.3.1
DT MCS data type
FS Filesize
D1 The name of the directory
D2 The name of the Vle
D3 Group name

“26” Delete Vle (1)
DT MCS data type
FS Filesize
D1 The name of the directory
D2 The name of the Vle
D3 Group name

“27” Rename Vle (1)
DT MCS data type
D1 The name of the directory
D2 The name of the Vle
D2 New name for the Vle

“28” Copy Vle (1)
DT MCS data type
D1 The name of the directory
D2 The name of the Vle
D3 Name for the new directory
D4 Name for the new Vle

“29” File transfer all request (4*)
“2A” Unknown - reset MCS? (1)
“2B” Capacity transmit request (3)
“2C” Capacity transmit (1)

FS The free capacity
“2D” File info transfer all request (3*)
“2E” File info transfer (1)

DT MCS data type
FS Filesize
D1 The name of the directory
D2 The name of the Vle
D3 Group name

“2F” RAM image transfer request (3)
“30” RAM image transfer (2)
“31” Setup entry transfer request (3)

D1 Name of setup entry
“32” Setup entry transfer (1)

D1 Name of setup entry
D2 Data (ASCII-hex)

“33” Setup entry transfer all request* (3)

Patterns marked “*” mean that several commands or command+data can be expected before Vnal
roleswap.

21

Table 4.6: Overview of Wash commands

ST Name (pattern)
Field Description

“40” Created directory (1)
D1 The name of the directory
D5 The device name

“41” Delete directory (1)
D1 The name of the directory
D5 The device name

“42” Rename directory (1)
D1 The name of the directory
D2 New name for the directory
D5 The device name

“43” Change working directory (1)
D1 The name of the directory
D5 The device name

“44” File transfer request (4)
D1 The name of the directory
D2 The name of the Vle
D5 The device name

“45” File transfer (2)
OW As described in section 4.3.1
FS Filesize
D1 The name of the directory
D2 The name of the Vle
D5 The device name

“46” Delete Vle (1)
D1 The name of the directory
D2 The name of the Vle
D5 The device name

“47” Rename Vle (1)
D1 The name of the directory
D2 The name of the Vle
D3 New name for the Vle
D5 The device name

“48” Copy Vle (1)
D1 The name of the directory
D2 The name of the Vle
D3 Name for the new directory
D4 Name for the new Vle
D5 The device name

“49” File transfer all request (4*)
D5 The device name

“4A” Unknown - reset Wash? (1)
“4B” Capacity transmit request (3)

D5 The device name
“4C” Capacity transmit (1)

FS The free capacity
D5 The device name

“4D” File info transfer all request (3*)
D5 The device name

“4E” File info transfer (1)
FS Filesize
D1 The name of the directory
D2 The name of the Vle
D5 The device name

“4F” Flash image transfer request (4)
D5 The device name

“50” Flash image transfer (2)
D5 The device name

“51” Optimize Vlesystem (1)
D5 The device name

“52” OS update related (?)
“53” OS update related (?)
“54” OS update related (?)
“55” OS update related (?)
“56” OS update related (?)
“57” OS update related (?)

Patterns marked “*” mean that several commands or command+data can be expected before Vnal
roleswap.

22

Table 4.7: Layout of D Veld in extended ack packet
Size Description Format
8 b Hardware identiVer ASCII string
16 b Processor identiVer ASCII string
8 b Preprogrammed ROM capacity ASCII-hex (in k’s)
8 b Flash ROM capacity ASCII-hex (in k’s)
8 b RAM capacity ASCII-hex (in k’s)
16 b Preprogrammed ROM version “xx.xx.xx” + type
16 b Boot code version “xx.xx.xx” + type
8 b Boot code oUset ASCII-hex
8 b Boot code size ASCII-hex (in k’s)
16 b OS code version “xx.xx.xx” + type
8 b OS code oUset ASCII-hex
8 b OS code size ASCII-hex (in k’s)
4 b Protocol version “xx.x”
16 b Product ID ASCII string
16 b Name set by user in SYSTEM ASCII string

The uppermost part of the table are the Velds transferred Vrst.

23

24

Chapter 5

Application programming interface

This chapter is meant to be a reference. See section 3.1 for information on calling convention etc. None
of the function names presented are found anywhere in the software, but we consider them to be good
and suggest that you use them.

5.1 Cursor control

Ability to move the cursor is available in the oXcial SDK, by the locate() function. More advanced
functionality exists however, like cursor Washing with the cursor styles shown in Figure ??.

