
A Performance Evaluation of Unikernels∗

Ian Briggs, Matt Day, Yuankai Guo, Peter Marheine, Eric Eide†

School of Computing, University of Utah

Abstract
The unikernel architectural model is a relatively recent

development, adopted by several new computing plat-
forms, which claims improved performance in cloud ap-
plications by eliminating unnecessary software compo-
nents from virtual machines. To validate these published
claims and explore the suitability of two existing uniker-
nel implementations, Mirage OS and OSv, we present a
set of realistic macrobenchmarks, using established net-
work performance measurement tools, that compare the
performance of standard network applications against a
non-unikernel Linux system. Although the performance
data produced by these macrobenchmarks suggest that
the unikernel model indeed offers performance improve-
ments, we believe our experience shows that the tested
unikernel platforms are not yet ready for deployment in
production environments.

1 Introduction

With the recent rise of cloud computing, virtualization
has become a common method for service providers
to provide resource isolation across shared platforms
with opaque resource assignment [2]. Significant effort
has gone into building performant and secure hypervi-
sors [3], seeking to provide performance as near to an
unvirtualized environment as possible while hiding the
true nature of the hardware platform from applications.

Many services are deployed as single applications run-
ning on dedicated virtual machines, themselves running
on a shared cloud platform. Observing that these stan-
dalone applications do not require many of the services
usually provided by an operating system, the concept of
a unikernel [15] has emerged as a complement to library
operating systems or exokernels, in which a single ap-
plication is compiled into a standalone virtual machine

∗Prepared for CS6480, Advanced Computer Networking, Fall 2014
†Project advisor

optimized to run only that application.
The claimed advantages of unikernels over traditional

virtualization solutions generally include security and
performance [17]. Security is improved by the reduced
attack surface and increased isolation between applica-
tions; performance is improved by eliminating unneces-
sary components from the application.

While there are now a variety of unikernels suitable for
general use, the objective advantages (or lack thereof)
have not been explored in great detail. The creators of
most of these systems have evaluated their performance
in microbenchmarks which often show a performance
advantage for a unikernel compared to a full operating
system, but their real-world performance is generally left
unexplored.

We present a set of realistic macrobenchmarks com-
paring the performance of several unikernel network ap-
plications (TCP/UDP, DNS, and HTTP) against a typical
Linux deployment of the same applications. Our goal is
to quantify the performance advantages of the unikernel
approach to service deployment over traditional meth-
ods, and to guide prospective users to the best platform
for their application. Our conclusions suggest that there
is some significant merit in the unikernel method, but the
unikernel implementations may not yet stable enough for
widespread deployment in production.

2 Background

Most operating systems used today in virtual machines
are mostly identical to the traditional, general-purpose
operating systems used in non-virtualized environments.
Since it is common today to configure virtual machines
in the cloud to run a single application such as a web
server or a database, a significant amount of the code,
data, and services provided by the general-purpose oper-
ating system go unused and result in inefficiencies and
wasted resources.

Configuration

Application

Threads

Processes

OS kernel

Hypervisor

Hardware

Hypervisor

Hardware

Application

Runtime library

U
n

ik
e

rn
e

l

Figure 1: Traditional OS structure (left) vs unikernel

By eliminating unnecessary components, unikernel
applications become much simpler and smaller, and thus
are able to start up much more efficiently. For exam-
ple, a web server unikernel can boot in less than a sec-
ond. This method enables a new approach to the man-
agement of cloud resources: a virtual appliance, where a
set of unikernels can be deployed cooperatively to build
a distributed system. By rearchitecting traditional sys-
tems in this way, unikernel applications can, for exam-
ple, respond to load spikes more elastically by spawning
new unikernel VM instances without wasting significant
resources. [17] The comparison between these architec-
tures is visualized in Figure 1.

In some unikernels, such as Mirage OS, the cost of
these benefits is paid at compile time, when static anal-
ysis is performed on the unikernel’s code and configura-
tion data to create the optimal boot image. Other uniker-
nels, such as OSv, do not perform as much static anal-
ysis at compile time because they are designed to run
programs in a more general-purpose way while still pro-
viding some benefits in flexibility and efficiency.

