
lliiiiiiliiiiiiiiiiiiliiiiiliiiiiiiiiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiimmiiiiiiiiiiimliiiiiiiiiiiiiliiiiiimlliiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiliiiliiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiiii!i 

Paul Snow To Catch a Rabbit 
While I have my new Red Book open, you may be 

The PostScript ™ 
Column 

Insights into 
PostScript 
Continuing our progress 
towards embedded sys
tems programming in a 
PostScript-compatible 
interpreter, I think we 
should address the foun-
dation of PostScript. (For 
those of you tuning in late, 

this is not the twilight zone! Catch the previous article 
in the Newsletter, Vol.2 No.4 pg.5) In this article we 
will look at implementing PostScript-style control 
structures, names, and dictionaries. These concepts 
will form the basis for implementing a PostScript mini 
interpreter in Forth. We will also identify the major 
differences between Forth and PostScript, and nail 
down a word list that we will use to merge the two. And 
just to rankle and annoy, we'll toss in some Cas well. 

Legalities & Moralities 
Before we dive in, let's explore our legal and moral 

position in this endeavor. In 1986 when Cliff Click and 
I starting working on a PostScript-compatible inter
preter, it was not absolutely crystal clear that we were 
working within a proper moral/legal context, though I 
felt strongly that we were. Happily we can now (as of 
December of '90) lay all such nagging doubts to rest. In 
the latest edition of the Red Book1 (which is no longer 
red, but mostly white and a light burnt orange) on page 
10 Adobe gives permission to do the following (and I 
quote:) 

./ write programs in the PostScript language; 

./ write drivers to generate output consisting of Post
Script language commands; 

./ write software to interpret programs written in the 
PostScript language; and 

./ copy Adobe's copyrighted list of commands to the ex
tent necessary to use the PostScript language for 
the above purposes. 

What Adobe goes on to say we can't do is call the 
results of our work PostScript ™, or anything which 
might be confused with the PostScript trade mark. 
(Printware, a printer manufacturer, once called their 
interpreter "PrintScript". Adobe objected, and Print
ware changed their interpreter's name to "PrintStyle") 
So we have to call it something else. [Editor's Note: it's 
your turn, Mr. Reader: write Paul Snow or send him a 
GEnie message with your suggestions for a suitable 
name for this project!] 

1From the Introduction of the PostScript Language 
Reference Manual, second edition by Adobe Systems 
Inc., Addison-Wesley, Dec 1990. 

interested what Adobe's current stance on Forth is. 
(Warning, this is a rabbit and has nothing to do with 
the subject at hand!) On page 23 Adobe says: "As with 
all programming languages, the PostScript language 
builds on elements and ideas from several of the great 
programming languages. The syntax most closely re
sembles that of the programming language Forth. It 
incorporates a postfix notation in which operators are 
preceded by their operands. The number of special 
characters is small and there are no reserved words." 

The only other "great programming language" 
Adobe mentions is Lisp. This is the strongest endorse
ment I have ever read of Forth by anyone other than 
dyed-in-the-wool Forthers. 

And so we find ourselves on firm legal and moral 
ground, programming in one of the great programming 
languages, inspired with the quest, and ready to tackle 
all problems at hand. So, let's do it! 

Control Structures 
PostScript differs significantly from C and Forth in 

how it implements control and data structures. We'll 
look at C, Forth and PostScript code and point out 
some differences, and write some Forth code to imple
ment some simple PostScript control structures. 

PostScript, like Lisp, makes heavy use oflambda 
objects to implement control structures. (A lambda ob
ject is a term I'm borrowing from Lisp to refer to a sub
routine with no name.) The significance of this state
ment can sneak past you if your programming back
ground is largely in C. For example in C you would code 
an if statement: 

if{A==B) 

{ 

as: 

printf{" A is equal to B!"); 
} 

The same kind of statement is coded in PostScript 

A B eq { {A is equal to B!) print } if 

A C programmer tends to think in terms of syntac
tical structures such as statements and declarations. 
This kind of thinking obscures important differences 
between C and PostScript. In this example, the critical 
difference is not that the { ... }'s appear after the if in C 
and before the if in PostScript, but that the if in Post
Script is a bonafide operator, and the { ... } 's delimit a 
lambda object. 