Figure 5.1: The diUerent cursor Washing styles

Change note: As of the arrival of OS 2.0, the system calls 0x139 and 0x13A did not work as expected.
They have therefore been replaced with calls in the 0x800-range, which also work in the old versions of
the OS.

0x138: Set cursor position

Synopsis: int Cursor_SetPosition(char column, char row);

Description: Moves the cursor to the given position, where column is in the range [0,20] and row is
in the range [0,7]. The oXcial SDK function locate() is a wrapper for this function.
Returns: 1 on success, 0 if an argument is out of range

0x80E: Get cursor Wash style

Synopsis: int Cursor_GetFlashStyle();

Description: Returns current Wash style.
Returns: The current Wash style.

0x811: Enable cursor Washing

Synopsis: void Cursor_EnableFlash(char flash_style);

25

Description: Enables cursor Washing, and sets the mode to the style given in Wash_style. The diUerent
values are seen in Vgure ??.
Returns: Flash mode.

0x812: Disable cursor Wash

Synopsis: void Cursor_DisableFlash();

Description: Equivalent to calling Cursor_SetFlashMode(0);.
Returns: (void)

26

5.2 Text printing

A varied set of text printing functions are available in the oXcial SDK. They are all diUerent paths
that end up with one or multiple calls to the core printing function named PrintXY(). The function
dependency graph is shown below in Vgure ??. Note that the Print() function for example will end
up calling PrintC() repeatedly for each character in a string. However, the functions below such as
PrintAtCursor() are well capable of printing strings and are not limited to just printing single charac-
ters. This is essentially like writing a custom printing function on a PC that splits a string in characters,
and calls printf() for each of the characters, forgetting that printf() can handle strings as well. Con-
sidering this, you could make your Add-In more resource eUective by calling PrintAtCursor() instead
of Print().

Print()

PrintGeneric()

PrintRev() PrintLine() PrintRLine()

PrintC()

PrintAtCursor()

PrintRevC()

PrintXY()

VRAM

PrintAtLocation()

Set Cursor

Calculate (X, Y), move cursor

Figure 5.2: Print function dependency graph. Blue functions are in the SDK.

0x816: Print a string at the cursor

Synopsis: void Print_Generic(int mode, char *string, int maxcol)

Description: string is a pointer to the string. mode can be one of the following:
Value Description
0 Ordinary Print() behavior. Value of maxcol is discarded (defaults to 21).
1 PrintLine() behavior. Prints until the speciVed column maxcol is reached.

0xA PrintRev() behavior. Value of maxcol is discarded (defaults to 21).
0xB PrintRLine() behavior. Prints until the speciVed column maxcol is reached.

Returns: (void)

0x13C: Print a string at the cursor

Synopsis: void Print_AtCursor(char *string, int type)

Description: Works like Print() if type is 0, but if type is 1 the text is reversed.
Returns: (void)

27

0x15D: Print a string at given location

Synopsis: void Print_AtLocation(char *string, int column, int row)

Description: Works like Print(), but the provided column and row in the ranges [0,20] and [0,7]
are used to place the cursor before printing.
Returns: (void)

28

5.3 Keyboard interface

Read keys are initially represented by “matrix codes”, indicating their physical connectivity. Key place-
ment on the fx-9860G Slim is diUerent than the other fx-9860G variants, which means that many of its
keys have a diUerent matrix code than earlier models. See tables ?? and ??. When a key is pressed, an
interrupt is triggered. Its interrupt handler then disables further keyboard interrupts if a key is detected.
A matrix code of the detected key is stored in the matrix code buUer. The repeat timer (timer 2) is started
and its handler checks if the key is being held down. If no keys are pressed after this, the repeat timer is
stopped and interrupts are re-enabled.