Existing unikernels are largely differentiated by the
programming languages that they are implemented in,
often taking advantage of safety guarantees enforced
by the language itself. For example, Mirage OS [16],
HaLVM [8], and Erlang on Xen [7] all provide lan-
guage runtime systems with strong focus on type-
safety (OCaml, Haskell, and Erlang, respectively), while
ClickOS [18] provides a number of primitives meant
for implementation of network middleboxes in C++.
OSv [12], a relative newcomer, provides an optimized
Java virtual machine in addition to its ability to run most
POSIX programs with minimal modification.

3 Platforms Evaluated

We selected two popular unikernel platforms to evaluate:
Mirage OS and OSv. These platforms are both relatively
young; Mirage was first released in March 2013, and
OSv was first released in September 2013. These plat-

forms seemed to be sufficiently stable and mature that
useful evaluation could be performed. Linux was chosen
for its stability and popularlity to provide baseline data.

3.1 Mirage OS

We chose the latest stable version of Mirage OS, version
2.0 [19], for evaluation. Mirage only has support for the
widely-used Xen hypervisor. Mirage is implemented en-
tirely in the OCaml programming language; its authors
cite [15] OCaml’s brevity and static typing for reducing
the attack surface of its code by eliminating common se-
curity exploits such as buffer and stack overruns. The au-
thors also tout OCaml’s high-performance runtime and
compatibility with the Xen Cloud Platform and critical
system components which are implemented in OCaml.
Specifically, static analysis at compile-time enables Mi-
rage apps to be streamlined.

3.2 OSv

OSv builds on large existing bodies of code, with much
of its driver layer coming from BSD. The core of
the system is implemented in C and C++, borrowing
large amounts of the support infrastructure from exist-
ing POSIX systems. OSv supports the Linux ABI and
most POSIX APIs in addition to allowing applications to
use the OSv C++ API.

All threads in OSv share a single address space. In
POSIX semantics, this means system calls such as fork
are not available (because forking a process creates a new
address space), but clone remains available for spawn-
ing new threads. The single address space approach
permits significant performance improvements- context
switching between threads does not incur a TLB flush,
nor does performing a system call incur context switch
overhead. The non-POSIX OSv APIs take additional ad-
vantage of this, such as by allowing zero-copy network
transmit and receive operations.

OSv’s implementation as a BSD-based core exposing
Linux ABI has some unusual implications where appli-
cations attempt to make use of Linux-specific or oth-
erwise non-standard interfaces. For example, our DNS
server application (subsection 5.2) uses ancillary socket
data to set the ToS bits on transmitted UDP datagrams
when performing recursive lookups. Platform-specific
values (such as the values of socket operation flags) must
be translated between the Linux and BSD ABIs, and in
the case of socket ancillary data this translation is not
implemented. In that case, we modified the OSv syscall
to strip ancillary data in calls to send, which had no ill
effect on application functionality.

2

3.3 Linux

To obtain a useful set of baseline performance data for
comparison, we also ran our tests against comparable
services running on the Linux [14] operating system, it-
self running unmodified on the Xen hypervisor. This
platform was based on Ubuntu [4] 14.04 for x86 64.

4 Service Performance Model

To process client requests, a service requires CPU time,
free memory, and network bandwidth. For every request
received, the server must perform some processing, dur-
ing which CPU time and memory are consumed in ad-
dition to network bandwidth being consumed to return a
response to the client.

In our benchmarks, we expect most workloads to be
limited by CPU time. As the request rate rises, the server
eventually reaches a point where there is insufficient
CPU time to process requests immediately as they arrive,
so some requests must be buffered while they are pro-
cessed as quickly as possible. Buffering introduces addi-
tional latency between reception of a request and trans-
mission of the corresponding response, so at this point
we expect the response rate as measured at the client to
stop increasing and response latency to increase.