The Forth programmer will not be so easily mis
lead because she will tend to think in terms of data 
stack manipulations and functions. In fact, before the 
Forth programmer has finished reading these last two 
paragraphs a thought balloon has probably formed 
above her head containing Forth code that looks some
thing like: 



{ 0 [COMPILE] LITERAL [COMPILE] IF HERE And in PostScript: 
>R ; IMMEDIATE /repeat10 {10 exch repeat} def 

} EXIT [COMPILE] ENDIF R> [COMPILE] 
LITERAL ; IMMEDIATE 

PS-IF SWAP IF EXECUTE ELSE DROP ENDIF ; 

This code will allow the Forth programmer to code 
the above example in one of two ways. The first is the 
Forth "Standard" way, and the second relies on the 
Forth code in the thought balloon ... 

Standard Forth Syntax: 
A @ B @ = IF . " A IS EQUAL TO B!" END IF 

PostScript-Style Syntax: 
A@ B@ = { ."A IS EQUAL TO B!" } PS-IF 

The balloon code given relies on a branch around 
the lambda object that could be avoided with a little bit 
of effort. 

Now let's look at a PostScript repeat loop. This con
trol structure takes a count and a lambda object and 
executes the lambda object that many times. Coding a 
simple example in our three languages yields: 

In the C Language: 
int i; 
for(i=O;i++;i<10) 
{ 

printf("*"); 
} 

In Forth: 
10 0 DO " *" LOOP 

And in PostScript: 
10 { (*) print} repeat 

Note that though all three examples print ten as
terisks, the control structures used are very different. 
For example, should I wish modifY the above code to 
produce a function that executes its parameter ten 
times, the result would be: 

In the C Language: 
(void) repeat10(*f()) 
{ 

int i; 
for(i=O,i++;i<10) 
{ f();} 

} 

In Forth: 
REPEAT10 

>R 10 0 DO R@ EXECUTE LOOP 
R> DROP ; 

Note further that the Forth and PostScript imple
mentations take into account the possibility that each 
call to the function may require parameters. So long as 
those parameters have been pushed onto the data/op
erand stack, both the Forth code and PostScript code 
will work fine. 

The very interesting observation to make from the 
examples above is that PostScript's virtual machine 
does not branch. In fact none of PostScript's control 
structures require branching, conditional or otherwise. 
PostScript implements all normal control flow via calls 
and conditional calls to lambda objects. Whereas this is 
very similar to Lisp, PostScript lambda objects are im
plemented as arrays rather than lists. Since PostScript 
maintains a length with each array pointer, no end of 
subroutine marker or instruction is required (in a later 
article I may explore a microcontroller based on Post
Script's control style; benefits of such a controller in
clude easy virtual memory, simple effective memory 
caches, Really RISC (RRISC) processor design, etc.) 

The most difficult PostScript control operators to 
implement are stop and exit. These operators have 
fairly complex behaviors similar to a smart EXIT word 
in Forth that works within DO ... LOOPs. As interest
ing as these operators are, I will put off addressing 
them to some later date. 

PostScript Style Names 
Function naming is another very unique aspect to 

PostScript. I implied above that all of PostScript's con
trol structures are implemented via lambda objects in
cluding subroutines. In C and Forth, subroutines (ie: 
words) have a single name by which they can be refer
enced. Not so with PostScript. In fact, PostScript does 
not have any named functions or operators in the C or 
Forth sense. Instead, PostScript binds name objects to 
entities such as procedures, numbers, and strings 
through special hash tables called dictionaries. 

Dictionaries are hash tables ofkey/value pairs. 
Given a key and a dictionary, the value for the key is 
found by hashing the key into the dictionary to yield 
the value pair. 

Even though any PostScript object can be used as a 
Key in a dictionary, the most useful objects to use as 
keys are names. Names in PostScript are independent 
objects that are guaranteed to each represent a unique 
string. Nothing more or less. Names are lent meaning 
via dictionaries and the dictionary stack. When the 
PostScript interpreter needs the definition of a name, 
the dictionaries on the dictionary stack are searched in 
order, from the top of the stack to the bottom. When an 
entry is found in one of the dictionaries for the name in 
question, the value is used as the value for the name. 