Table 5.1: Matrix codes for fx-9860G variations
07__ 06__ 05__ 04__ 03__ 02__ 01__ Code

DIAG OSUPD __0C
__0B

F1 F2 F3 F4 F5 F6 __0A
SHIFT OPTN VARS MENU LEFT UP __09
ALPHA x2 xn EXIT DOWN RIGHT __08
XTT log ln sin cos tan __07
ab/c F<->D () , –> __06
7 8 9 DEL __05
4 5 6 * div __04
1 2 3 + - __03
0 . EXP (-) EXE __02

AC __01

Table 5.2: Matrix codes for fx-9860G Slim
07__ 06__ 05__ 04__ 03__ 02__ 01__ Code

DIAG OSUPD __0C
__0B

MENU XTT SHIFT ALPHA __0A
F1 log x2 xn LEFT UP __09
F2 ln , OPTN DOWN RIGHT __08
F3 sin –> VARS HELP LIGHT __07
F4 cos 7 4 1 0 __06
F5 tan 8 5 2 . __05
F6 ab/c 9 6 3 EXP __04

EXIT F<->D DEL * + (-) __03
() div EXE - __02

AC __01

The matrix code buUer is a FIFO that can hold 16 matrix codes. It is comprised of two arrays that
hold the row and column value separately (two char arrays).

A separate key code buUer can hold 16 key codes (type short). These codes are independent of the
keyboard layout.

The following functions are provided for experimental purposes.

29

0x247: Get a keypress from the keyboard

Synopsis: int Kbd_GetKeyWait(int *col,int *row,int waittype,int timeout,int menu,ushort

*keycode)

Description: Reads a key from the keyboard. col and row will contain the column and row of the
key that may be pressed. waittype speciVes how to wait for a key according to the following table:
Macro Value Description
KEYWAIT_HALTON_TIMEROFF 0 Only return when a key has been pressed.
KEYWAIT_HALTOFF_TIMEROFF 1 Return immediately.
KEYWAIT_HALTON_TIMERON 2 Return when a key has been pressed or after a speciVed timeout.

A timeout is speciVed with timeout, in seconds. The maximum timeout period is one hour, or
[0,3600] seconds. Whenever waittype is set to KEYWAIT_HALTOFF_TIMEROFF, the usual MENU key
function is not provided. That is, the program won’t suspend and return to the menu, but will instead
return the key code for the menu key. In the other modes of waiting, this behavior can be forced by
setting menu to a nonzero value. If you want the normal behavior of the MENU key, you must set
menu to zero and not use the KEYWAIT_HALTOFF_TIMEROFF waiting mode.
Returns: An integer;

Macro Value Description
KEYREP_NOEVENT 0 No keypress was detected
KEYREP_KEYEVENT 1 Key was detected
KEYREP_TIMEREVENT 2 A timeout occured when waiting for key

30

5.4 Display buUer management

CASIOs SDK includes the functions SaveDisp() and RestoreDisp() to allow storage and recall of
the screen buUer. Three buUers or “pages” of 1k were available for this. Some functions were found that
provide more power than the original ones. Keep in mind that pageID is not the same number used in the
SDK functions. Some pages appear to be used by functionality in other programs, but using them in you
own code won’t cause problems.

pageID SDK ...Disp() SDK disp.h macro def
1 5 SAVEDISP_PAGE2

2 6 SAVEDISP_PAGE3

3 1 SAVEDISP_PAGE1

7 4 not deVned
8 3 not deVned

0x135: Get pointer to VRAM

Synopsis: char *Disp_GetVRAMPtr(void);

Description: Returns a pointer to the VRAM. This is important to use if your program writes directly
to the VRAM, because the VRAM location changes between OS versions.
Returns: The pointer.

0x158: Core display buUer operations

Synopsis: char *Disp_Manage(int pageID, int action);

Description: If action is 0, restore VRAM to the data in the given pageID. If action is 1, save VRAM
data to the given pageID. If action is 2, return a pointer to the page memory.
Returns: If action is 2, and a valid pageID is provided, a pointer is returned. Other cases return 0.

Three wrappers for Disp_Manage() exists, that could make your code more readable:
Syscall Prototype Equivalent call
0x153 int Disp_Save(int pageID); Disp_Manage(pageID, 1);

0x154 int Disp_Restore(int pageID); Disp_Manage(pageID, 0);

0x155 char *Disp_GetPtr(int pageID); Disp_Manage(pageID, 2);

31

5.5 Integrated applications

It is possible to execute the intergrated applications through system calls. How to return from them to
your addin code has not yet been Vgured out, if possible at all.