Though Mirage provides introspective methods to de-
termine the memory and CPU use, we opted not to use
those methods to measure Mirage because we lack equiv-
alents of those tools for all platforms and we believe
these introspected measurements to be less reliable than
external measurements. OSv exposes a count of free
memory via the management API but does not provide
CPU accounting data, while Linux has a wide variety of
userspace accounting tools for both CPU and memory
use but these tools are intended for measuring userspace
applications rather than the system as a whole.

We opted not to measure memory use in benchmarks
via the mechanisms available to us due to the potential
impact on guest performance. The Linux guest in partic-
ular would need to run at least one more process to poll
memory usage, and in all cases reporting memory use in-
troduces another thread into the system which must com-
pete for resources. External introspection is not a fea-
sible method for memory measurement either, because
Xen reserves all of the physical memory for a DomU at
the time of creation, performing no additional accounting
on guest page table allocations.

Though our hypervisor provides methods to perform
CPU time accounting with the xentop tool, we have
not captured CPU data for any of our benchmarks. Syn-
chronizing capture of data between the client and server
is a situation our evaluation tools do not currently han-
dle well, suggesting room for future improvement. Our

capture of client-side data only means we are unable to
definitively identify the limiting factors in performance,
though we are able to make educated guesses given our
knowledge of the platforms.

5 Selected Applications

To evaluate the relative performance of each platform,
we selected three different kinds of network services for
evaluation: low-level (TCP/UDP), mid-level (DNS), and
high-level (HTTP).

5.1 TCP/UDP

To measure the performance of the TCP and UDP net-
work protocols, we selected the Iperf [11] benchmark.
Our goal was to measure TCP bandwidth, UDP band-
width, and UDP delay jitter.

We expect all platforms to easily saturate a gigabit
network connection, though CPU utilization differences
while doing so may indicate differences in the network
stack’s efficiency between the platforms. Similarly, vari-
ance in UDP delay jitter may indicate scheduler-based
inefficiencies in individual platforms.

The Linux server for this test was unmodified Iperf
version 2.0.5, and in all tests the client was also Iperf
2.0.5.

On OSv, the Iperf server was version 2.0.5 modi-
fied to perform zero-copy I/O with OSv-specific APIs.
These changes total approximately 50 lines of code,
and are included with the OSv source distribution as
iperf-zcopy [5]. Due to the zero-copy I/O support, we
expect it to be slightly more CPU efficient.

On Mirage, the Iperf server was an ”Iperf-like” clone
written by Dimosthenis Pediaditakis in OCaml for the
Mirage platform [6].

5.2 DNS server

The DNS server for each test was configured as the
authoritative name server for a fixed domain, and the
benchmark client made requests for a single member of
that domain at a target request rate for ten seconds. The
latency of each request was measured, yielding a com-
posite measurement of server response rate (in queries
per second).

The Linux platform’s DNS server was BIND [10]
9.8.4, as packaged by the distribution and reconfigured
with our zone file only.

The OSv server was built from BIND 9.10.1 sources,
ported to OSv. The BIND server did not require modifi-
cation beyond minor patches to the build system to gen-
erate a shared object library rather than ELF binary and

3

corresponding build-time configuration to disable fea-
tures that are incompatible with shared object generation
(notably, the built-in capability to provide stack traces).

To support BIND, we needed to make several source-
level changes to OSv. BIND refers to several C library
functions and symbols that are not currently provided by
OSv, so we stubbed out the functions that are not crit-
ical to BIND’s functionality (notably syslog) and im-
plemented the others in terms of existing functionality
(strsep g and sigsuspend). We also modified the
sendmsg syscall to ignore all ancillary data as described
in subsection 3.2.

The Mirage platform’s DNS server was the skeleton
DNS server [20] provided by the Mirage team. This ex-
ample DNS server does not support most of the features
provided by the BIND server; indeed, the only feature
that it supports is responding to UDP DNS queries for
one particular hard-coded zone. Some minor customiza-
tion of the Mirage DNS server was required: in addition
to configuring the DNS zone and the server address and
port for our environment, we modified the DNS server
code so that it did not output a log message for every re-
ceived request. Prior to this change, the performance was
very poor.