This is not unlike many Forth systems with their 
vocabulary stacks. The critical difference is that in 
PostScript a name's value is defined by the dictionary 
stack at run time, whereas with Forth names are de
fined at compile time. To implement PostScript-style 



iiiii!!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiii!i:l:m!iiiiiiiiiiiiiiiimiiimmm:mmmmmmmmmmimiiiiiiiii!i!iiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiii 
naming in either C or Forth, you need the following 
functions: 

str2name { string -- name ) 
Hashes a the given string into the name table. If the 
string has not been encountered before, than a new 
entry in the name table is built. A pointer or offset to 
the entry in the name table is returned as the name. 

name2str { name -- string ) 
A pointer to the string corresponding to the given name 
is returned. 

diet ( integer -- diet ) 
Creates a hash table of a given max length. To anyone 
writing this code from scratch, I would advise you to 
build dynamically sizable dictionaries. I would also 
advise you to build a header into the beginning of the 
dictionary giving its max length (even if it is dynamic) 
and other data about the dictionary. 

lookup { key -- addr ) 
Returns the address of the entry in the dictionary cor
responding to the given key. Should this key be unde
fined in the dictionary, the address should point to an 
empty slot in the dictionary which may be filled if so 
desired. If there is no more room in the dictionary (you 
implemented static dictionaries, or you are out of mem
ory) then the address would be null, -1, odd-- whatever 
passes for an impossible address in your system. 

de£ { key tag value tag diet -- ) 
';I'he key used with the dictionary can be anything, an 
mteger, a float, whatever. To have reasonable perfor
mance the key should be a name. The value is also tag
ged so later you can treat it as an address or a number, 
or a procedure, etc. def adds the key value pair to the 
given dictionary. Since every dictionary has a header 
describing itself, a tag for the dictionary is not neces
sary. 

To Sum Up ••• 
In the previous column we covered the advantages 

of a PostScript shell for embedded systems, and now 
we have begun to dig into building one. I have a early 
version of a PostScript shell that I will be making 
available on GEnie. It is written in Fifth, and will run 
on IBM PC's and compatibles. (I will make sure our 
shareware version of Fifth is also be available.) For 
those of you that might like to move it to FPC or TIL, 
the code is largely Forth-83 compatible, but does rely 
on Fifth's "compile on demand" capablility. 

If you have any PostScript questions, or a sugges
tion on what to name this PostScript based embedded 
system language we've been talking about, then I can 
be reached at: 

The Software Construction Company, Inc., 
2900-B Longmire, College Station, TX 77845 
or on GEnie by P.SNOWl 

Paul Snow is an accomplished programmer and entrepre
neur. His previous works include a unique 32-bit Forth for 
IBM -PC's called Fifth, and a clone of the Adobe PostScript 
controller language known as X-Script. Paul is a frequent 
contributor to Forth meetings and publications. He lives the 
life of a country squire with his family on the pleasant plains 
of College Station, Texas, near his alma mater (Texas A&M 
University). 

000 

continued from page 3: 

I'll also still be writing the ANS Forth reports, and 
maybe I'll even have time for a technical article or two. 
Thank you for the opportunity to do something useful, 
and to leave what seems to be a positive mark in our 
profession. 

Best of Luck to all! 

George Shaw has been programming in Forth for 10 years. 
He has been around the Forth community for awhile: having 
been a referee on the Forth-83 standard, chairman of the 
Asilomar conference twice, chairman of the Silicon Valley 
or North Bay chapters of FIG for the last four years, a mem
ber of the ANS Forth committee, and the founder and chair
man of ACM SIGForth. In his spare time he builds houses 
and is a consulting software engineer via his company, Shaw 
Laboratories. He also has been trained as a psychotherapist 
which he uses to prevent himself and the people around him 
from going insane while trying to keep up. 

000 

Coming Attractions 

Ifyou like PostScript™ you'll like what's ahead in 
upcoming issues of the Newsletter! 

We'll have another interesting PostScript column 
by our resident expert, Paul Snow. 

There'll be a review ofPSTutor™, a software pro
gram for the IBM-PC which can teach you how to 
write code in PostScript like a pro. 

We hope to have additional articles on PostScript 
by well known authors for your enjoyment. 

Forth-oriented articles include a superb hardware 
project by Peter Grabienski entitled: "FLIP-FLOP: 
A Stack-Oriented Multiprocessing System". 

All this, and a few surprises for you! Stay posted! 

----[[1 