Syscall Function Application
0x985 App_CONICS(...); CONICS
0x998 App_DYNA(...); DYNA
0x9DF App_EACT(...); e·ACT
0x9E2 App_EQUA(...); EQUA
0x9F5 App_PRGM(...); PRGM
0xA00 App_FINANCE(...); TVM
0xA48 App_GRAPH(...); GRAPH
0xA4A App_LINK(...); LINK
0xA6B App_MEMORY(...); MEMORY
0xA75 App_RECUR(...); RECUR
0xAAE App_RUNMAT(...); RUN·MAT
0xAC6 App_STAT(...); STAT
0xAC8 App_SYSTEM(...); SYSTEM

0x005: Refresh cached Add-In application table

Synopsis: int App_RefreshAddinTable()

Description: Scans the storage memory for Add-Ins, and updates the registry. This is required if you
plan to run something with call 0x49A after you have copied an Add-In to the storage memory.
Returns: 0

0x46B: Get count of integrated applications.

Synopsis: int App_GetIntegratedCount()

Description: Returns the number of integrated applications.
Returns: The number.

0x49A: Execute any application

Synopsis: int App_Run(int R4, int R4, int index, int allow_recursion)

Description: Executes any application provided its index. The index range for the integrated applica-
tions, spans from 0 to (App_GetintegratedCount() - 1), while eventual add-in applacations follow.
To allow an add-in application to run itself, make allow_recursion nonzero.
Returns: Depends on application.

Execute speciVc integrated application

Synopsis: App_APPNAME (int runMode, unsigned short stripNum);

Description: Refer to section 3.2 on how to use the applications. The parameters are assumed to
work the same way as in the oXcial SDK. In cases where runMode is 1, the application is executed
from the main menu. When runMode is 0, the application was run as a strip in an e·Activity and
stripNum indicates the strip number. How applications’ e·Activity strips work is currently unknown,
but running the application with runMode set to 1 works.

32

5.6 Serial interface access

The OS functions provide buUered access to the CPU’s serial IO unit. The receive buUer holds 1kb, while
the transmit buUer holds 256b.

0x40C: Read byte

Synopsis: int Serial_ReadByte(unsigned char *dest);

Description: Fetches one byte from the receive buUer to the character pointed to by dest
Returns: 0 on success, 1 if receive buUer is empty or 3 if device is not open.

0x40D: Read bytes

Synopsis: int Serial_ReadBytes(unsigned char dest, int max, short *size);

Description: Fetches up to max bytes from the character buUer into the buUer pointed to by dest.
The number of bytes actually read from the buUer are stored at size.
Returns: 0 on success, 1 if receive buUer is empty or 3 if device is not open.

0x40E: Write byte

Synopsis: int Serial_WriteByte(unsigned char byte);

Description: Writes byte to the transmit buUer.
Returns: 0.

0x40F: Write bytes

Synopsis: int Serial_WriteBytes(unsigned char src, int size);

Description: Writes size bytes from the buUer at src to the transmit buUer, if there is room for it.
Returns: 0 on success, 2 if buUer is too full or 3 if the device is not open.

0x410: Transmit byte (unbuUered)

Synopsis: int Serial_WriteByte(unsigned char byte);

Description: Puts byte into the serial FIFO, if it is empty.
Returns: 0 on success, 1 if the FIFO is not empty or 3 if the device is not open.

0x411: Get size of receive buUer

Synopsis: int Serial_GetRxBufferSize(void);

Description: Returns the current size of the data in the receive buUer.
Returns: The current size.

0x412: Get free capacity of transmit buUer

Synopsis: int Serial_GetTxBufferFreeCapacity

Description: Returns the remaining capacity of the transmit buUer.
33

Returns: The capacity.

0x413: Clear receive buUer

Synopsis: int Serial_ClearReceiveBuffer(void);

Description: Clears the receive buUer of the opened device.
Returns: 0 on success or 3 if the device is not open.

0x414: Clear transmit buUer

Synopsis: int Serial_ClearTransmitBuffer(void);

Description: Clears the transmit buUer.
Returns: 0.

0x418: Open the serial link

Synopsis: int Serial_Open(unsigned char *conf);

Description: Opens and prepares the serial interface for communication. The provided conf is a
pointer to an array, consisting of Vve bytes describing the interface settings:

Table 5.3: Parameters for Serial_Open().
Setting: conf[0] conf[1] conf[2] conf[3] conf[4] conf[5]

Purpose: ? Baud rate Parity Byte length Stop bits ?

Se
tt
in
g
va
lu
e

0 (default) 300 none 8 bit one (default)
1 600 odd 7 bit two
2 1200 even
3 2400
4 4800
5 9600
6 19200
7 38400
8 57600
9 115200

Returns: The function returns 0 on success, 3 if the interface is already opened, and 4 if
settings[0] is nonzero.