5.3 HTTP server

Performance of an HTTP server serving static content
was measured by generating HTTP requests for a single
static resource (a 136-byte HTML file) at varying rates
and measuring the response time for each request. This
yields a composite measurement of server response rate.

As a proxy for introspected memory use measure-
ments (discussed in Section 4), we reduced the DomU
memory size by a factor of two from the original 1 gi-
gabytefor each subsequent test until the server failed or
the response rate was reduced to less than 25 percent
of its baseline value. This approach allows us to infer
the memory requirements for the application without di-
rectly measuring memory use.

To test HTTP service on Linux, we chose Apache
HTTP Server [1] version 2.4.7 as packaged for Ubuntu.
No changes were made to the default Apache server con-
figuration.

OSv includes a web server for its management appli-
cation, but this server is not well-suited to adaptation for
other uses. The source distribution includes application
servers as well, but these are not suitable for benchmark-
ing a static web site. We instead ported lighttpd [13],
which required no patches other than configuring it to
build the server binary as a shared library object. We
found that there appears to be a serious bug in OSv which
made it impossible to test lighttpd on OSv with Xen,1

so we instead ran the OSv lighttpd image under Linux’s

DomU

eth3br0

Dom0

r7
1
0

eth2

r7
1
0

DHCP iperf

queryperf

httperf

Client

Figure 2: Experiment configuration in testbed

KVM hypervisor, where the bug does not appear to man-
ifest.

The Mirage platform’s HTTP server was the skeleton
HTTP server [21] provided by the Mirage team. This
example HTTP server does not support most of the fea-
tures provided by the other HTTP servers; for example, it
does not support plugin modules for enabling third-party
features like SSL or PHP.

6 Evaluation

6.1 Experiment setup

All platforms were evaluated running in a Xen 4.4 guest
domain on Dell r710 servers with Intel Xeon E5530 pro-
cessors and 12 gigabytes of RAM in the Emulab [24]
network testbed. Benchmark client programs were run
on identical r710 servers connected via a dedicated giga-
bit Ethernet link. Both client and Dom0 operating sys-
tems were Ubuntu 14.04. This configuration is shown in
Figure 2.

Guest domains were allocated one gigabyte of mem-
ory and one virtual CPU, with a virtual network in-
terface attached to a Linux network bridge device on
the host, which was in turn connected to the dedicated
client-server link. The Xen Dom0 and client machine
were assigned static IP addresses on this private network,
while Xen DomU guests were assigned IP addresses by
a DHCP server running in the Xen Dom0.

As test clients, we used the following three applica-
tions:

• Iperf [11], a bandwidth measurement tool

• queryperf [22], a DNS response measurement tool
from the ISC BIND ”contrib” distribution

• httperf [9], a tool for web server performance test-
ing from HP Labs

4

6.2 Iperf
Unfortunately, the only available Mirage Iperf server was
written for Mirage OS version 1.0, which is not compat-
ible with the version 2.0 that we tested. As a result, we
were unable to obtain Iperf data for Mirage. We tested
OSv and Linux just enough to confirm that Iperf can eas-
ily saturate the network link, as we expected.

6.3 DNS
The results of the three DNS benchmarks are shown in
Figure 3, Figure 4, and Figure 5. Note that the Linux and
OSv graphs have an identical X axis, while the request
rate for Mirage goes up to 80 thousand.

The DNS server running on Linux hits its limit at
about 19,000 requests/second, at which point response
latencies become significantly higher.

The OSv DNS server performs significantly better
than Linux both in terms of response latency and max-
imum request rate. It runs out of steam at about 30,000
requests/second while consistently responding faster to
requests.