0x419: Close the serial link

Synopsis: int Serial_Close(int mode);

Description: Clears transmission buUers, and disables the serial link function. If mode is 1, the in-
terface is disabled regardless of waiting (not transmitted) data. If mode is not 1, this function will not
close the interface if data is waiting, and will return 5.
Returns: 0 on success (link closed) or 5 if there is data waiting to be transmitted (link not closed).

0x422: Peek in receive buUer

Synopsis: int Serial_Peek(int index, unsigned char *dest);

34

Description: Copies the byte at index in the receive buUer to the character pointed to by dest if it is
within the size of the receive buUer.
Returns: 0 on success, 1 if index does not point to an active byte in the buUer or 3 if the device is not
open.

0x425: Get link status

Synopsis: int Serial_IsOpen(void);

Description: Gets the status of the serial link.
Returns: 1 if device is open or 3 if closed.

35

5.6.1 RTC operation

The SH7705 includes a real time clock which keeps time in hours, minutes, seconds and milliseconds
(64Hz resolution). The OS provides a few functions for accessing the RTC module. Values in the RTC
registers are BCD-coded, meaning each nibble (4 bits) has a range of 0-9 instead of the usual 0-15.

0x039: Reset RTC

Synopsis: void RTC_Reset(uint mode)

Description: If mode is zero, only the RTC “circuitry” is initialized (by setting RESET, START and
RTCEN bits in RCR2). This is probably not what you want. Provide a nonzero mode to also reset the
hours, minutes, seconds etc. registers.
Returns: (void)

0x03A: Get RTC time

Synopsis: void RTC_GetTime(uint *hours, uint *mins, uint *secs, uint *msecs)

Description: Fills the provided integers with the correct time. The RTC registers are in BCD format,
and are not converted back to ’native’ format. That means you will for example get 0x59 in mins if the
clock is at 59 minutes.
Returns: (void)

0x03B: Get 64Hz tick

Synopsis: int RTC_GetTicks()

Description: Returns a counter that is incremented every 64Hz tick (every 15.625 ms).
Returns: The counter.

0x03C: Check if time has elapsed

Synopsis: int RTC_HasElapsed_ms(int start_value, int duration)

Description: start_value holds a timestamp of the starting point. Use RTC_GetTicks() to get this
value. duration holds a time interval in milliseconds. This function returns immediately.
Returns: 0 if the duration has not elapsed after the time that start_value represents. 1 if the duration
has elapsed.

0x23E: Set RTC date and time

Synopsis: void RTC_SetDateTime(uchar **data)

Description: Sets the RTC to the values given in data. data is an array of 7 pointers to the BCD
encoded date and time details. The order in the array is: YYYY, unused, MM, DD, hh, mm, ss.

As an example, if we would want to set the RTC to 2009-07-04 12:00:00 we would do:
unsigned char *data[7] = {{0x20,0x09}, {0}, {0x07}, {0x04}, {0x12},{0},{0}};
Returns: (void)

36

5.7 Software timer functionality

The OS includes ten system-wide timer slots which can be used to execute code after a set interval.
The following functions provide ’system-level’ access to these timers. Each timer slot is associated with a
TimerIDwith a value from 1 to 10. Slot 1 to 5 are used for system purposes, while slot 6 to 10 are allocated
for application use through SetTimer() and KillTimer(). These user timers will be stopped on addin
exit by cleanup code included by the oXcial SDK.

0x118: Install timer

Synopsis: int Timer_Install(int TimerID, void (*handler)(void), int delay);

Description: Installs a timer to the slot speciVed by TimerID. If TimerID is zero, the Vrst unused
timer slot will be used. handler is the function that is set to be called when the timer expires. delay sets
the duration of the delay, in multiples of 25ms.
Returns: Negative on failure or the newly installed TimerID on success.

0x119: Uninstall timer

Synopsis: int Timer_Uninstall(int TimerID);

Description: Frees the selected TimerID.

0x11A: Start timer

Synopsis: int Timer_Start(int TimerID);

Description: Resets and runs the timer installed at TimerID.

0x11A: Stop timer

Synopsis: int Timer_Stop(int TimerID);

Description: Resets and stops the timer installed at TimerID.

37

5.8 Setup variable access

Setup is the name of a simple, global array and the functions used to access it. It has room for 100 entries
of size char. Variables in Setup are used by several of the preinstalled applications, known entries are
listed in table ??. Non-listed entries may be “occupied”, but their purpose is unknown. The current list of
variables is valid for OS version 1.02, but may be changed in later versions.

0x4DC: Read a Setup variable

Synopsis: char Setup_GetEntry(unsigned int index);

Description: Setup_GetEntry() is used to retreive a Setup variable with the given index.
Returns: The data at the given index.

0x4DD: Set a Setup variable

Synopsis: char *Setup_SetEntry(unsigned int index, char value);

Description: The function is used to set the speciVed Setup variable at index, to the given value
Returns: A pointer to the base of the Setup table

0x4DE: Get the address of a Setup variable

Synopsis: char *Setup_GetEntryPtr(unsigned int index);

Description: Returns a pointer to the Setup variable given by index.
Returns: The pointer to the Setup variable

38

5.9 Alpha variable access

The Alpha variables are commonly used in the built-in programs to store Woating point values or frac-
tions. Available Alpha variables are A-Z, θ, r and Ans. In functions where the variable has to be speciVed,
variables A-Z are represented by their ASCII equivalent (0x41-0x5A). The variables θ, r and Ans have the
character codes 0xCE, 0xCD and 0xC0.

0x4DF: Read an Alpha variable

Synopsis: char *Alpha_GetData(char variable, char *dest);

Description: Writes the raw data of the speciVed Alpha variable to the character array pointed to
by dest. That character array must have room for 24 bytes.
Returns: The passed pointer, dest.

0x4E0: Set an Alpha variable

Synopsis: char Alpha_SetData(char variable, char *src);

Description: Writes the raw data from the array pointed to by src to the Alpha variable.
Returns: If variable is a valid Alpha variable, 0 is returned. If invalid, variable is returned.

0x4E1: Clear all alpha variables

Synopsis: void Alpha_ClearAlpha(void);

Description: Clears alpha variables (except Ans).
Returns: (void)

0x869: Clear all variables

Synopsis: void Alpha_ClearAll(void);

Description: Clears all alpha variables (including Ans).
Returns: (void)

39

5.10 Multibyte string manipulation

To support a large character set like the fx-9860G, multibyte characters are used. The bytes 0x7F, 0xF7,
0xF9, 0xE5, 0xE6 and 0xE7 are lead units, specifying which “character table” to use for the byte that
follows it. Most plain ASCII strings won’t need special care, but if you want to use the extended character
sets, the multibyte-speciVc functions can be useful.

0x531: Check for lead character

Synopsis: int MB_IsLead(char character);

Description: Compares provided character with the predeVned multibyte lead bytes 0xE5, 0xE6,
0xE7, 0xF7 or 0xF9.
Returns: 1 if character is a lead character. 0 otherwise.

0x533: Get string element count

Synopsis: int MB_ElementCount(char *str);

Description: Counts the number of elements in the string pointed to by str. A lead byte followed
by character byte is considered one element. For example the string [0xF7 0x44][0x36][0x55][0xE8
0x32][0x00], will have 4 elements.
Returns: The number of elements, not counting terminating 0.

0x534: Get string byte count

Synopsis: int MB_ByteCount(char *str);

Description: Counts the number of bytes in the string pointed to by str. Lead bytes are counted.
Returns: The number of bytes, not counting terminating 0.

0x536: Concatenate strings

Synopsis: char *MB_strcat(char *dest, char *src);

Description: Operates like a normal strcat().
Returns: dest

0x537: Concatenate strings, limited

Synopsis: char *MB_strncat(char *dest, char *src, int bytes);

Description: Operates like a normal strncat(). Note that the bytes limit is a hard limit, and multi-
byte elements can be “split”.
Returns: src

0x538: Copy string

Synopsis: char *MB_strcpy(char *dest, char *src);

Description: Operates like a normal strcpy().
Returns: dest

40

0x53C: Get pointer to second string element

Synopsis: char *MB_GetSecondElemPtr(char *str);

Description: Returns a pointer to the second element in the string at str.
Returns: The pointer.

0x53D: Get Vrst string element data

Synopsis: short int MB_GetElement(char *str);

Description: Retreives the Vrst element in the string at str.
Returns: The Vrst element, e.g: 0x0041 or 0xF761.