The Mirage DNS server is able to sustain a higher re-
quest rate than Linux or OSv, but at some cost: a small
fraction of the response times are significantly higher
than the average. These outliers, indicated by the gray
X’s on the chart, are much more abundant at higher laten-
cies than on Linux or OSv. We speculate that this is due
to memory garbage collection being performed occasion-
ally by the OCaml unikernel runtime. The Mirage OS
authors also mentioned in their 2013 paper that memo-
ization of DNS responses roughly doubled performance;
perhaps this would help as well.2

6.4 HTTP
The results of our HTTP benchmarks for all three plat-
forms are shown in Figure 6. Shaded regions on the
graph represent an increase of standard deviation from
the average latency for each given request rate. httperf
does not export fine-grained statistics in the same way
queryperf does, so we were unable to perform addi-
tional statistical processing on the data as was done with
DNS results.

The Linux HTTP server performs well until about
4,000 requests/second, at which point it becomes unable
to keep up with the requests and its performance drops
off significantly.

The OSv HTTP server performs consistently well all
the way through 5,000 requests/second. We speculate
that the increase in response latency is due to client re-
source exchaustion, described below.

We were unable to test higher than about 5,000 re-
quests/second using a single test client because httperf

creates a new TCP connection for each HTTP request, in
order to simulate real-world requests coming from dif-
ferent browsers, and a critical TCP resource becomes
almost entirely consumed at that rate: each time a
TCP connection is closed, it must remain in the TCP
TIME WAIT state for about one minute, by default, on
Linux. So, after creating 5,000 requests/second for ten
seconds, there are 50,000 TCP connections on the Linux
client, each tying up a unique source TCP port. So, in
order to test higher HTTP request rates, we would have
to redesign our test to support multiple clients, or change
the default TCP TIME WAIT timeout, and we ran out
of time to explore these options. As a result, we do not
yet know the upper limit of OSv HTTP server’s response
rate, but it is appears to perform better than Linux.

During testing of the Mirage HTTP server we encoun-
tered a severe bug: the Mirage TCP/IP library apparently
leaks memory every time a TCP connection is released,
on the order of 30 kilobytes per TCP connection. We
have filed a bug with the Mirage OS authors. Unfortu-
nately, this causes the performance of Mirage to be very
poor; we expect this performance would be greatly im-
proved after this bug is fixed.

OSv HTTP didn’t see any performance degradation
when its total memory allocation in Xen was reduced to
256 MB. At 128 MB of memory, OSv performed nor-
mally up to 4,000 requests per second, at which point the
server crashed due to out-of-memory conditions. Linux’s
performance was not affected by memory size either, and
it maintained the same level of performance down to 256
MB of memory, which is the stated minimum require-
ment for Ubuntu Server.

7 Future Work

We have identified several further areas that we would
like to explore in the future, including:

• Fixing the TCP/IP stack bug that caused Mirage
HTTP to perform so poorly. (See Figure 6.4.)

• Fixing the bug that prevented running lighttpd on
OSv on Xen. (See subsection 5.2.)

• Testing fully-featured Mirage network servers,
when they become available, instead of the exam-
ple skeleton servers that are available today. For
example, a Mirage HTTP server that has reasonable
feature parity with the Apache HTTP Server.

• Testing the performance of a dynamic web server
application; for example, a web page containing
content that must be retrieved from a database.

5

Figure 3: Linux DNS server results.

Figure 4: OSv DNS server results.

6

Figure 5: Mirage DNS server results.

1000 1500 2000 2500 3000 3500 4000 4500 5000

Request rate (s−1)

0

1000

2000

3000

4000

5000

R
e
sp

o
n
se

 r
a
te

 (
s−

1
)

100

101

102

103

R
e
sp

o
n
se

 l
a
te

n
cy

 (
m

s)

OSv response rate

OSv latency

Linux response rate

Linux latency

Mirage response rate

Mirage latency

Figure 6: HTTP Server Benchmark Results

7

• Testing the performance of recursive DNS server
resolution, since that would be more representative
of a real-world environment.

• Testing the performance of operating system-level
virtualization such as the Linux control group
(cgroups) feature as used by Docker and LXC.

• Improving our test rig so that we can test the
establishment of greater than 5,000 TCP connec-
tions/second. (See Figure 6.4.)

• Testing other unikernel platforms, such as Erlang on
Xen and HaLVM.

• Measuring more unikernel characteristics; for ex-
ample, boot time, memory requirements, and relia-
bility.

8 Conclusion

The two unikernel platforms we evaluated are both so
different and so young that it is unreasonable to draw
any general conclusions about the unikernel architectural
model. However, the results we were able to obtain are
promising.

OSv significantly exceeded the performance of Linux
in every category, while not requiring much work in or-
der to port the chosen applications. But, all was not per-
fect with OSv; we were not able to run lighttpd on OSv
on Xen, due to a crashing bug. Given that OSv is cur-
rently considered alpha software by its authors, these re-
sults suggest production versions of OSv will be very at-
tractive for high-performance applications though its cur-
rent stability and dearth of well-tested applications is not
appropriate for production deployment.

Mirage OS’s performance is more of a mixed bag than
the other two platforms. Neither the DNS server nor
the HTTP server are ready for deployment in production
because they were merely example skeleton servers that
contain low-level debug print statements and are missing
key features. Furthermore, a serious bug in its TCP mod-
ule prevented us from evaluating its HTTP server. How-
ever, the DNS server was able to sustain a request rate
that was significantly higher than both Linux and OSv.
This suggests that it may be worth trying Mirage again
after it has had more time to mature and stabilize.

It is noteworthy that OSv supports existing POSIX ap-
plications without much modification, while Mirage only
supports OCaml applications that have been specifically
ported to the Mirage framework. This gives OSv the
great advantage of compatibility with a huge number of
existing applications, but it lacks the security and perfor-
mance benefits offered by OCaml’s type-safety and static
analysis at compile-time.

Though we found the stability and feature sets of
these unikernels to be somewhat lacking when compared
aginst the Linux testbed, the performance data we were
able to capture are promising for the prospects of future
deployment in real-world applications, providing good
security isolation with smaller resource footprint than
monolothic ”traditional OS” virtual machines and com-
parable (if not better) performance.

References
[1] APACHE TEAM. Apache http server project. http://httpd.

apache.org/.

[2] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
KATZ, R., KONWINSKI, A., LEE, G., PATTERSON, D.,
RABKIN, A., STOICA, I., AND ZAHARIA, M. A view of cloud
computing. Commun. ACM 53, 4 (Apr. 2010), 50–58.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2003), SOSP ’03, ACM, pp. 164–177.

[4] CANONICAL LTD. Ubuntu operating system. http://www.

ubuntu.com/.

[5] CLOUDIUS SYSTEMS. Zero-copy iperf for osv.
https://github.com/cloudius-systems/osv-apps/

tree/master/iperf-zcopy.

[6] DIMOSTHENIS PEDIADITAKIS. Iperf-like utility for mirage os.
https://github.com/dimosped/iperf-mirage.

[7] ERLANG ON XEN TEAM. Erlang on xen. http://

erlangonxen.org/.

[8] GALOIS, INC. Haskell lightweight virtual machine (halvm).
https://galois.com/project/halvm/.

[9] HEWLETT-PACKARD RESEARCH LABORATORIES. httperf tool
for measuring web server performance. http://www.hpl.hp.

com/research/linux/httperf/.

[10] INTERNET SYSTEMS CONSORTIUM. Bind dns software. http:
//www.isc.org/downloads/bind/.

[11] IPERF TEAM. Iperf. https://iperf.fr/.

[12] KIVITY, A., LAOR, D., COSTA, G., ENBERG, P., HAR’EL, N.,
MARTI, D., AND ZOLOTAROV, V. Osv: Optimizing the oper-
ating system for virtual machines. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2014), USENIX ATC’14, USENIX Asso-
ciation, pp. 61–72.

[13] LIGHTTPD TEAM. Apache http server project. http://www.

lighttpd.net/.

[14] LINUX TEAM. The linux kernel. https://www.kernel.org/.

[15] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT, D.,
SINGH, B., GAZAGNAIRE, T., SMITH, S., HAND, S., AND
CROWCROFT, J. Unikernels: Library operating systems for the
cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (New York, NY, USA, 2013), ASPLOS ’13, ACM,
pp. 461–472.