41

5.11 libc standard functions

These functions correspond to their standard C functions with the same name, and are therefore not doc-
umented in depth. System calls marked “SDK” are included as system calls in the oXcial SDK. If the func-
tions not marked SDK are used, the SDK will link with object code from the Vle fx9860G_library.lib.
This is often a waste of space because the same function could be accessible as a system call. In some
cases is the system call code more optimized than the code linked in by the SDK.

Number Name SDK-syscall
0xACC free() X
0xACD malloc() X
0xACE memcmp()

0xACF memcpy()

0xAD0 memset()

0xAD4 strcat()

0xAD5 strcmp()

0xAD6 strlen()

0xAD7 strncat()

0xAD8 strncmp()

0xE6B calloc() X
0xE6C memmove()

0xE6D realloc() X

42

Entry. Name (title) Default Other values
0x13 Angle 1: Radians 0: Degrees, 2: gradians
0x14* Shift/alpha status 0: Both oU 1: Shift on, 4: alpha on, 0x84: both on
0x15* INS/overwrite status 2: Insert 1: Overwrite
0x17 Mode 0: Comp 9: Dec, 0xF: Hex, 1: Bin, 7: Oct
0x18 Functype 0: Y = 1: r=, 2: Param, 3: X=c, 4: Y >

5: Y <, 6: Y≥, 7: Y≤
0x19 Draw Type 0: Con 1: Plot
0x1A Derivative 1: OU 0: On
0x1B Coord 0: On 1: OU
0x1C Grid 1: OU 0: On
0x1D Axes 0: On 1: OU
0x1E Label 1: OU 0: On
0x20 Stat Wind 0: Auto 1: Manual
0x21 Graph Func 0: On 1: OU
0x22 Dual Screen 3: OU ?
0x23 Simul Graph 1: OU 0: On
0x24 Dynamic Type 1: Stop 0: Cont
0x25 SigmaDisplay (Σ Display) 1: OU 0: On
0x26 Slope 1: OU 0: On
0x27 Payment 1: End 0: Bgn
0x28 Date Mode 0: 365 1: 360
0x29 Answer Type 0: Real 1: Complex
0x2A Complex Mode 0: Real 1: a+bi, 2: r<T
0x2B Display 0: Norm1 0x10: Norm2
0x2B Display 0: Norm1 0x30..0x39: Sci0..Sci9

0x20..0x29: Fix0..Fix9
Bit 0x80: “/E” mode

0x2C Background 0: None 1..20: Pict1..Pict20
0x2D Resid List 0: None 1..26: List1..List26
0x2E List File 1: File1 02..06: File2..File6
0x2F Variable 0: Range 01..26: List1..List26
0x30* Recur Type ? ?
0x31 Recur Dual (Dual Screen) 1: OU 2: T+G
0x4E Auto Calc 0: On 1: OU
0x4F Show Sell (Show Cell) 0: Formula 1: Value
0x50 Move 0: Lower 1: Right
0x51 Sub Name 0: On 1: OU
0x53 Input Mode 1: Linear 0: Math
0x54 Locus 1: OU 0: On
0x55 Y=Draw Speed 0: Norm 1: High
0x56 Sketch Line 0: Normal 1: Thick, 2: Broken, 3: Dot
0x57 Frac Result 0: d/c 1: a + b/c

Entries marked with a * are not found in the global Setup editor.

43

44

Changelog

Revision 1→2:

Additions

This chapter.
Missing table (??) of existing setup entries.
API call 0x005, App_RefreshAddinTable().
API call 0x46B, App_GetIntegratedCount().
API call 0x49A, App_Run().
API call 0x869, Alpha_ClearAll().
API section ??, on key and keyboard handling.
API section ??, on multibyte string manipulation.
API section ??, on display buUer management.
API section ??, for text printing functions.
API section ??, for manipulating system timers.
Protocol section ??, on streaming screen images from the calculator.

Other modiVcations

API call 0x4E1, renamed: Alpha_ClearAll()→Alpha_ClearAlpha()
API call 0x812, renamed: Cursor_SetFlashOff()�Cursor_DisableFlash()
API calls 0x137 & 0x139 replaced with 0x80E & 0x811 (Cursor_GetFlashStyle(), Cursor_EnableFlash().
Included keyboard info in the hardware chapter (2).

45

	1 Introduction
	2 Hardware
	2.1 Components and features
	2.2 Input hardware

	3 Software
	3.1 System call table
	3.2 Applications
	3.3 File formats

	4 Communication protocol
	4.1 Transport protocol
	4.2 Packets and packet flow
	4.3 The command packet