[16] MADHAVAPEDDY, A., MORTIER, R., SOHAN, R., GAZAG-
NAIRE, T., HAND, S., DEEGAN, T., MCAULEY, D., AND
CROWCROFT, J. Turning down the lamp: Software specialisa-
tion for the cloud. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing (Berkeley, CA, USA, 2010),
HotCloud’10, USENIX Association, pp. 11–11.

8

http://httpd.apache.org/
http://httpd.apache.org/
http://www.ubuntu.com/
http://www.ubuntu.com/
https://github.com/cloudius-systems/osv-apps/tree/master/iperf-zcopy
https://github.com/cloudius-systems/osv-apps/tree/master/iperf-zcopy
https://github.com/dimosped/iperf-mirage
http://erlangonxen.org/
http://erlangonxen.org/
https://galois.com/project/halvm/
http://www.hpl.hp.com/research/linux/httperf/
http://www.hpl.hp.com/research/linux/httperf/
http://www.isc.org/downloads/bind/
http://www.isc.org/downloads/bind/
https://iperf.fr/
http://www.lighttpd.net/
http://www.lighttpd.net/
https://www.kernel.org/

[17] MADHAVAPEDDY, A., AND SCOTT, D. J. Unikernels: Rise of
the virtual library operating system. Queue 11, 11 (Dec. 2013),
30:30–30:44.

[18] MARTINS, J., AHMED, M., RAICIU, C., AND HUICI, F. En-
abling fast, dynamic network processing with clickos. In Pro-
ceedings of the Second ACM SIGCOMM Workshop on Hot Top-
ics in Software Defined Networking (New York, NY, USA, 2013),
HotSDN ’13, ACM, pp. 67–72.

[19] MIRAGE OS TEAM. Mirage os. http://www.openmirage.

org/.

[20] MIRAGE TEAM. Skeleton dns server for mirage os.
https://github.com/mirage/mirage-skeleton/tree/

master/dns.

[21] MIRAGE TEAM. Skeleton http server for mirage os.
https://github.com/mirage/mirage-skeleton/tree/

master/static_website.

[22] NOMINUM, INC. queryperf dns query performance test-
ing tool. http://ftp.isc.org/isc/bind9/9.9.0rc1/

bind-9.9.0rc1/contrib/queryperf/.

[23] USENIX. Usenix atc ’15 call for papers. https://www.

usenix.org/conference/atc15/call-for-papers.

[24] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In Proc. of the Fifth Symposium
on Operating Systems Design and Implementation (Boston, MA,
Dec. 2002), USENIX Association, pp. 255–270.

Notes
1 The breaking bug in OSv appears to be threading-related, in which

the server properly responds to the first request made to it after starting
up but following which the system becomes completely unresponsive
to input both on the network and its local console.

2 Unfortunately, this memoization code was accidentally deleted by
the Mirage OS authors after publication of their 2013 paper, so we were
unable to test it.

9

http://www.openmirage.org/
http://www.openmirage.org/
https://github.com/mirage/mirage-skeleton/tree/master/dns
https://github.com/mirage/mirage-skeleton/tree/master/dns
https://github.com/mirage/mirage-skeleton/tree/master/static_website
https://github.com/mirage/mirage-skeleton/tree/master/static_website
http://ftp.isc.org/isc/bind9/9.9.0rc1/bind-9.9.0rc1/contrib/queryperf/
http://ftp.isc.org/isc/bind9/9.9.0rc1/bind-9.9.0rc1/contrib/queryperf/
https://www.usenix.org/conference/atc15/call-for-papers
https://www.usenix.org/conference/atc15/call-for-papers

	Introduction
	Background
	Platforms Evaluated
	Mirage OS
	OSv
	Linux

	Service Performance Model
	Selected Applications
	TCP/UDP
	DNS server
	HTTP server

	Evaluation
	Experiment setup
	Iperf
	DNS
	HTTP

	Future Work
	Conclusion

